
PRESENTED BY

GAURAV VAIDYA

DYNAMO
Amazon’s Highly Available Key-value

Store

Some of the slides in this presentation have been taken from
http://cs.nyu.edu/srg/talks/Dynamo.ppt

Introduction

Need for a highly available Distributed
Data Store

  During the holiday shopping season, the service that
maintains Amazon’s shopping cart (Shopping Cart
Service) served tens of millions requests that
resulted in well over 3 million checkouts in a
single day and the service that manages session state
handled hundreds of thousands of concurrently
active sessions.

  Most of Amazon’s services need to handle failures
and inconsistencies

Motivation

  Build a distributed storage system:
  Scale
  Simple: key-value
  Highly available
  Guarantee Service Level Agreements (SLA)

System Assumptions and Requirements

  Query Model: simple read and write operations to a data
item that is uniquely identified by a key

  ACID Properties: Atomicity, Consistency, Isolation,
Durability.

  Efficiency: latency requirements which are in general
measured at the 99.9th percentile of the distribution.

  Other Assumptions: operation environment is assumed
to be non-hostile and there are no security related
requirements such as authentication and authorization.

Service Level Agreements (SLA)

  Application can deliver its
functionality in abounded
time: Every dependency in
the platform needs to deliver
its functionality with even
tighter bounds.

  Example: service
guaranteeing that it will
provide a response within
300ms for 99.9% of its
requests for a peak client load
of 500 requests per second.

Service-oriented architecture of
Amazon’s platform

Design Consideration

  Sacrifice strong consistency for availability
  Conflict resolution is executed during read instead

of write, i.e. “always writeable”.
  Other principles:

  Incremental scalability.
  Symmetry.
  Decentralization.
  Heterogeneity.

Related Work

  Peer to Peer Systems
  Freenet and Gnutella
  Storage systems: Oceanstore and PAST

 Conflict resolution for resolving updates

  Distributed File Systems and Databases
  Ficus and Coda
  Farsite
  Google File System

Comparison

Dynamo
  (a) it is intended to store relatively small objects (size < 1M) and
  (b) key-value stores are easier to configure on a per-application basis.

Antiquity
  Uses a techniques to preserve data integrity and to ensure data consistency
  Dynamo does not focus on the problem of data integrity and security - built

for a trusted environment

Bigtable
  distributed storage system for managing structured data
  allows applications to access their data using multiple attributes
  Dynamo targets applications that require only key/value access
  primary focus on high availability
  updates are not rejected even in the wake of failure.

Traditional Replicated Relational
Database Systems

  focus on the problem of guaranteeing strong
consistency to replicated data.

  limited in scalability and availability.
  not capable of handling network partitions

Dynamo

  Dynamo is targeted mainly at applications that need an
“always writeable” data store where no updates are rejected

  Dynamo is built for an infrastructure within a single
administrative domain where all nodes are assumed to be
trusted

  Applications do not require support for hierarchical
namespaces (a norm in many file systems) or complex
relational schema (supported by traditional databases)

  Dynamo is built for latency sensitive applications that require
at least 99.9% of read and write operations to be performed
within a few hundred milliseconds

  zero-hop DHT, where each node maintains enough routing
information locally to route a request to the appropriate node
directly.

System Architecture

System Architecture

  System Interface
  Partitioning Algorithm
  Replication
  Data Versioning
  Execution of get () and put () operations
  Handling Failures: Hinted Handoff
  Handling permanent failures: Replica

synchronization
  Membership and Failure Detection
  Adding/Removing Storage Nodes

System Interface

  get(key)
  put(key, context, object)

  MD5 (Key) = 128 bit identifier

Summary of techniques used in Dynamo
and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation
during reads

Version size is decoupled from update
rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high availability and
durability guarantee when some of the

replicas are not available.

Recovering from permanent failures Anti-entropy using Merkle trees Synchronizes divergent replicas in the
background.

Membership and failure detection Gossip-based membership protocol
and failure detection.

Preserves symmetry and avoids having
a centralized registry for storing
membership and node liveness

information.

Partition Algorithm

  Consistent hashing: the output
range of a hash function is treated as a
fixed circular space or “ring”.

  “Virtual Nodes”: Each node can
be responsible for more than one
virtual node.

Advantages of using virtual nodes

  If a node becomes unavailable the
load handled by this node is evenly
dispersed across the remaining
available nodes.

  When a node becomes available
again, the newly available node
accepts a roughly equivalent amount
of load from each of the other
available nodes.

  The number of virtual nodes that a
node is responsible can be decided
based on its capacity, accounting for
heterogeneity in the physical
infrastructure.

Replication

  Each data item is replicated
at N hosts.

  “preference list”: The list of
nodes that is responsible
for storing a particular key.

Data Versioning

  A put() call may return to its caller before the update
has been applied at all the replicas

  A get() call may return many versions of the same
object.

  Challenge: an object having distinct version sub-histories, which
the system will need to reconcile in the future.

  Solution: uses vector clocks in order to capture causality between
different versions of the same object.

Vector Clock

  A vector clock is a list of (node, counter) pairs.
  Every version of every object is associated with one

vector clock.
  If the counters on the first object’s clock are less-

than-or-equal to all of the nodes in the second clock,
then the first is an ancestor of the second and can be
forgotten.

Vector clock example

Execution of get () and put () operations

1.  Route its request through a generic load balancer
that will select a node based on load information.

2.  Use a partition-aware client library that routes
requests directly to the appropriate coordinator
nodes.

Sloppy Quorum

  R/W is the minimum number of nodes that must
participate in a successful read/write operation.

  Setting R + W > N yields a quorum-like system.
  In this model, the latency of a get (or put) operation

is dictated by the slowest of the R (or W) replicas.
For this reason, R and W are usually configured to be
less than N, to provide better latency.

Hinted handoff

  Assume N = 3. When A is
temporarily down or
unreachable during a
write, send replica to D.

  D is hinted that the
replica is belong to A and
it will deliver to A when A
is recovered.

  Again: “always writeable”

Other techniques

  Replica synchronization:
  Merkle hash tree.

  Membership and Failure Detection:
  Gossip

Membership and Failure Detection

  Ring Membership
  explicit mechanism to initiate the addition and removal of nodes

from a Dynamo ring

  External Discovery
  Failure Detection

Adding/Removing Storage Nodes

  A new node (say X) is added into the system
  It gets assigned a number of tokens (key range)
  Some existing nodes no longer have to some of their

keys and these nodes transfer those keys to X
  Operational experience has shown that this approach

distributes the load of key distribution uniformly
across the storage nodes

Implementation

  Java
  Local persistence component allows for different

storage engines to be plugged in:
  Berkeley Database (BDB) Transactional Data Store: object of tens

of kilobytes

  MySQL: object of > tens of kilobytes

  BDB Java Edition, etc.

EVALUATION

Evaluation

Evaluation

EXPERIENCES & LESSONS
LEARNED

Usage patterns

  Business logic specific reconciliation
  Client has reconciliation logic in case of divergent versions

  Timestamp based reconciliation
  Last write wins

  High performance read engine
  Large number of read requests
  R=1, W=N

Balancing Performance and Durability

  Typical SLA: 99.9% of the read and write requests
execute within 300ms

  Dynamo provides the ability to trade-off durability
guarantees for performance

  Buffering write and read operations
  A server crash can result in missing writes that were

queued up in the buffer
  One of the N replicas can perform a durable write

without affecting performance

Ensuring Uniform Load distribution

  Strategy 1:
  T random tokens per node and partition by token value

 Random sized hash space partitions
 When a new node joins the system, it needs to “steal” its key

ranges

  Strategy 2:
  T random tokens per node and equal sized partitions

 Fixed size hash space partitions, T tokens, S nodes, Q>>S*T

  Strategy 3:
  Q/S tokens per node, equal-sized partitions

 When a new node joins the system, it needs to “steal” its key
ranges

Uniform Load Distribution Strategies

Comparison of efficiency of
different strategies

for system with 30 nodes and N=3 with equal amount of
metadata maintained at each node

Divergent Versions: When and
How Many?

  Metric: The number of divergent versions
  Experiment: The number of versions returned to the

shopping cart service over a period of 24 hours.

  This shows that divergent versions are created rarely.

Percentage of requests No. of versions
99.94% 1

0.00057% 2

0.00047% 3

0.00009% 4

Client-driven or Server-driven
Coordination

99.9th
percentile
write latency
(ms)

99.9th
percentile
write
latency
(ms)

Average
read
latency
(ms)

Average
write
latency
(ms)

Server
Driven

68.9 68.5 3.9 4.02

Client
Driven

30.4 30.4 1.55 1.9

CONCLUSIONS

Summary

  Successful responses (without timing out) for 99.9995%
of its requests

  No data loss event has occurred to date
  Allows configuring (N,R,W) to tune the instance as per

needs
  Exposes data consistency and reconciliation logic issues

to the developers
  Complex application logic
  Easy to migrate pre-existing Amazon applications

  Dynamo is incrementally scalable
  Full membership model:

  Each node actively gossips the full routing table
  Overhead caused while scaling

PNUTS Dynamo

  Hashed / Ordered tables
  Hosted service
  Generation based

versioning
  Communication through

Pub / Sub YMB
infrastructure (optimized
for geographically
separated replicas)

  Partitioning into tablets
  Timeline based consistency

  Key – value pairs
  Internal use
  Vector clocks used
  Gossip based
  Partitioning tokens
  Eventual consistency and

reconciliation

Conclusions

