Repair of XML documents
(w.r.t. given DTD)

Outline of the problem

* What does it mean to ,,repair”?

= Convert given xml such that it will be valid w.r.t to
given DTD?

= Should the conversion have some other features?
= Should it use minimum possible number of operations?
» What operations do we allow? How important this
decision is?

" How we can make potential user ,happy” with our
repair?

Robert Suréwka 2

Why this problem is important?

" |ntegrating XML databases
= Usually source DTD’s known a priori

" Putting into existing XML database XML
documents found in the Web
= DTD’s not known beforehand or even at all

= XMVLU's can be generated dynamically during
crawling (to give structure to the data, to make it
more usable — easier to search through, combine,

aggregate)

Robert Suréwka

Sample repairs

<IELEMENT A ((((A | CC), B)*) | C)>
Input <IELEMENT B (C)>
document

<IELEMENT C (C?)>

Possible repairs

@010

@010

Robert Suréwka 4

Sample repairs

<IELEMENT A ((B, (T | F))*)>
<IELEMENT B (#PCDATA)>
<IELEMENT T (#PCDATA)>
<IELEMENT F (#PCDATA)>

Even when considering only shorterst repair
paths there is 2" of repairs

Robert Suréwka 5

Add a leaf éRb —) (’}

Delete a S & — &
leaf 3

Rename a :
node

Operations - subtrees

Add a
minimal
subtree

Delete a
subtree

Operations - nodes

Operations - shifts

Shift a
node

Shift a
subtree

Sample existing algorithms

Stawomir Staworko A Nobutaka Suzuki
PhD dissertation IPSJ Digital Courier Vol. 2
May 2007 December 2006

perations used:
Add a subtree

perations used:
Add a node
Delete a subtree Delete a node

- Rename a node - Rename a node

Approximate Complexity:

(It1-(SIZIZ]-IRI+|ST-IR]-lg(IS[-IR])))

Approximate Complexity:
O[> 12w*|t]%r?)

t — set of nodes of the given tree, S — parameter bounded by size of the DTD, R - maximum number of siblings
in given tree, > - set of labels in the DTD, w — maximum degree of a node in the given tree, r — maximum
length of a regular expression in the DTD

Robert Suréwka 10

Conclusions so far...

1. We have algorithms that find some shortest repair
path of given XML document.

2. Operations that algorithm allows have a crucial
impact on the repair.

= |f 2 algorithms have sets of supported operations such that neither
of them includes the other then neither of the algorithms always
finds a shorter repair than the other.

3. Complexity of already known algorithms is
sufficiently fast for most uses.

4. But would the user be “happy” with what we
already have?

Robert Suréwka 11

Understanding an XML document

\

<IELEMENT Department (Dean?, Employees?)> <IELEMENT Staff (Name*)>
<IELEMENT Dean (Name?)> <IELEMENT Faculty (Name*)>
<IELEMENT Employees (Faculty?, Staff?, Name*)> <!ELEMENT Name (#PCDATA)>

w Employees Employees

There is a dean, whose
name is “Foo”, in the
department

This department doesn’t have a dean (e.g.
he might have just resigned and new hasn’t
been elected yet)

Robert Suréwka 12

An unwelcomed repair — data corruption

\3

<IELEMENT Department (Dean?, Employees?)> <IELEMENT Staff (Name*)>
<IELEMENT Dean (Name?)> <!ELEMENT Faculty (Name*)>
<IELEMENT Employees (Faculty?, Staff?, Name*)> <!ELEMENT Name (#PCDATA)>

Moreover it seems that no matter what
operations algorithm would support,
always a data corruption may happen 13

i:
I

ncorrect” repairs

Preventing

N\

There is a need to disallow repair paths that would “corrupt” data in an XML file.

Realization

1. User imposes constraints on
possible repairs (e.g. a constraint
“Dean node cannot be deleted
and any subtree rooted at Dean

1. An appropriate
constraint language needs

node cannot be modified vyould to be defined.
prevent the erroneous repair . -
from previous example). 2. A repair algorithm must

be developed that would
be able to work with those
constraints.

2. Repair attempt is undertaken,
and either valid (w.r.t. given
constraints) repair is done or
information than no such repair
exists is returned.

Robert Suréwka 14

Alternative solution

A lot of work is done in solving a problem stated like this:

“Given source DTD D,, update script S changing it to DTD D,
and XML document Xin D, transform X so that it’ll be in D,”

So one could just define some source DTD’s and edit
scripts transforming them to DTD in the database. Then
“correct” transformation of given XML's will be far more
probable

E.g. Nobutaka Suzuki: On Inferring K Optimum Transformations of XML Document
from Update Script to DTD. COMAD 2008: 210-221

Robert Suréwka 15

Choosing language

Creating a new Use an existing
language language:

e The language will be well e Many of users will be
tailored to needs (and already familiar with the
therefore it may be more language
compact and convenient) e If for our heeds some

e More work would be small tweaks to the
needed to create that language would be
language as well as tools needed it may confuse the
forit users

e The language can evolve
in direction we won'’t like

Robert Suréwka 16

N\

Constraint language proposal

T

A
A(B)

A((B))

A(B,C)

A(B,*,C)

A(+I BI[1-2I5<]IC)

Nodes A have to be preserved

If node A has a child B, then in output both of them have to be
preserved in that configuration

If node A has a descendant B, then in output both of them have
to be preserved in that configuration (but B may be e.g.
promoted from grandchild to child)

If node A has children B,C in that order, and there are no other
siblings between B and C then in output the three of them
have to be preserved in that configuration

If node A has children B,C in that order then in output the three
of them have to be preserved in that configuration

If node A has children B,C in that order, and B has at least one
left sibling and there are 1, 2 or more than 5 other siblings
between B and C then in output that configuration has to be
preserved (but, for example in input B may have exactly one
left sibling D, but in output it may have 2 left siblings F,G).

Robert Suréwka 17

N\

Constraint language proposition

Special character Meaning
or construction

~y

S

I

S
ns
nc
nd
nl
t
id

Not exist

Doesn’t matter in output

Has to be deleted

Level

Sibling index

Number of siblings

Number of children

Number of descendants

Number of leaves among descendants
Target

Identifier

Robert Suréwka

A(B,*,~C)

SA(B)

A(-B,C)
A[l:<4,6](B)
A(B[s:<2,last])
A(B[s:3; ns:odd])
A[nc:1-10,~5]
A[nd:<=3]
A[nl:even,3]
A(B[s:2; tc:<3])
Alid:1]((B[I:>2*1(1)]))

18

Possible languages to use — Twig Query

3

* Twig query (also knows as tree pattern query)

It is a pair Q=(T,F) where T is node-labeled and edge-labeled tree with
a distinguished x € T and F is a boolean combination of constraints of
nodes.

Node labels are variables like Sx or Sy

Edge labels are one of “pc” (parent-child) or “ad” (ancestor-
descendent)

Constraints have form Sx.tag = TagName or Sx.data relOp val, where
Sx.data denotes the data content of node Sx, and relOp is one of =, <,
> <, 2, Z.

7 =) =)
In overall a Twig query (over an XML) is similar in concept to a
selection condition in relational algebra

Source: Laks V. S. Lakshmanan: XML Tree Pattern, XML Twig Query. Encyklopedia of
Database Systems 2009 : 3637-3640

Robert Suréwka 19

Possible languages to use — Twig Query

bib

title author

o

Principia year Ashtadhyayi year
mathematica v
1910 deg . 5608 PO
MA., FRS Panini
first -
(First book on sanskrit grammar)
Alfred
Russel
$b
. . pc / \ad
Twig query finds set of 3 &
y

subtrees of a tree that
conform to condition | year

of the query | $y.data > 1900

o i o e . i s e s e
1

$b.tag = book & $.tag =

& $n.tag = name &

Twig queries could in our project
can be used to specify subtrees
that cannot be changed by
repairing algorithm

book book

year aythor Year

1910 1910 name
name
first
Alfred last ﬁrle y last
| b Whitehead Whitehead “oTTa"

Source: Laks V. S. Lakshmanan: XML Tree Pattern, XML Twig Query. Encyklopedia of

Database Systems 2009 : 3637-3640

Robert Suréwka

Possible languages to use - XPath

N\

* Xpath
— There are many versions of Xpath:
* Regular Xpath
* First-Order Xpath
* Aggregate Xpath
e Aggregate XPath with position arithmetic

— (Good source article about Xpath:
http://portal.acm.org/citation.cfm?id=1456653)

Robert Suréwka 21

Possible languages to use - Regular XPath

\3

Regular Xpath query grammar:

a=self |||]|=]<
fu=lab() =a| Q| true|false |notf | fand f | forf
Q:=al|[f]1Q/QIQuQ|QT

[Q]l; is the binary reachability relation on the nodes of tree t defined by
the query Q

Ans(Q.t) = {ne Ny | (root;,n) € [Q]}

Robert Suréwka 22

Possible languages to use - Regular XPath

\3

Preservation constraints:

Preservey(Q)
(t.t") = Preserveq(Q) iff Ans(Q.t) € Ny

Preserveq(Q), Q)')
(t,t") = Preserveo(Q. Q") iff Ans(Q.t) € Ans(Q'.t)

Preserves(Q.q")
(t.t") = Preserves(Q., Q") iff [Q], < [Q']+

Robert Suréwka 23

Possible languages to use - Regular XPath

\3

Purity constraints:

Pureq(Q)
(t,t") = Pure(Q) iff Ans(Q.t) 2 Ny

Pureq(Q. Q")
(t;t") ‘: P‘U,?weg(@:@f) iﬁ A'?I-S(Q:t) - A‘RS(Q!:H)

Pures(Q.q')
(t,1) = Pures(Q, Q') iff [Q]c 2 [

Robert Suréwka 24

Possible languages to use - Regular XPath h

"

Problem of constraint satisfability:

SAT = {(t,Z.D) | Rep(t.T,D) # &)

is Exptime-hard. It means that in order to find
practically usable algorithm it needs to be
*Probabilistic

*Approximate

*Or both

Robert Suréwka

25

Future work

* Eventually defining the constraints language

* Getting an idea which constraints types are
most usable for potential users (some
survey?)

* Proposing a polynomial-time algorithm to
solve the problem (or at least one being able
for any problem instance to find an
approximate solution with some probability)

Robert Suréwka 26

Questions?

