# Modeling and Querying Possible Repairs in Duplicate Detection

Based on

"Modeling and Quering Possible Repairs in Duplicate Detection" PVLDB(2)1: 598-609 (2009) by

George Beskales, Mohamed A. Soliman

Ihab F. Ilyas, Shai Ben-David

### Data Cleaning

#### Real-world data is dirty

#### □ Examples:

- Syntactical Errors: e.g., Micrsoft
- Heterogeneous Formats: e.g., Phone number formats
- Missing Values (Incomplete data)
- Violation of Integrity Constraints: e.g., FDs/INDs
- Duplicate Records

Data Cleaning is the process of improving data quality by removing errors, inconsistencies and anomalies of data

02/19/2010

### **Duplicate Elimination Process**



### Probabilistic Data Cleaning



### Probabilistic Data Cleaning



#### **One-shot** Cleaning and Probabilistic Cleaning compared

### Motivation

Probabilistic Data Cleaning:

- 1. Avoid deterministic resolution of conflicts during data cleaning
- 2. Enrich query results by considering all possible cleaning instances
- 3. Allows specifying query-time cleaning requirements

### Outline

- Generating and Storing the Possible Clean Instances
- Querying the Clean Instances
- Experimental Evaluation



#### Uncertainty in Duplicate Detection

- Uncertain Duplicates: Determining what records should be clustered is uncertain due to noisy similarity measurements
- A possible repair of a relation is a clustering (partitioning) of the unclean relation

|           | F     | Person |             |            | <b>Possible Repairs</b> |                  |                |  |
|-----------|-------|--------|-------------|------------|-------------------------|------------------|----------------|--|
| ID        | Name  | ZIP    | Income      |            | X <sub>1</sub>          | X <sub>2</sub>   | X <sub>3</sub> |  |
| P1        | Green | 51519  | 30k         |            | {P1}                    | {P1,P2}          | {P1,P2,P5}     |  |
| P2        | Green | 51518  | 32k         |            | { <b>P2</b> }           | { <b>P3,P4</b> } | {P3,P4}        |  |
| P3        | Peter | 30528  | 40k         | Uncontain  | { <b>P3,P4</b> }        | { <b>P5</b> }    | { <b>P6</b> }  |  |
| P4        | Peter | 30528  | 40k         | Clustering | { <b>P5</b> }           | { <b>P6</b> }    |                |  |
| P5        | Gree  | 51519  | 55k         |            | { <b>P6</b> }           |                  |                |  |
| <b>P6</b> | Chuck | 51519  | <b>30</b> k |            |                         |                  |                |  |

### Challenges

1. The space of all possible clusterings (repairs) is exponentially large

2. How to efficiently and reasonably generate, store and query the possible repairs?

### The Space of Possible Repairs



# Cleaning Algorithm



 The model should store possible repairs in lossless way

# **Cleaning Algorithm**

- Allow efficient answering of important queries (e.g. queries frequently encountered in applications)
- Provide materializations of the results of costly operations (e.g. clustering procedures) that are required by most queries
- Small space complexity to allow efficient construction, storage and retrieval of the possible repairs, in addition to efficient query processing

# Algorithm – Dependent Model

A – Algorithm; R – starting unclean relation; P – set of possible parameters for A

au - continuous random variable for A from interval [τ<sup>I</sup>, τ<sup>u</sup>] f<sub>τ</sub> – probability density function of τ (given by user or learned)

Applying A to R using parameter  $t \in [\tau^{I}, \tau^{u}]$  generates possible clustering (i.e. repair) denoted as A(R, t)

 $\mathcal{X}$  – set of all possible repairs, defined as {A(R,t) : t  $\in$  [T<sup>I</sup>, T<sup>U</sup>]}

02/19/2010

### Algorithm – Dependent Model

Probability of a specific repair  $X \in \mathcal{X}$ :

$$\Pr(X) = \int_{\tau^l}^{\tau^u} f_{\tau}(t) \cdot h(t, X) dt$$

Where h(t, X) = 1 if A(R,t) = X, and 0 otherwise.

02/19/2010

### Creating U-clean Relations

| e [    |            | Р              | erso          | onc        |            |    |                                               |                      |            |               |        |         |        |  |
|--------|------------|----------------|---------------|------------|------------|----|-----------------------------------------------|----------------------|------------|---------------|--------|---------|--------|--|
| bas    | ID         |                | Income        |            | С          |    | Р                                             | Vehicle <sup>c</sup> |            |               |        |         |        |  |
| ata    | CP1        |                | 31k           | {P         | 1,P2}      |    | [1,3]                                         |                      | ID         |               | Price  | С       | Р      |  |
|        | CP2        | 2              | 40k           | {P         | 3,P4}      | [  | 0,10]                                         | 0                    | CV1        |               | 5k     | {V1}    | [0,4]  |  |
| lea    | CP3        |                | 55k           | {          | P5}        |    | [0,3]                                         | 0                    | CV2        |               | 7k     | {V2}    | [0,4]  |  |
| ပူ     | CP4        | ł              | 30k           | {          | P6}        | [  | 0,10]                                         | C                    | CV3        |               | 6k     | {V1,V2} | [4,10] |  |
| tai    | CP5        | ;              | 39k           | {P1,       | P2,P5}     | [  | [3,10]                                        | C                    | CV4        |               | 8k     | {V3}    | [0,5]  |  |
| cer    | CP6        | 5              | 30k           | {          | P1}        |    | [0,1]                                         | C                    | CV5        |               | 4k     | {V4}    | [0,5]  |  |
| 5      | CP7        |                | 32k           | {          | P2}        |    | [0,1]                                         | 0                    | CV6        |               | 6k     | {V3,V4} | [5,10] |  |
| Г      |            | A              | , (Perso      | on, $\tau$ | ;: U[0,1   |    | $\mathcal{A}_2$ (Vehicle, $\tau_2$ : U[0,10]) |                      |            |               |        |         |        |  |
| e      | Person     |                |               |            |            |    |                                               |                      | Vehicle    |               |        |         |        |  |
| as     | ID         | Nam            | e ZIP         | <b>)</b> E | Birth Date |    | Income                                        |                      | ID         | Make          |        | Model   | Price  |  |
| tab    | <b>P1</b>  | Gree           | n 5135        | <b>9</b>   | 781310     | )  | 30k                                           |                      | V1         | H             | Ionda  | Civic   | 5k     |  |
| Da     | <b>P</b> 2 | Gree           | n 5135        | 8          | 781210     |    | 32k                                           |                      | <b>V</b> 2 | (             | Civic  |         | 7k     |  |
| Iclean | <b>P</b> 3 | 3 Peter 3012   |               | 28         | 870932     |    | 40k                                           |                      | V3         | N             | Vissan | Altima  | 8k     |  |
|        | <b>P</b> 4 | P4 Peter 30128 |               | 28         | 870932     |    | 40k                                           |                      | V4 I       | Nissan Altima |        | na      | 4k     |  |
| 5      | <b>P</b> 5 | Gree           | e 5135        | i9         | 1977121    | 10 | 55 <b>k</b>                                   |                      |            |               |        |         |        |  |
|        | P6         | Chuc           | <b>k</b> 5135 | i9         | 1946092    | 24 | 30k                                           |                      |            |               |        |         |        |  |

### Hierarchical Clustering Algorithms

- Records are clustered in a form of a hierarchy: all singletons are at leaves, and one cluster is at root
- **Example**: Linkage-based Clustering Algorithm



### **Uncertain Hierarchical Clustering**

- Hierarchical clustering algorithms can be modified to accept uncertain parameters
- The number of generated possible repairs is linear



### **Uncertain Hierarchical Clustering**

Algorithm 1 U\_Cluster  $(R(A_1, \ldots, A_m), \tau^l, \tau^u)$ **Require:**  $R(A_1, \ldots, A_m)$ : The unclean relation **Require:**  $\tau^l$ : Minimum threshold value **Require:**  $\tau^u$ : Maximum threshold value 1: Define a new singleton cluster  $C_i$  for each record  $r_i \in R$  (i.e.,  $C_i$ contains a unique identifier of  $r_i$ ) 2:  $\mathcal{C} \leftarrow \{C_1, \ldots, C_{|R|}\}$ 3: for each  $r_i \in R$  do Add  $(r_i[A_1], ..., r_i[A_m], C_i, [\tau^l, \tau^u])$  to  $R^c$ 4: 5: end for 6: while  $(|\mathcal{C}| > 1)$  and distance between the closest pair of clusters  $(C_i, C_i)$  in C is less than  $\tau^u$ ) do 7:  $C_k \leftarrow C_i \cup C_i$ 8: Replace  $C_i$  and  $C_j$  in  $\mathcal{C}$  with  $C_k$ 9:  $r_k \leftarrow \text{get\_representative\_record}(C_k)$  {See Section 3.3} 10: Add  $(r_k[A_1], \ldots, r_k[A_m], C_k, [dist(C_i, C_j), \tau^u])$  to  $R^c$ if  $(dist(C_i, C_j) < \tau^l)$  then 11: 12: Remove the c-records corresponding to  $C_i$  and  $C_j$  from  $R^c$ 13: else 14: Set the upper bounds of parameter settings of the *c*-records corresponding to  $C_i$  and  $C_i$  to  $dist(C_i, C_i)$ 15: end if 16: end while 17: return  $R^c$ 

### **Probabilities of Repairs**



#### Representing the Possible Repairs

|                       |              |              |   | ID  | •••  | Income | С                | Р      |
|-----------------------|--------------|--------------|---|-----|------|--------|------------------|--------|
|                       |              |              |   | CP1 | •••  | 31k    | { <b>P1,P2</b> } | [1,3)  |
| Clustering 1          | Clustering 2 | Clustering 3 | 1 | CP2 | •••  | 40k    | {P3,P4}          | [0,10) |
| {P1}                  | {P1,P2}      | {P1,P2,P5}   |   | CP3 |      | 55k    | {P5}             | [0.3)  |
| {P2}                  | {P3,P4}      | {P3,P4}      |   |     |      | 301/2  | (2 C)<br>(D6)    |        |
| {P3,P4}               | {P5}         | {P6}         |   |     | •••  | JUK    |                  |        |
| {P5}                  | {P6}         |              | 1 | CP5 | •••  | 39k    | {P1,P2,P5}       | [3,10) |
| $(\mathbf{P}_{\ell})$ | (10)         |              |   | CP6 | •••  | 30k    | {P1}             | [0,1)  |
| {01}                  |              |              |   | CP7 | •••• | 32k    | <b>{P2}</b>      | [0,1)  |

 $0 \le \tau < 1$   $1 \le \tau < 3$   $3 \le \tau < 10$ Pr = 0.1 Pr = 0.2 Pr = 0.7 **U-clean Relation** *Person*<sup>C</sup>

### **Constructing Probabilistic Repairs**



#### Re-creating Probabilistic repairs from U-clean Relations

## NN-based clustering

- Tuples represented as points in d-dimensional space
- Columns are dimensions
- Dimensions ordering is very important choice
- Clusters are created by coalescing points that are "near" to each other

• With growing t points that are further and further away are being put together into mutual clusters, also various clusters can be united

 Algorithm stops when there is only one cluster and all points belong to it or maximum value of t is reached.

### Time and Space Complexity

- Hierarchical clustering arranges records in N-ary tree, records being the leaves
- Maximum possible number of nodes of a tree that has n leaves (assuming each non-leaf node has at least 2 children) is 2n-1
- Therefore number of possible clusters is bounded by 2n-1, so it is linear w.r.t. to number of starting tuples.
- In general above algorithms have asymptotic complexity exactly as the original ones on which they build, since only constant amount of work is added to each iteration

### Outline

- Generating and Storing the Possible Clean Instances
- Querying the Clean Instances
- Experimental Evaluation



### Queries over U-Clean Relations

#### We adopt the *possible worlds semantics* to define queries on U-clean relations



### Example: Selection Query

| <b>Person</b> <sup>C</sup> |     |        |            |        |  |  |  |  |
|----------------------------|-----|--------|------------|--------|--|--|--|--|
| ID                         | ••• | Income | С          | Р      |  |  |  |  |
| CP1                        | ••• | 31k    | {P1,P2}    | [1,3)  |  |  |  |  |
| CP2                        | ••• | 40k    | {P3,P4}    | [0,10) |  |  |  |  |
| CP3                        | ••• | 55k    | {P5}       | [0,3)  |  |  |  |  |
| CP4                        | ••• | 30k    | {P6}       | [0,10) |  |  |  |  |
| CP5                        | ••• | 39k    | {P1,P2,P5} | [3,10) |  |  |  |  |
| CP6                        | ••• | 30k    | {P1}       | [0,1)  |  |  |  |  |
| CP7                        | ••• | 32k    | {P2}       | [0,1)  |  |  |  |  |



## Example: Projection Query



# Example: Join Query

|     |                                                                                                     |             | Person           |                        | Vehicle <sup>c</sup>  |                       |         |                 |  |  |
|-----|-----------------------------------------------------------------------------------------------------|-------------|------------------|------------------------|-----------------------|-----------------------|---------|-----------------|--|--|
| ID  | •••                                                                                                 | Income      | С                | Р                      | ID                    | Price                 | С       | Р               |  |  |
| CP1 | •••                                                                                                 | 31k         | { <b>P1,P2</b> } | τ <sub>1</sub> :[1,3)  | CV5                   | 4k                    | {V4}    | $\tau_2:[3,5)$  |  |  |
| CP2 | •••                                                                                                 | <b>40</b> k | { <b>P3,P4</b> } | τ <sub>1</sub> :[0,10) | CV6                   | 6k                    | {V3,V4} | $\tau_2:[5,10)$ |  |  |
| ••• | •••                                                                                                 | •••         | •••              | •••                    | •••                   | ••••                  | ••••    | ••••            |  |  |
|     |                                                                                                     |             |                  |                        |                       |                       |         |                 |  |  |
|     | SELECT Income, Price<br>FROM Person <sup>c</sup> , Vehicle <sup>c</sup><br>WHERE Income/10 >= Price |             |                  |                        |                       |                       |         |                 |  |  |
|     |                                                                                                     | Incom       | e Price          | С                      |                       | Р                     |         |                 |  |  |
|     | 40k 4k {P3,                                                                                         |             |                  | {P3,P4} ^ {V4          | -} τ <sub>1</sub> :[0 | $, 10) ^{7} \tau_{2}$ | :[3,5)  |                 |  |  |
|     |                                                                                                     | •••         | •••              | •••                    |                       | •••                   |         |                 |  |  |

### **Aggregation Queries**

| Person <sup>c</sup> |     |        |                           |        |  |  |  |  |  |
|---------------------|-----|--------|---------------------------|--------|--|--|--|--|--|
| ID                  | ••• | Income | С                         | Р      |  |  |  |  |  |
| CP1                 | ••• | 31k    | {P1,P2}                   | [1,3)  |  |  |  |  |  |
| CP2                 |     | 40k    | {P <b>3</b> ,P <b>4</b> } | [0,10) |  |  |  |  |  |
| CP3                 |     | 55k    | {P5}                      | [0,3)  |  |  |  |  |  |
| CP4                 |     | 30k    | {P6}                      | [0,10) |  |  |  |  |  |
| CP5                 |     | 39k    | {P1,P2,P5}                | [3,10) |  |  |  |  |  |
| CP6                 |     | 30k    | {P1}                      | [0,1)  |  |  |  |  |  |
| CP7                 |     | 32k    | {P2}                      | [0,1)  |  |  |  |  |  |

D

**SELECT** Sum(Income) FROM Person<sup>c</sup>



### **Other Meta-Queries**

- 1. Obtaining the most probable clean instance
- 2. Obtaining the  $\alpha$ -certain clusters
- Obtaining a clean instance corresponding to a specific parameters of the clustering algorithms
- Obtaining the probability of clustering a set of records together

### Outline

- Generating and Storing the Possible Clean Instances
- Querying the Clean Instances
- Experimental Evaluation

- □ A prototype as an extension of PostgreSQL
- Synthetic data generator provided by Febrl (freely extensible biomedical record linkage)
- □ Two hierarchical algorithms:
  - Single-Linkage (S.L.)
  - Nearest-neighbor based clustering algorithm (N.N.) [Chaudhuri et al., ICDE'05]

- Machine used: SunFire X4100, Dual Core 2.2GHz, 8GB RAM
- □ 10% of records were duplicates
- Each query executed 5 times and average time taken







- Exucution time overhead for S.L. Is 30%, and for NN less than 5%, and it is negligibly correlated with percentage of duplicates
- □ Space overhead is 8.35%
- Extracting clean instance for 100,000 records requeries only 1.5sec, which means this approach is more efficient than restarting deduplication algorithm whenever a new parameter setting is requested

### Conclusion

- We allow representing and querying multiple possible clean instances
- We modified hierarchical clustering algorithms to allow generating multiple repairs
- We compactly store the possible repairs by keeping the lineage information of clusters in special attributes
- New (probabilistic) query types can be issued against the population of possible repairs