
PRESENTED BY

GAURAV VAIDYA

DYNAMO
Amazon’s Highly Available Key-value

Store

Some of the slides in this presentation have been taken from
http://cs.nyu.edu/srg/talks/Dynamo.ppt

Introduction

Need for a highly available Distributed
Data Store

  During the holiday shopping season, the service that
maintains Amazon’s shopping cart (Shopping Cart
Service) served tens of millions requests that
resulted in well over 3 million checkouts in a
single day and the service that manages session state
handled hundreds of thousands of concurrently
active sessions.

  Most of Amazon’s services need to handle failures
and inconsistencies

Motivation

  Build a distributed storage system:
  Scale
  Simple: key-value
  Highly available
  Guarantee Service Level Agreements (SLA)

System Assumptions and Requirements

  Query Model: simple read and write operations to a data
item that is uniquely identified by a key

  ACID Properties: Atomicity, Consistency, Isolation,
Durability.

  Efficiency: latency requirements which are in general
measured at the 99.9th percentile of the distribution.

  Other Assumptions: operation environment is assumed
to be non-hostile and there are no security related
requirements such as authentication and authorization.

Service Level Agreements (SLA)

  Application can deliver its
functionality in abounded
time: Every dependency in
the platform needs to deliver
its functionality with even
tighter bounds.

  Example: service
guaranteeing that it will
provide a response within
300ms for 99.9% of its
requests for a peak client load
of 500 requests per second.

Service-oriented architecture of
Amazon’s platform

Design Consideration

  Sacrifice strong consistency for availability
  Conflict resolution is executed during read instead

of write, i.e. “always writeable”.
  Other principles:

  Incremental scalability.
  Symmetry.
  Decentralization.
  Heterogeneity.

Related Work

  Peer to Peer Systems
  Freenet and Gnutella
  Storage systems: Oceanstore and PAST

 Conflict resolution for resolving updates

  Distributed File Systems and Databases
  Ficus and Coda
  Farsite
  Google File System

Comparison

Dynamo
  (a) it is intended to store relatively small objects (size < 1M) and
  (b) key-value stores are easier to configure on a per-application basis.

Antiquity
  Uses a techniques to preserve data integrity and to ensure data consistency
  Dynamo does not focus on the problem of data integrity and security - built

for a trusted environment

Bigtable
  distributed storage system for managing structured data
  allows applications to access their data using multiple attributes
  Dynamo targets applications that require only key/value access
  primary focus on high availability
  updates are not rejected even in the wake of failure.

Traditional Replicated Relational
Database Systems

  focus on the problem of guaranteeing strong
consistency to replicated data.

  limited in scalability and availability.
  not capable of handling network partitions

Dynamo

  Dynamo is targeted mainly at applications that need an
“always writeable” data store where no updates are rejected

  Dynamo is built for an infrastructure within a single
administrative domain where all nodes are assumed to be
trusted

  Applications do not require support for hierarchical
namespaces (a norm in many file systems) or complex
relational schema (supported by traditional databases)

  Dynamo is built for latency sensitive applications that require
at least 99.9% of read and write operations to be performed
within a few hundred milliseconds

  zero-hop DHT, where each node maintains enough routing
information locally to route a request to the appropriate node
directly.

System Architecture

System Architecture

  System Interface
  Partitioning Algorithm
  Replication
  Data Versioning
  Execution of get () and put () operations
  Handling Failures: Hinted Handoff
  Handling permanent failures: Replica

synchronization
  Membership and Failure Detection
  Adding/Removing Storage Nodes

System Interface

  get(key)
  put(key, context, object)

  MD5 (Key) = 128 bit identifier

Summary of techniques used in Dynamo
and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation
during reads

Version size is decoupled from update
rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high availability and
durability guarantee when some of the

replicas are not available.

Recovering from permanent failures Anti-entropy using Merkle trees Synchronizes divergent replicas in the
background.

Membership and failure detection Gossip-based membership protocol
and failure detection.

Preserves symmetry and avoids having
a centralized registry for storing
membership and node liveness

information.

Partition Algorithm

  Consistent hashing: the output
range of a hash function is treated as a
fixed circular space or “ring”.

  “Virtual Nodes”: Each node can
be responsible for more than one
virtual node.

Advantages of using virtual nodes

  If a node becomes unavailable the
load handled by this node is evenly
dispersed across the remaining
available nodes.

  When a node becomes available
again, the newly available node
accepts a roughly equivalent amount
of load from each of the other
available nodes.

  The number of virtual nodes that a
node is responsible can be decided
based on its capacity, accounting for
heterogeneity in the physical
infrastructure.

Replication

  Each data item is replicated
at N hosts.

  “preference list”: The list of
nodes that is responsible
for storing a particular key.

Data Versioning

  A put() call may return to its caller before the update
has been applied at all the replicas

  A get() call may return many versions of the same
object.

  Challenge: an object having distinct version sub-histories, which
the system will need to reconcile in the future.

  Solution: uses vector clocks in order to capture causality between
different versions of the same object.

Vector Clock

  A vector clock is a list of (node, counter) pairs.
  Every version of every object is associated with one

vector clock.
  If the counters on the first object’s clock are less-

than-or-equal to all of the nodes in the second clock,
then the first is an ancestor of the second and can be
forgotten.

Vector clock example

Execution of get () and put () operations

1.  Route its request through a generic load balancer
that will select a node based on load information.

2.  Use a partition-aware client library that routes
requests directly to the appropriate coordinator
nodes.

Sloppy Quorum

  R/W is the minimum number of nodes that must
participate in a successful read/write operation.

  Setting R + W > N yields a quorum-like system.
  In this model, the latency of a get (or put) operation

is dictated by the slowest of the R (or W) replicas.
For this reason, R and W are usually configured to be
less than N, to provide better latency.

Hinted handoff

  Assume N = 3. When A is
temporarily down or
unreachable during a
write, send replica to D.

  D is hinted that the
replica is belong to A and
it will deliver to A when A
is recovered.

  Again: “always writeable”

Other techniques

  Replica synchronization:
  Merkle hash tree.

  Membership and Failure Detection:
  Gossip

Membership and Failure Detection

  Ring Membership
  explicit mechanism to initiate the addition and removal of nodes

from a Dynamo ring

  External Discovery
  Failure Detection

Adding/Removing Storage Nodes

  A new node (say X) is added into the system
  It gets assigned a number of tokens (key range)
  Some existing nodes no longer have to some of their

keys and these nodes transfer those keys to X
  Operational experience has shown that this approach

distributes the load of key distribution uniformly
across the storage nodes

Implementation

  Java
  Local persistence component allows for different

storage engines to be plugged in:
  Berkeley Database (BDB) Transactional Data Store: object of tens

of kilobytes

  MySQL: object of > tens of kilobytes

  BDB Java Edition, etc.

EVALUATION

Evaluation

Evaluation

EXPERIENCES & LESSONS
LEARNED

Usage patterns

  Business logic specific reconciliation
  Client has reconciliation logic in case of divergent versions

  Timestamp based reconciliation
  Last write wins

  High performance read engine
  Large number of read requests
  R=1, W=N

Balancing Performance and Durability

  Typical SLA: 99.9% of the read and write requests
execute within 300ms

  Dynamo provides the ability to trade-off durability
guarantees for performance

  Buffering write and read operations
  A server crash can result in missing writes that were

queued up in the buffer
  One of the N replicas can perform a durable write

without affecting performance

Ensuring Uniform Load distribution

  Strategy 1:
  T random tokens per node and partition by token value

 Random sized hash space partitions
 When a new node joins the system, it needs to “steal” its key

ranges

  Strategy 2:
  T random tokens per node and equal sized partitions

 Fixed size hash space partitions, T tokens, S nodes, Q>>S*T

  Strategy 3:
  Q/S tokens per node, equal-sized partitions

 When a new node joins the system, it needs to “steal” its key
ranges

Uniform Load Distribution Strategies

Comparison of efficiency of
different strategies

for system with 30 nodes and N=3 with equal amount of
metadata maintained at each node

Divergent Versions: When and
How Many?

  Metric: The number of divergent versions
  Experiment: The number of versions returned to the

shopping cart service over a period of 24 hours.

  This shows that divergent versions are created rarely.

Percentage of requests No. of versions
99.94% 1

0.00057% 2

0.00047% 3

0.00009% 4

Client-driven or Server-driven
Coordination

99.9th
percentile
write latency
(ms)

99.9th
percentile
write
latency
(ms)

Average
read
latency
(ms)

Average
write
latency
(ms)

Server
Driven

68.9 68.5 3.9 4.02

Client
Driven

30.4 30.4 1.55 1.9

CONCLUSIONS

Summary

  Successful responses (without timing out) for 99.9995%
of its requests

  No data loss event has occurred to date
  Allows configuring (N,R,W) to tune the instance as per

needs
  Exposes data consistency and reconciliation logic issues

to the developers
  Complex application logic
  Easy to migrate pre-existing Amazon applications

  Dynamo is incrementally scalable
  Full membership model:

  Each node actively gossips the full routing table
  Overhead caused while scaling

PNUTS Dynamo

  Hashed / Ordered tables
  Hosted service
  Generation based

versioning
  Communication through

Pub / Sub YMB
infrastructure (optimized
for geographically
separated replicas)

  Partitioning into tablets
  Timeline based consistency

  Key – value pairs
  Internal use
  Vector clocks used
  Gossip based
  Partitioning tokens
  Eventual consistency and

reconciliation

Conclusions

