PNUTS: Yahoo!'s Hosted
Data Serving Platform

Presented by: Gaurav Vaidya

INTRODUCTION

g

How do | build a cool new web
app?

« Option 1: Code it up! Make it live!
— Scale it later

— |t gets posted to slashdot
— Scale it now!
— Flickr, Twitter, MySpace, Facebook, ...

How do | build a cool new web
app?

» Option 2: Make it industrial strength!
- Evaluate scalable database backends
> Evaluate scalable indexing systems
- Evaluate scalable caching systems
> Architect data partitioning schemes
> Architect data replication schemes
- Architect monitoring and reporting infrastructure
- Write application
> Go live
> Realize it doesn’t scale as well as you hoped
> Rearchitect around bottlenecks
- 1 year later - ready to go!

Example: social network updates

Brian

7\

Sonja Jimi Brandon| | Kurt

YAHOO!, MESSENGER

What are my friends up to?
Sonja:
by mjbeed2 04/2
Wouldn't come back: The fos d thg eat and the restaurant interi not well lit. | knos
this place ppl but T not Y Hoo’ LOCAL
L ~ Yellow Pages Bl'alllmll:
**
beed? 04/27/2007
W [d\ e back: The for d Hhtg eat and the restaurant interi not well lit. | know
this placy p pular but 'm

Example: social network updates

B |
a lg"‘%ﬁi‘% EEE : . .i:g;-" "
6 | Jimi <gi-
<re..
— <P

8 | Mary

flickr"

i
<photo> Mike <p
<title>Flower</title>
<url>www.flickr.com</url> 17| Bob
</photo>

<ra....

Consistency Example

Sl Photo Sharing List

Photo Sharing

Album :
Spring Break Party

Timeline consistency

Share photos

Remove user

Remove user

Share photos

Features needed for web-apps

» Scalability

» Response Time and Geographic Scope
» High Availability and Fault Tolerance

» Relaxed Consistency Guarantees

PNUTS in a nutshell

It is a

» massively parallel

» geographically distributed

» database system for Yahoo!’s web
applications.

It is a hosted & centrally managed service

PNUTS in a nutshell

» Data storage organized as hashed or ordered
tables

» Low latency for large numbers of concurrent
requests including updates and queries

» Per-record consistency guarantees

Contributions

» Record-level, asynchronous geographic
replication

» A consistency model that offers applications
transactional features but stops short of full
serializability.

» A careful choice of features

> include (e.g., hashed and ordered table organizations,
flexible schemas) or

- exclude (e.qg., limits on ad hoc queries, no referential
integrity or serializable transactions).

» Data management as a hosted service

FUNCTIONALITY

g

PNUTS Specifications

» Data Model and Features
> Simple relational model

» Fault Tolerance

» Topic-based pub/sub system
> Yahoo! Message Broker (YMB)

» Record-level Mastering
» Hosting

Data and Query Model|

» Data is organized into tables of records with
attributes
- hashed / ordered tables

» The query language of PNUTS supports selection
and projection from a single table.

» point access: A user may update her own record.

» range access: Another user may scan a set of
friends in order by name.
» PNUTS also does not enforce constraints such as

- referential integrity
- complex ad hoc queries(joins, group-by, etc.).

Consistency Model:

» Hiding the Complexity of Replication

» per-record timeline consistency: all replicas of a given
record apply all updates to the record in the same order
» The sequence number
- generation of the record (each new insert is a new generation)

- version of the record (each update of an existing record creates a
new version).

» Note that we (currently) keep only one version of a record
at each replica

Recordd Update ypdate UpdateUpdate Update Update Update Delete

inserte j
nJv.z v.3 | v. 4 V.5 v.6 v.7 v. 8

Generation 1

API calls

» Read-any
- Stale versions

» Read-critical (required version)
» Read-latest

» Write
> Single ACID operation

» Test-and-set-write (required version)
- Concurrent writes

API Calls - Future Plans

» Bundled updates

» Relaxed consistency: Allow applications to
indicate, per-table, whether they want
updates to continue in the presence of major
outages, potentially branching the record

timeline

Notifications

» Trigger-like notifications are important for
a

» d
u

oplications e.g.: Ad - Serving
low the user to subscribe to the stream of

ndates on a table

SYSTEM ARCHITECTURE

g

Architecture

Clients Data-path
OO00000000000b004dn components

REST API

Tablet
controller

Tablet splitting and balan

cing

Each storage unit_ has manv tablets (horizontal partitio

ns of the table)

Storage unit may become a hotspot

Storage unit

~N

Tablet

Overfull tablets split Tablets may grow over time

Shed load by moving tablets to other servers

22

Architecture

Local region Remote regions

Cienssl [][] HOOHOOOOOHOM

REST API .
. . .Routers
- EEEEEEEE

Accessing Data - Ordered tables

4 57 Key k divided into intervals
Record for key k| | Get key k

Record for key k

Accessing Data - Hash tables

n bit Hash Function H(k)
1] 0 < H(k) < 2n
Get H(k)

ERecord for H
(k)

Divided into intervals

@Reco rd for
(k)

Updates

Se@uence # for k ite key k

= 1100

Message brokers

\%rite key

@SUCCESS

@rite key k

26

Replication and Consistency

Yahoo Message Broker

» Data updates are considered “committed”
when they have been published to YMB

» YMB guarantees message delivery

» Logs the updates

» PNUTS clusters saved from dealing with
update propagation

» Provides partial ordering

Record Level mastering

» One replica becomes a master copy

» 85% writes to a record originate from the
same datacenter

» Master propagates updates to other replicas

» Mastership can be assigned to other replicas

as needed
- Eg: When a change in user’s location is detected

» Every record has a hidden metadata field
storing the identity of the master

Router Failure

» Routers contain only a cached copy of the
interval mapping

» The mapping is owned by the tablet
controller

» if a router fails, we simply start a new one

Recovery

» Involves copying lost tablets from another
replica

» The tablet controller requests a copy from a
particular remote replica

» “checkpoint message” is published to YMB, to
ensure that any in-flight updates at the time
the copy is initiated are applied to the source
tablet.

» The source tablet is copied to the destination

region

\ A

Other Database System
Functionality

» Query Processing
> Multi-record requests
- Range Queries

» Notifications

- Notifying external systems on updating certain
records

- Subscribe to the topic for specific tablet

PNUTS APPLICATIONS

» User Database
» Social Applications

» Content Meta-Data
- Eg: email attachments

» Listings Management
- Eg: Comparison shopping
» Session Data

Experimental setup

» Production PNUTS code
- Enhanced with ordered table type

» Three PNUTS regions

2 west coast, 1 east coast

5 storage units, 2 message brokers, 1 router

West: Dual 2.8 GHz Xeon, 4GB RAM, 6 disk RAID 5 array
East: Quad 2.13 GHz Xeon, 4GB RAM, 1 SATA disk

o

o

o

(¢]

» Workload
- 1200-3600 requests/second
> 0-50% writes
- 80% locality

Scalability

Average latency (ms)

160

140

120

100

80

60

40

20

Storage units

—o—Hash table == Ordered table

Request skew

100

80

70
60 =

50

40

Average latency (ms)

30
20

10

O T T T T T T T
0 01 02 03 04 05 06 0.7

Zipf parameter

—o— Hash table =M= Ordered table

Size of range scans

Average latency (ms)

8000

7000

6000

5000

4000

3000

2000

1000

4_—-—-—@

———

0.02

0.04 0.06 0.08 0.1
Fraction of table scanned

== 30 clients —#=2300 clients

012

Related work

Distributed and parallel databases
- Especially query processing and transactions

- BigTable, Dynamo, S3, SimpleDB, SQL Server Data Services,
Cassandra

v

Distributed filesystems
- Ceph, Boxwood, Sinfonia

v

Distributed (P2P) hash tables
> Chord, Pastry, ...

v

v

Database replication
- Master-slave, epidemic/gossip, synchronous...

Conclusions and ongoing work

» PNUTS is an interesting research product

- Research: consistency, performance, fault
tolerance, rich functionality

> Product: make it work, keep it (relatively) simple,
learn from experience and real applications

» Ongoing work
> Indexes and materialized views
> Bundled updates
- Batch query processing

