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What is  ORM??

• A methodology for object oriented systems to 

hold data in database, with transactional 

control and yet express it as program objects 

when needed

• Avoid bundles of special code

• Essential for multilayered database 

applications
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Why  ORM ?

• Impedance mismatch between programming 

language abstractions and persistent storage 

• Data independence i.e., data representation can 

evolve irrespective of the layer

• Independent of DBMS vendor

• Bridge between application and database
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Layered Database Application

Presentation Layer

User Interface

Service Layer

Transactions in terms 

of objects

Data Access layer

ORM functionality

Data  expressed in 

Object domain

Database
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Sample Relation Schema

SSalesPersons SSalesOrders

SEmployees SContacts

create table SContacts(ContactId int primary key, 

Name varchar(100), 

Email varchar(100), 

Phone varchar(10)); 

create table SEmployees( EmployeeId int primary key references SContacts(ContactId), 

Title varchar(20), 

HireDate date); 

create table SSalesPersons(SalesPersonId int primary key references 

SEmployees(EmployeeId),

Bonus int); 

create table SSalesOrder(SalesOrderId int primary key, 

SalesPersonId int references SSalesPersons(SalesPersonId));
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Traditional Embedded Data Access Queries 

void EmpsByDate(DateTime date) { 

using( SqlConnection con = new SqlConnection (CONN_STRING) ) { 

con.Open(); 

SqlCommand cmd = con.CreateCommand(); 

cmd.CommandText = @" 

SELECT SalesPersonID, FirstName, HireDate

FROM SSalesPersons sp 

INNER JOIN SEmployees e 

ON sp.SalesPersonID = e.EmployeeID

INNER JOIN SContacts c 

ON e.EmployeeID = c.ContactID

WHERE e.HireDate < @date"; 

cmd.Parameters.AddWithValue("@date",date); 

DbDataReader r = cmd.ExecuteReader(); 

while(r.Read()) { 

Console.WriteLine("{0:d}:\t{1}", r["HireDate"], 

r["FirstName"]); 

} } }
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Entity SQL

void EmpsByDate (DateTime date) { 

using( EntityConnection con =

new EntityConnection (CONN_STRING) ) { 

con.Open(); 

EntityCommand cmd = con.CreateCommand();

cmd.CommandText = @" 

SELECT VALUE sp FROM ESalesPersons sp 

WHERE sp.HireDate < @date"; 

cmd.Parameters.AddWithValue ("@date", date); 

DbDataReader r = cmd.ExecuteReader(); 

while (r.Read()) { 

Console.WriteLine("{0:d}:\t{1}", r["HireDate"], r["FirstName"]) 

} } } 
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LINQ

void EmpsByDate(DateTime date) { 

using (AdventureWorksDB aw = 

new AdventureWorksDB()) { 

var people = from p in aw.SalesPersons

where p.HireDate < date 

select p; 

foreach (SalesPerson p in people) { 

Console.WriteLine("{0:d}\t{1}", p.HireDate, 

p.FirstName ); 

} } }
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O/R mismatch - Improvements

• 1980s: Persistent programming languages

- One or two commercial products

• 1990s: OODBMS

- No widespread acceptance

• "Objects & Databases: A Decade in Turmoil"

- Carey & DeWitt (VLDB'96), bet on ORDBMS

• 2000: ORDBMS go mainstream

- DB2 & Oracle implement hardwired O/R mapping

- O/R features rarely used for business data

• 2002: client-side data mapping layers

• Today: ORM Frameworks – ADO .NET EDM Framework, 

hibernate, JPA, Toplink, etc.
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ADO .NET Entity Framework Architecture
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Components of the Framework

• Data Source providers

-Provides data to EDM Layer services from 

data sources

-Support for different types of sources 

• Entity Data Services

-EDM

-Metadata services

• Programming Layers

• Domain Modeling Tools

-tools for schema generation, creating 

mapping fragments
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Object Services

• .NET CLR

-Common Language runtime

- allows any program in .NET language to 

interact with Entity Framework

• Database connection, metadata 

• Object State Manager 

-Tracks in-memory changes

- construct the change list input to the 

processing infrastructure

• Object materializer

- Transformations during query and update views 

between entity values from the conceptual layer 

and corresponding CLR Objects

13



Interacting  with Data in EDM Framework 

• Entity SQL

- Derived from standard SQL

- with capabilities to manipulate EDM instances

• LINQ

-Language-integrated query

- Expressions of the programming language itself

-Supported in MS programming languages(VB, C#)

•CRUD

- Create, Read, Update and Delete operations on 

objects

14



Domain modeling Tools 

Some of the design time tools included in the framework

• Model designer

-Used to define the conceptual model interactively

- generate and consume model descriptions

- Synthesize EDM models from relational metadata

• Mapping Designer

- conceptual model to the relational database map

-This map is the input to the mapping compilation 

which generates the query and update views

• Code generation

- Set of tools to generate CLR classes for the entity 

types
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Query Pipeline

• Breaks down Entity SQL or LINQ query into one or 

more elementary, relational-only queries that can 

be evaluated by the underlying data store

Steps in query Processing

• Syntax & Semantic analysis

- Parsed, analyzed using Metadata services 

component

• Conversion to a canonical Command Tree

- Converted to Optimized tree

• Mapping view Unfolding

- Translated to reference the underlying db 

tables
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Steps Contd.

• Structured Type Elimination
- References to structured data(ancestor, constructors)

• Projection Pruning
- Elimination of unreferenced expressions

• Nest Pull-up
- Nested query is bubbled to the top

• Transformations 
- Redundant operations are eliminated by pushing down 

other operators

• Translation to Provider Specific Commands

• Command Execution

• Result Assembly

• Object Materializaton
- Results are materialized into appropriate programming 

language objects

17



Special Features of the Framework

• Allows higher level of abstraction than 

relational model

• Leverages on the .NET data provider model

• Allows data centric services like reporting on 

top of the conceptual model

• Together with LINQ reduces impedance 

mismatch significantly
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System Architecture
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Bidirectional views

• Mappings relate entities with relations

• Mappings together with the database are 

compiled into views 

• Drives the runtime engine

• Speeds up mapping translation

• Updates on view are enforced using update 

translation techniques 
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Bidirectional View Generation

• Query View

- Express entities in terms of tables

• Update Views

-Express tables in terms of entities

Entities = QueryViews(Tables)

Tables   = UpdateViews(Entities)

Entities = QueryViews(UpdateViews(Entities))

This ensures entity can be persisted and re-

asssembled from db in a lossless manner 
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Compiler Mapping

- Mapping is specified using a set of mapping 

fragments

- Each fragment is of the form QEntities = QTables
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Query & Update views

To reassemble Persons from relational tables
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Specification of Mappings - Schema
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Specification of Mappings - Mappings
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Update Translation

1. View maintenance:
∆Tables = ∆UpdateViews(Entities, ∆Entities)

2. View Unfolding:
∆Tables = ∆UpdateViews(QueryViews(Tables), ∆Entities)
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Steps in Update Translation:

• Change list Generation

-List of changes per entity set is created

- Represented as lists of deleted and inserted 

elements

• Value Expression Propagation

- Transforms the list of changes obtained from 

view maintenance into sequence of algebraic 

base table insert and delete expressions against 

the underlying affected tables
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Steps in Update Translation(cont’d):

• Stored Procedure Calls Generation

-Produces the final sequence SQL statements  on 

relational schema (INSERT, DELETE, UPDATE)

• Cache Synchronization

- After updates, the cache state is synchronized 

with the new db state
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Update translation Example – Update query

using(AdventureWorksDB aw = new AdventureWorksDB()) {

// People hired more than 5 years ago 

var people = from p in aw.SalesPeople

where p.HireDate <

DateTime.Today.AddYears(-5) select p; 

foreach(SalesPerson p in people) {   

if(HRWebService.ReadyForPromotion(p)) { 

p.Bonus += 10; 

p.Title = "Senior Sales Representative"; 

} }

aw.SaveChanges();

} 
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Update Translation – Value Expressions

BEGIN TRANSACTION 

UPDATE [dbo].[SSalesPersons] SET [Bonus]=30 

WHERE [SalesPersonID]=1 

UPDATE [dbo].[SSEmployees] SET [Title]= N'Senior Sales 

Representative' 

WHERE [EmployeeID]=1 

END TRANSACTION

∆SSalesPersons= SELECT p.Id, p.Bonus

FROM ∆ESalesPersons As p

∆Semployees = SELECT p.Id, p.Title

FROM ∆ESalesPersons AS p

∆SContacts = SELECT p.Id, p.Name, p.Contact.Email,

p.Contact.Phone FROM ∆ESalesPersons AS p 
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Mapping Compilation problem

• Improper proper specification of Mapping 

fragments will lead to the mapping not satisfying the 

Data Round-tripping Criterions

map ◦ map-1 = Id(C)

•Application developers cannot be entrusted with 

task of checking for Data round-tripping criterion

• Hence Mapping Compilation has to done by EDM 

model 
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Bipartite Mappings

Mapping fragments are defined as follows:

∑map = { Qc1 = Qs1, .. , Qcn = Qsn }

where Qc is the query over the client schema and 

Qs is the query over store schema

Thus, ∑map = f ◦ g’

Where the view f: C  V

view g: S  V
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View Generation & Mapping Compilation 

1. Subdivide the mapping into independent set of 

fragments

2. Perform mapping validation by checking the 

condition Range(f) ⊆ Range(g)

3. Partition the entity set based on mapping 

constraints

4. Compile the relevant mappings on each partition

5. Regroup the generated views

6. Eliminate unnecessary self joins
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Paritioning Scheme

procedure PartitionVertically(p, Tp,map)

Part := ∅ // start with an empty set of partitions

for each type T that is derived from or equal to Tp do

P := {σp IS OF (ONLY T)} 

for each direct or inherited member A of T do

if map contains a condition on p.A then

if p.A is of primitive type then

P := P × Dom(p.A, map)

else if p.A is of complex type TA then

P := P × PartitionVertically(p.A, TA,map)

end if

end for

Part := Part ∪ P

end for

return Part
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Role of Dom(p, map)

Suppose the mapping constraints contain conditions,

(p=1) and (p IS NOT NULL) on path p of type integer

cond1 :=  (p=1)
cond2 :=  (p IS NULL)
cond3 := NOT (p=1 OR p IS NULL)

Every pair of conditions in Dom(p, map) is mutually exclusive 
conditions
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Partitioning Example

Above schema and  BillingAddr is nullable property with complex type Address.
Type Address has subtype USAddress

P1 : σe  IS OF (ONLY Person)
P2 : σe  IS OF (ONLY Customer) AND e.BillingAddr IS NULL
P3 : σe  IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY Address)
P4 : σe  IS OF (ONLY Customer) AND e.BillingAddr IS OF (ONLY USAddress)
P5 : σe  IS OF (ONLY Employee)
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Reconstructing partitions from views
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Reconstructing partitions from views
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Reconstruction Example

39



Grouping Partitioned views

The entire entity set is obtained by grouping views using Ua, ⋈, ⊐⋈

∪a  - denotes union without duplicate elimination 
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Evaluation

Experimental evaluation of the Entity framework was 

done focusing on mapping compiler for the following 

parameters

Correctness: 

Using automated suite, thousands of mappings was 

generated by varying some objects. The compiled 

views are verified by deploying the entire data access 

stack to query and update sample databases.
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Evaluation (cont’d)

Efficiency: 

- Compiling the independent mapping fragments   

on partitions alone takes exponential time.

- Recovering partitions from views takes O(n log n )

- All other steps take O(n) time

- The number of independent fragments were 

less 

- So, the few second delay at start time and 

restarts was acceptable
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Evaluation (contd)

Performance:

- Mapping compilation anchors both client-side 

rewriting and server-side execution

- Implied constraints were used fully to 

generate simplified views

-Major overheads: object instantiation, caching, 

query manipulations and delta computation for 

updates

- These overheads dominated only for small 

datasets
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• Declarative mapping language
-Allows non-expert users to specify

complex O/R mappings

-Formal semantics

• Mechanism for updatable views

- Large class of updates, not O/R specific

- Leverages view maintenance technology

Contributions

Mapping

compile

Bidirectional
views

• Mapping compilation
- Guarantees correctness
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QUESTIONS ????
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THANK YOU
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