
Database Systems Seminar

Senthil Kumar Gurusamy

1

Compiling Mappings to Bridge

Applications and Databases
- Sergey Melnik, Atul Adya, Philip A. Bernstei

Anatomy of the ADO .NET Entity

Framework

- Atul Adya, José A. Blakeley, Sergey Melnik, S.

Muralidhar, and the ADO.NET Team

Papers

2

What is ORM??

• A methodology for object oriented systems to

hold data in database, with transactional

control and yet express it as program objects

when needed

• Avoid bundles of special code

• Essential for multilayered database

applications

3

Why ORM ?

• Impedance mismatch between programming

language abstractions and persistent storage

• Data independence i.e., data representation can

evolve irrespective of the layer

• Independent of DBMS vendor

• Bridge between application and database

4

Layered Database Application

Presentation Layer

User Interface

Service Layer

Transactions in terms

of objects

Data Access layer

ORM functionality

Data expressed in

Object domain

Database

5

Sample Relation Schema

SSalesPersons SSalesOrders

SEmployees SContacts

create table SContacts(ContactId int primary key,

Name varchar(100),

Email varchar(100),

Phone varchar(10));

create table SEmployees(EmployeeId int primary key references SContacts(ContactId),

Title varchar(20),

HireDate date);

create table SSalesPersons(SalesPersonId int primary key references

SEmployees(EmployeeId),

Bonus int);

create table SSalesOrder(SalesOrderId int primary key,

SalesPersonId int references SSalesPersons(SalesPersonId));

6

Traditional Embedded Data Access Queries

void EmpsByDate(DateTime date) {

using(SqlConnection con = new SqlConnection (CONN_STRING)) {

con.Open();

SqlCommand cmd = con.CreateCommand();

cmd.CommandText = @"

SELECT SalesPersonID, FirstName, HireDate

FROM SSalesPersons sp

INNER JOIN SEmployees e

ON sp.SalesPersonID = e.EmployeeID

INNER JOIN SContacts c

ON e.EmployeeID = c.ContactID

WHERE e.HireDate < @date";

cmd.Parameters.AddWithValue("@date",date);

DbDataReader r = cmd.ExecuteReader();

while(r.Read()) {

Console.WriteLine("{0:d}:\t{1}", r["HireDate"],

r["FirstName"]);

} } }

7

Entity SQL

void EmpsByDate (DateTime date) {

using(EntityConnection con =

new EntityConnection (CONN_STRING)) {

con.Open();

EntityCommand cmd = con.CreateCommand();

cmd.CommandText = @"

SELECT VALUE sp FROM ESalesPersons sp

WHERE sp.HireDate < @date";

cmd.Parameters.AddWithValue ("@date", date);

DbDataReader r = cmd.ExecuteReader();

while (r.Read()) {

Console.WriteLine("{0:d}:\t{1}", r["HireDate"], r["FirstName"])

} } }

8

LINQ

void EmpsByDate(DateTime date) {

using (AdventureWorksDB aw =

new AdventureWorksDB()) {

var people = from p in aw.SalesPersons

where p.HireDate < date

select p;

foreach (SalesPerson p in people) {

Console.WriteLine("{0:d}\t{1}", p.HireDate,

p.FirstName);

} } }

9

O/R mismatch - Improvements

• 1980s: Persistent programming languages

- One or two commercial products

• 1990s: OODBMS

- No widespread acceptance

• "Objects & Databases: A Decade in Turmoil"

- Carey & DeWitt (VLDB'96), bet on ORDBMS

• 2000: ORDBMS go mainstream

- DB2 & Oracle implement hardwired O/R mapping

- O/R features rarely used for business data

• 2002: client-side data mapping layers

• Today: ORM Frameworks – ADO .NET EDM Framework,

hibernate, JPA, Toplink, etc.

10

ADO .NET Entity Framework Architecture

11

Components of the Framework

• Data Source providers

-Provides data to EDM Layer services from

data sources

-Support for different types of sources

• Entity Data Services

-EDM

-Metadata services

• Programming Layers

• Domain Modeling Tools

-tools for schema generation, creating

mapping fragments

12

Object Services

• .NET CLR

-Common Language runtime

- allows any program in .NET language to

interact with Entity Framework

• Database connection, metadata

• Object State Manager

-Tracks in-memory changes

- construct the change list input to the

processing infrastructure

• Object materializer

- Transformations during query and update views

between entity values from the conceptual layer

and corresponding CLR Objects

13

Interacting with Data in EDM Framework

• Entity SQL

- Derived from standard SQL

- with capabilities to manipulate EDM instances

• LINQ

-Language-integrated query

- Expressions of the programming language itself

-Supported in MS programming languages(VB, C#)

•CRUD

- Create, Read, Update and Delete operations on

objects

14

Domain modeling Tools

Some of the design time tools included in the framework

• Model designer

-Used to define the conceptual model interactively

- generate and consume model descriptions

- Synthesize EDM models from relational metadata

• Mapping Designer

- conceptual model to the relational database map

-This map is the input to the mapping compilation

which generates the query and update views

• Code generation

- Set of tools to generate CLR classes for the entity

types

15

Query Pipeline

• Breaks down Entity SQL or LINQ query into one or

more elementary, relational-only queries that can

be evaluated by the underlying data store

Steps in query Processing

• Syntax & Semantic analysis

- Parsed, analyzed using Metadata services

component

• Conversion to a canonical Command Tree

- Converted to Optimized tree

• Mapping view Unfolding

- Translated to reference the underlying db

tables

16

Steps Contd.

• Structured Type Elimination
- References to structured data(ancestor, constructors)

• Projection Pruning
- Elimination of unreferenced expressions

• Nest Pull-up
- Nested query is bubbled to the top

• Transformations
- Redundant operations are eliminated by pushing down

other operators

• Translation to Provider Specific Commands

• Command Execution

• Result Assembly

• Object Materializaton
- Results are materialized into appropriate programming

language objects

17

Special Features of the Framework

• Allows higher level of abstraction than

relational model

• Leverages on the .NET data provider model

• Allows data centric services like reporting on

top of the conceptual model

• Together with LINQ reduces impedance

mismatch significantly

18

System Architecture

19

Bidirectional views

• Mappings relate entities with relations

• Mappings together with the database are

compiled into views

• Drives the runtime engine

• Speeds up mapping translation

• Updates on view are enforced using update

translation techniques

20

Bidirectional View Generation

• Query View

- Express entities in terms of tables

• Update Views

-Express tables in terms of entities

Entities = QueryViews(Tables)

Tables = UpdateViews(Entities)

Entities = QueryViews(UpdateViews(Entities))

This ensures entity can be persisted and re-

asssembled from db in a lossless manner

21

Compiler Mapping

- Mapping is specified using a set of mapping

fragments

- Each fragment is of the form QEntities = QTables

22

Query & Update views

To reassemble Persons from relational tables

23

Specification of Mappings - Schema

24

Specification of Mappings - Mappings

25

Update Translation

1. View maintenance:
∆Tables = ∆UpdateViews(Entities, ∆Entities)

2. View Unfolding:
∆Tables = ∆UpdateViews(QueryViews(Tables), ∆Entities)

26

Steps in Update Translation:

• Change list Generation

-List of changes per entity set is created

- Represented as lists of deleted and inserted

elements

• Value Expression Propagation

- Transforms the list of changes obtained from

view maintenance into sequence of algebraic

base table insert and delete expressions against

the underlying affected tables

27

Steps in Update Translation(cont’d):

• Stored Procedure Calls Generation

-Produces the final sequence SQL statements on

relational schema (INSERT, DELETE, UPDATE)

• Cache Synchronization

- After updates, the cache state is synchronized

with the new db state

28

Update translation Example – Update query

using(AdventureWorksDB aw = new AdventureWorksDB()) {

// People hired more than 5 years ago

var people = from p in aw.SalesPeople

where p.HireDate <

DateTime.Today.AddYears(-5) select p;

foreach(SalesPerson p in people) {

if(HRWebService.ReadyForPromotion(p)) {

p.Bonus += 10;

p.Title = "Senior Sales Representative";

} }

aw.SaveChanges();

}

29

Update Translation – Value Expressions

BEGIN TRANSACTION

UPDATE [dbo].[SSalesPersons] SET [Bonus]=30

WHERE [SalesPersonID]=1

UPDATE [dbo].[SSEmployees] SET [Title]= N'Senior Sales

Representative'

WHERE [EmployeeID]=1

END TRANSACTION

∆SSalesPersons= SELECT p.Id, p.Bonus

FROM ∆ESalesPersons As p

∆Semployees = SELECT p.Id, p.Title

FROM ∆ESalesPersons AS p

∆SContacts = SELECT p.Id, p.Name, p.Contact.Email,

p.Contact.Phone FROM ∆ESalesPersons AS p

30

Mapping Compilation problem

• Improper proper specification of Mapping

fragments will lead to the mapping not satisfying the

Data Round-tripping Criterions

map ◦ map-1 = Id(C)

•Application developers cannot be entrusted with

task of checking for Data round-tripping criterion

• Hence Mapping Compilation has to done by EDM

model

31

Bipartite Mappings

Mapping fragments are defined as follows:

∑map = { Qc1 = Qs1, .. , Qcn = Qsn }

where Qc is the query over the client schema and

Qs is the query over store schema

Thus, ∑map = f ◦ g’

Where the view f: C  V

view g: S  V

32

View Generation & Mapping Compilation

1. Subdivide the mapping into independent set of

fragments

2. Perform mapping validation by checking the

condition Range(f) ⊆ Range(g)

3. Partition the entity set based on mapping

constraints

4. Compile the relevant mappings on each partition

5. Regroup the generated views

6. Eliminate unnecessary self joins

33

Paritioning Scheme

procedure PartitionVertically(p, Tp,map)

Part := ∅ // start with an empty set of partitions

for each type T that is derived from or equal to Tp do

P := {σp IS OF (ONLY T)}

for each direct or inherited member A of T do

if map contains a condition on p.A then

if p.A is of primitive type then

P := P × Dom(p.A, map)

else if p.A is of complex type TA then

P := P × PartitionVertically(p.A, TA,map)

end if

end for

Part := Part ∪ P

end for

return Part

34

Role of Dom(p, map)

Suppose the mapping constraints contain conditions,

(p=1) and (p IS NOT NULL) on path p of type integer

cond1 := (p=1)
cond2 := (p IS NULL)
cond3 := NOT (p=1 OR p IS NULL)

Every pair of conditions in Dom(p, map) is mutually exclusive
conditions

35

Partitioning Example

Above schema and BillingAddr is nullable property with complex type Address.
Type Address has subtype USAddress

P1 : σe IS OF (ONLY Person)
P2 : σe IS OF (ONLY Customer) AND e.BillingAddr IS NULL
P3 : σe IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY Address)
P4 : σe IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY USAddress)
P5 : σe IS OF (ONLY Employee)

36

Reconstructing partitions from views

37

Reconstructing partitions from views

38

Reconstruction Example

39

Grouping Partitioned views

The entire entity set is obtained by grouping views using Ua, ⋈, ⊐⋈

∪a - denotes union without duplicate elimination

40

Evaluation

Experimental evaluation of the Entity framework was

done focusing on mapping compiler for the following

parameters

Correctness:

Using automated suite, thousands of mappings was

generated by varying some objects. The compiled

views are verified by deploying the entire data access

stack to query and update sample databases.

41

Evaluation (cont’d)

Efficiency:

- Compiling the independent mapping fragments

on partitions alone takes exponential time.

- Recovering partitions from views takes O(n log n)

- All other steps take O(n) time

- The number of independent fragments were

less

- So, the few second delay at start time and

restarts was acceptable

42

Evaluation (contd)

Performance:

- Mapping compilation anchors both client-side

rewriting and server-side execution

- Implied constraints were used fully to

generate simplified views

-Major overheads: object instantiation, caching,

query manipulations and delta computation for

updates

- These overheads dominated only for small

datasets

43

• Declarative mapping language
-Allows non-expert users to specify

complex O/R mappings

-Formal semantics

• Mechanism for updatable views

- Large class of updates, not O/R specific

- Leverages view maintenance technology

Contributions

Mapping

compile

Bidirectional
views

• Mapping compilation
- Guarantees correctness

44

QUESTIONS ????

45

THANK YOU

46

