Database Systems Seminar

Senthil Kumar Gurusamy

I,

Papers

Compiling Mappings to Bridge

Applications and Databases
- Sergey Melnik, Atul Adya, Philip A. Bernstei

Anatomy of the ADO .NET Entity
Framework

- Atul Adya, José A. Blakeley, Sergey Melnik, S.
Muralidhar, and the ADO.NET Team

N — 1

What is ORM??

« A methodology for object oriented systems to
hold data in database, with transactional
control and yet express it as program objects
when needed

» Avoid bundles of special code

 Essential for multilayered database
applications

=
Why ORM?

* Impedance mismatch between programming
language abstractions and persistent storage

- Data independence i.e., data representation can
evolve irrespective of the layer

* Independent of DBMS vendor

* Bridge between application and database

Layered Database Application

-

Presentation Layer

User Interface

~

\
e

Service Layer

Transactions in terms
of objects

%
<

.
>

-

Data Access layer

ORM functionality

%
<

J

Database

Data expressed in
Object domain

Sample Relation Schema

4)

SSalesPersons SSalesOrders

SEmployees SContacts
- /

create table SContacts(Contactld int primary key,
Name varchar(100),
Email varchar(100),
Phone varchar(10));

create table SEmployees(Employeeld int primary key references SContacts(Contactid),
Title varchar(20),
HireDate date);

create table SSalesPersons(SalesPersonld int primary key references
SEmployees(Employeeld),
Bonus int);

create table SSalesOrder(SalesOrderld int primary key,
SalesPersonld int references SSalesPersons(SalesPersonid));

e — |

Traditional Embedded Data Access Queries

void EmpsByDate(DateTime date) {
using(SqlConnection con = new SqlConnection (CONN_STRING)) {
con.Open();
SqlCommand cmd = con.CreateCommand();
cmd.CommandText = @"
SELECT SalesPersonID, FirstName, HireDate
FROM SSalesPersons sp
INNER JOIN SEmployees e
ON sp.SalesPersonID = e.EmployeelD
INNER JOIN SContacts c
ON e.EmployeelD = c.ContactID
WHERE e.HireDate < @date";
cmd.Parameters.AddWithValue("@date”,date);
DbDataReader r = cmd.ExecuteReader();
while(r.Read()) {
Console.WriteLine("{0:d}:\t{1}", r["HireDate"],
r["FirstName"]);

31}

Entity SQL

void EmpsByDate (DateTime date) {
using(EntityConnection con =
new EntityConnection (CONN_STRING)) {

con.Open();

EntityCommand cmd = con.CreateCommand();

cmd.CommandText = @"
SELECT VALUE sp FROM ESalesPersons sp
WHERE sp.HireDate < @date";

cmd.Parameters.AddWithValue ("@date”, date);

DbDataReader r = cmd.ExecuteReader();

while (r.Read()) {
Console.WriteLine("{0:d}:\t{1}", r['HireDate"], r["FirstName"])

313

LINQ

void EmpsByDate(DateTime date) {
using (AdventureWorksDB aw =
new AdventureWorksDB()) {
var people = from p in aw.SalesPersons
where p.HireDate < date
select p;

foreach (SalesPerson p in people) {
Console.WriteLine("{0:d}\t{1}", p.HireDate,
p.FirstName);

113

I,

O/R mismatch - Improvements

« 1980s: Persistent programming languages
- One or two commercial products
* 1990s: OODBMS
- No widespread acceptance
* "Objects & Databases: A Decade in Turmoil”
- Carey & DeWitt (VLDB'96), bet on ORDBMS
« 2000: ORDBMS go mainstream
- DB2 & Oracle implement hardwired O/R mapping
- O/R features rarely used for business data
« 2002: client-side data mapping layers

« Today: ORM Frameworks - ADO .NET EDM Framework,
hibernate, JPA, Toplink, etc.

Y

ADO .NET Entity Framework Architecture

Imperative Coding Experience — LINQ-enabled languages, AP| patterns

e | 4 Programming Layers \'
8 |s
'RE Object
o " Services XLing |
/ - "\._ _)
v|8
8 5 Entity Data Services — EDM, eSQL
o =
é Lm) | EntityClient Provider — connection, command (tree & text), entity datareader
2z _
e | E Metadata Cuery &Update Mapping
Tl B Services Pipeline
5|2
— [Transactions] EDM View Manager
\; Runtime

deling

\ Store-specific ADO.Met Provider APl - connection, command (tree & text), datareader
| S
[SqlClient] [Providers to other Homelatmnal 'N{ZF Provider }

relatmnal dbs prcn.rlder

sEE =

R,

Components of the Framework

« Data Source providers
-Provides data to EDM Layer services from
data sources
-Support for different types of sources

« Entity Data Services
-EDM
-Metadata services

 Programming Layers

 Domain Modeling Tools
-tools for schema generation, creating
mapping fragments

. 1

Object Services

« .NET CLR
-Common Language runtime
- allows any program in .NET language to
interact with Entity Framework

« Database connection, metadata

* Object State Manager
-Tracks in-memory changes
- construct the change list input to the
processing infrastructure

* Object materializer
- Transformations during query and update views
between entity values from the conceptual layer
and corresponding CLR Objects

1 |

Interacting with Data in EDM Framework

« Entity SQL
- Derived from standard SQL
- with capabilities to manipulate EDM instances

« LINQ
-Language-integrated query
- Expressions of the programming language itself
-Supported in MS programming languages(VB, C#)

CRUD
- Create, Read, Update and Delete operations on
objects

. |

Domain modeling Tools

Some of the design time tools included in the framework

* Model designer
-Used to define the conceptual model interactively
- generate and consume model descriptions
- Synthesize EDM models from relational metadata

* Mapping Designer
- conceptual model to the relational database map
-This map is the input to the mapping compilation
which generates the query and update views

« Code generation
- Set of tools to generate CLR classes for the entity

types

R,

Query Pipeline

* Breaks down Entity SQL or LINQ query into one or
more elementary, relational-only queries that can
be evaluated by the underlying data store

Steps in query Processing

« Syntax & Semantic analysis
- Parsed, analyzed using Metadata services
component

» Conversion to a canonical Command Tree
- Converted to Optimized tree

* Mapping view Unfolding
- Translated to reference the underlying db
tables

e — |

Steps Contd.

e Structured Type Elimination
- References to structured data(ancestor, constructors)

 Projection Pruning
- Elimination of unreferenced expressions

* Nest Pull-up
- Nested query is bubbled to the top

* Transformations
- Redundant operations are eliminated by pushing down
other operators

 Translation to Provider Specific Commands
« Command Execution
» Result Assembly

* Object Materializaton
- Results are materialized into appropriate programming
language objects

R,

Special Features of the Framework

* Allows higher level of abstraction than
relational model

 Leverages on the .NET data provider model

 Allows data centric services like reporting on
top of the conceptual model

» Together with LINQ reduces impedance
mismatch significantly

e — |

System Architecture

=, Applications Users Tools
a=

= |Mapping compiler UI Tools
=y | Query 11 Update
&' | [) Views 5 views | by
£ Mapping =4 Merge views | generator
Language integration Object services
Query pipeline Update pipeline
Entity SQL Entities AEntities
g i 1)
E » Unfold query views Apply view
= | |*Push relational ops A:ﬁﬁ![_i'ge maintenance to
& | |+ Optimize | | bidirectional views
I T |
Expression trees Tuples ATables
Data providers

G Database system

EEEEEEEEEEREERRERRRI,

Bidirectional views

* Mappings relate entities with relations

* Mappings together with the database are
compiled into views

* Drives the runtime engine
» Speeds up mapping translation

» Updates on view are enforced using update
translation techniques

=,

Bidirectional View Generation

* Query View

- Express entities in terms of tables
» Update Views

-Express tables in terms of entities

Entities = QueryViews(Tables)
Tables = UpdateViews(Entities)

Entities = QueryViews(UpdateViews(Entities))

This ensures entity can be persisted and re-
asssembled from db in a lossless manner

I,

Compiler Mapping

Persons: Person ClientInfo
Set<Person> | 14 «wu Id
Name <= _____‘R Name
. -
(Eustumer ‘-""-»-.“ En;:j:ht[nfn
LCreditSmre < Score
SELECT p.Id, p.Mame — | SELECT Id, Name
FROM Persons p FROM ClientInfo
SELECT c.Id, c.CreditScore | — |[SELECT Id, Score
FROM Persons c FROM CreditInfo
WHERE ¢ IS OF Customer

- Mapping is specified using a set of mapping
fragments
- Each fragment is of the form Qg tities = Qrables

. 1

Query & Update views

To reassemble Persons from relational tables

Persons =
SELECT
CASE WHEN T2.from2
THEN Customer(T1.Id, T1.Mame, T2.CreditScore)
t ELSE Person(T1.1d, T1.Name) END

FROM ClientInfo AS T1
QUery | | eFT QUTER JOIN (
VIEW SELECT Id, Score AS CreditScore,
True AS from2
FROM CreditInfo) AS T2
ON T1.Id = T2.1d

Update | ClientInfo = SELECT p.Id, p.Name
views FROM Persons p

1 CreditInfo = SELECT c.Id, c.CreditScore

FROM Persons c
WHERE ¢ IS OF Customer

e — 1 |

Specification of Mappings - Schema

Entity Set: ESalesOrders
1

ESalesCQrder

1.1

Id

=N

Association S

ESalesPers .
Entity Set- ESalesPersons |
ESalesPerson ™ /
I e

BONUS €------==-smmrmmmmnes

HireDate -----ccccccaamao-
MName €--=====-=-=--------=.

Contact
Phong

1..

1

___....___:7)’_

i@
I I I‘---_-.F

Id b bbb el | ATy
ACCOUNTNUM == opeemm ool nnnne

"
.
-

S55alesOrders
-#* SalesOrderld
- AccountMum
¥ |sOnline

r Tax

v

i/ i-» SalesPersonld
i _.." 1
I

SSalesPersons
L > SalesPersonld
> Bonus

SEmployees
-» Employeeld
» Title

L» HireDate

SContacts
--» Contactld
-{-» Mame
17> Email

" >*Phone

. |

Specification of Mappings - Mappings

SELECT o0.1d, o.AccountNum
FROM ESalesOrders o
WHERE o IS OF (ONLY ESalesOrder)

SELECT SalesOrderlId, AccountNum
FROM SSalesOrders
WHERE IsOnline = "“true”

SELECT o.1d, o.AccountNum, o.Tax
FROM ESalesOrders o

WHERE o IS OF EStoreSalesOrder

SELECT SalesOrderId, AccountNum, Tax
FROM SSalesOrders
WHERE IsOnline = “false”

SELECT 0.EOrder.Id, o.ESalesPerson.Id
FROM ESalesPersonOrders o

SELECT SalesOrderld, SalesPersonId
FROM SSalesOrders

SELECT p.Id, p.Bonus
FROM ESalesPersons p

SELECT SalesPersonld, Bonus
FROM SSalesPersons

SELECT p.Id, p.Title, p.HireDate
FROM ESalesPersons p

SELECT Employeeld, Title, HireDate
FROM SEmployees

SELECT p.Id, p.Name,
p.Contact.Email, p.Contact.Phone
FROM ESalesPersons p

SELECT Contactld, Name, Email, Phone
FROM SContacts

R,

Update Translation

Mapping

T

[T

Entites g N, Tables

virtual state Query views persistent
A Update views data
7
AEntities l_//’—\iATameS

Entities + AEntities Tables + ATables

1. View maintenance:
ATables = AUpdateViews(Entities, AEntities)
2. View Unfolding:
ATables = AUpdateViews(QueryViews(Tables), AEntities)

e — |

Steps in Update Translation:

» Change list Generation
-List of changes per entity set is created
- Represented as lists of deleted and inserted
elements

 Value Expression Propagation
- Transforms the list of changes obtained from
view maintenance into sequence of algebraic
base table insert and delete expressions against
the underlying affected tables

R,

Steps in Update Translation(cont’d):

 Stored Procedure Calls Generation
-Produces the final sequence SQL statements on
relational schema (INSERT, DELETE, UPDATE)

« Cache Synchronization
- After updates, the cache state is synchronized
with the new db state

e —

Update translation Example - Update query

using(AdventureWorksDB aw = new AdventureWorksDB()) {
// People hired more than 5 years ago
var people = from p in aw.SalesPeople
where p.HireDate <
DateTime.Today.AddYears(-5) select p;
foreach(SalesPerson p in people) {
if(HRWebService.ReadyForPromotion(p)) {
p.Bonus += 10;
p.Title = "Senior Sales Representative”;

3}

aw.SaveChanges();

}

o

Update Translation - Value Expressions

ASSalesPersons= SELECT p.ld, p.Bonus
FROM AESalesPersons As p

ASemployees = SELECT p.ld, p.Title
FROM AESalesPersons AS p

ASContacts = SELECT p.ld, p.Name, p.Contact.Email,
p.Contact.Phone FROM AESalesPersons AS p

BEGIN TRANSACTION

UPDATE [dbo].[SSalesPersons] SET [Bonus]=30

WHERE [SalesPersoniID]=1

UPDATE [dbo].[SSEmployees] SET [Title]= N'Senior Sales
Representative’

WHERE [EmployeelD]=1

END TRANSACTION

N 1

Mapping Compilation problem

* Improper proper specification of Mapping
fragments will lead to the mapping not satisfying the
Data Round-tripping Criterions

map > map' = 1d(C)

*Application developers cannot be entrusted with
task of checking for Data round-tripping criterion

* Hence Mapping Compilation has to done by EDM
model

1

Bipartite Mappings

Mapping fragments are defined as follows:

zmap={Qc1=Q-s1,°'’an=an}

where Q. is the query over the client schema and
Q, is the query over store schema

F_ g
¢l v—15]

map=fo g1

Thus, 3, =f°g
Where the view f: C =2V
viewg: S 2V

|

View Generation & Mapping Compilation

1.

2.

Ul

Subdivide the mapping into independent set of
fragments

Perform mapping validation by checking the
condition Range(f) € Range(g)

. Partition the entity set based on mapping

constraints

. Compile the relevant mappings on each partition
. Regroup the generated views
. Eliminate unnecessary self joins

1

Paritioning Scheme

procedure PartitionVertically(p, Tp,map)
Part := @ // start with an empty set of partitions
for each type T that is derived from or equal to Tp do
P :={op IS OF (ONLY T)}
for each direct or inherited member A of T do
if map contains a condition on p.A then
if p.A is of primitive type then
P := P x Dom(p.A, map)
else if p.A is of complex type TA then
P := P x PartitionVertically(p.A, TA,map)
end if
end for
Part := Part UP
end for
return Part

|

Role of Dom(p, map)

Suppose the mapping constraints contain conditions,

(p=1) and (p IS NOT NULL) on path p of type integer

cond, := (p=1)
cond, := (p ISNULL)
cond, := NOT (p=1 OR p IS NULL)

Every pair of conditions in Dom(p, map) is mutually exclusive

conditions

R —:

Partitioning Example

HR
Person |
i Id [Name

Id . 4

Mame } Empl

e A a] Dept
Employee Customer Client
Dept CreditScore Id Name|5cnr&|...|

BillingAddr

Above schema and BillingAddr is nullable property with complex type Address.
Type Address has subtype USAddress

.+ 0, IS OF (ONLY Person)
: 0, IS OF (ONLY Customer) AND e.BillingAddr IS NULL
: 0, IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY Address)

: 0, IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY USAddress)
: 0, IS OF (ONLY Employee)

"U"U"UM"U"U

a W

R /4

Reconstructing partitions from views

procedure RecoverPartitions(Pexp, P, V)
Sort V by increasing number |V'| of partitions per view and
by decreasing number |Attrs(V')| of attributes per view
for each partition P € Peyxp do
Pos :=10; Neg := 0; //keeps intersected & subtracted views
Att .= Attrs(P); // attributes still missing
P11 := P: [/l keeps partitions disambiguated so far
// Phase 1: intersect
for (i =1; i < nand|PT| > 1and |Att| > 0; i++) do
if P € V; then
Pos := Pos UV, PT := PT'nNnV;
Att := Att — Attrs(V;)
end if

e —: |

Reconstructing partitions from views

// Phase 2: subtract
for (i =n; 1 > 1and |PT| > 1; i--) do
if P ¢ V; then
Neg .= NegUV;; PT':=PT'NYV,
end if
end for
if [PT] = 1 and | A¢#| = 0 then
Recovered|P] := (Pos, Neg)
end if
end for
return

e —: |

Reconstruction Example

5P V,=n(P,UP,UP,UP,UP,)
E P2 V,=n(P,uP,UP,)

Py V,=n(P,)

Pa V,=n(P,UP;)

P5

e — |

Grouping Partitioned views

The entire entity set is obtained by grouping views using U,, x, O

E=PUP,UPsUPLUPFs
= V] IXC Vo IXC Vi IXC Vy
— (V; TX (Va M V3)) XV
= (V1 X Vo) X (V3 U™ Vy))

U2 - denotes union without duplicate elimination

e — 1

Evaluation

Experimental evaluation of the Entity framework was
done focusing on mapping compiler for the following
parameters

Correctness:

Using automated suite, thousands of mappings was
generated by varying some objects. The compiled
views are verified by deploying the entire data access
stack to query and update sample databases.

S —

Evaluation (cont’d)

Efficiency:

- Compiling the independent mapping fragments
on partitions alone takes exponential time.

- Recovering partitions from views takes O(n log n)

- All other steps take O(n) time

- The number of independent fragments were
less

- So, the few second delay at start time and
restarts was acceptable

e —

Evaluation (contd)

Performance:
- Mapping compilation anchors both client-side
rewriting and server-side execution
- Implied constraints were used fully to
generate simplified views
-Major overheads: object instantiation, caching,
query manipulations and delta computation for
updates
- These overheads dominated only for small
datasets

S — 1

Contributions

)+ Declarative mapping language
= Z -Allows non-expert users to specify
" complex O/R mappings

-Formal semantics

Mapping

!

Compile< * Mapping compilation
1 - Guarantees correctness

* Mechanism for updatable views
B'd'\ff;‘wg”a' - Large class of updates, not O/R specific
- Leverages view maintenance technology

QUESTIONS ?22?

THANK YOU

