\— Topic:
SQAK: Doing More with
Keywords

Speaker:
YINGJING YAN

Why SQAK?

* Today’s enterprise databases are large
and complex, often relating hundreds of
entities.

* Enabling ordinary users to query such
databases and derive value from them

has been of great interest in database
research.

Why SQAK?

;»" However, in order to compute even simple
/ aggregates a user is required to wrlte a SQL

\s a solution to this problem, we propose a

framework called SQAK (SQL Aggregates using
/Keywords) that enables users to pose aggregate

3 \querles using simple keywords with little or no

i L‘I)gnowledge of the schema.

)\\

N

INTRODUCTION

'* Consider the simple schema in Figure 1 of a university
database that tracks student registrations in various
courses offered in different departments:

L 7B
X2,

vl
b) 1%
[,

NE /

-

Student
id
name

(i Depa.rtment I‘— deptid
-{aame __——W| deptid
e h agm\'e Enrollment
oos nro n.ten
| Isectomd
\ |studentid
| Section | [grade

Courses _teourseid
cowrseld ‘,"’"\: sectionid
name \|term

deptd ‘ nstructor

Figure 1: Sample University Schema

INTRODUCTION

e Suppose that a user wished to determine the
number of students registered for the course
“Introduction to Databases” in the Fall
semester in 2007.

e The SQL statement would be written as
follows:

INTRODUCTION

SELECT courses.name, section.term, count
(students.id) as count

FROM students, enrollment, section, courses
WHERE students.id = enrollment.id
AND section.classid = enrollment.classid
AND courses.courseid = section.courseid

AND lower(courses.name) LIKE "\%intro. to
databases\%’

AND lower(section.term) = "\%fall 2007\%’

GROUP BY courses.name, section.term

. » While this may seem easy and obvious to a
/ ~database expert who has examined the schema,
\{ \it is indeed a difficult task for an ordinary user.

N\ ¥

C eaIIy, the user should be able to pose

g is guery using simple keywords such as
?}\\: U”Introducnon to Databases” “Fall 2007” number
/students

g8 \\SQAK system achieves exactly this by

SQAK Overview

S e SQAK provides a novel and exciting way to

trade-off some of the expressive power of SQL
in exchange for the ability to express a large
class of aggregate queries using simple
keywords, by taking advantage of the data in
the database and the schema (tables,
attributes, keys, and referential constraints).

e SQAK does not require any changes to the

database engine and can be used with any
existing database.

SQAK Overview

SQAK takes advantage of the data in the database,
“metadata such as the names of tables and attributes,
and referential constraints.

e ’AK also discovers and uses functional dependencies
/—'\ each table along with the fact that the input query is
Orequeshng an aggregate to aggressively prune out

k Uamblguous interpretations.

/As a result, SQAK is able to provide a powerful and

A\ \easy to use querying interface that fulfills a need not
a\ddressed by any existing systems.

‘; ¥
%

Architecture of SQAK

* A keyword query in SQAK is simply a set of
words (terms) with at least one of them being
an aggregate function (such as count, number,
sum, min, or max). Terms in the query may
correspond to words in the schema (names of
tables or columns) or to data elements in the
database.

Architecture of SQAK

 The SQAK system consists of three major

components — the Parser/Analyzer, the SQN-Builder,
and the Scorer. A query that enters the system is first
parsed into tokens. The analyzer then produces a set
of Candidate Interpretations (Cl’s) based on the
tokens in the query. For each Cl, the SQN Builder
builds a tree (called an SQN) which uniquely
corresponds to a structured query. The SQN’s are
scored and ranked. Finally, the highest ranking tree is
converted to SQL and executed using a standard
relational engine and the results are displayed to the
user.

Architectu ri of SQAK

User Interface

@ l Keywords
‘ Parser and Analyzevi
l Candidate

Interpretations

Database ‘ SQN Builder

' SQNs

Scorer

rSQL

Database

N~
Figure 3: Architecture of SQAK

L 753
Y

- Candidate Interpretation (Cl)

h ;/ R

3 /
SR
A
B ,:S‘
K
Yy 7 ¢

1%’ A Cl can be thought of as an interpretation of

| \ (the keyword query posed by the user in the

ﬁtontext of the schema and the data in the
7 ge~database.

\d @ A Cl is simply a set of attributes from a database
}\ ﬁ with (optionally) a predicate associated with
‘ { ‘5

%

\i! ‘each attribute.

\ ¢
? 4‘3@’ \\-“

Ny
S

Candidate Interpretation (Cl)

* |In addition, one of the elements of the Cl is
labeled with an aggregate function F. This
aggregate function is inferred from one of the
keywords.

* Forinstance, the “average” function from
keyword query “John average grade” would
be the aggregate function F in a Cl generated
from it.

Candidate Interpretation (Cl)

Q e One of the elements of the Cl may be

optionally labeled as a “with” node (called a
w-node). A w-node is used in certain keyword
gueries where an element with a maximum
(or minimum) value for an aggregate is the
desired answer.

* Forinstance, in the query “ student with max
average grade”, the node for student is
designated as the w-node.

e This is discussed in more detail later.

Cl Definition

DEFINITION 1. Given a database D contaiming a set of

tables T', each with a set of columns C(t;), a Candidate In-
terpretation S = (C,a, F,w) where

o U= {(q’, p)|cf is the jun column of Table;}, and p is

a predicate on ¢
e ac(,
e Fis an aggregate function.
o w e CUg, 1s the optional w-node

Cl Definition

* An intuitive way of understanding a Cl is to

think of it as supplying just the SELECT clause
of the SQL statement.

* |n translating from the Cl to the final query,
SQAK “figures out” the rest of the SQL.
Consider the sample schema showed in Figure
1. An edge from one table to another simply
means that a column in the source table refers
to a column in the destination table.

Cl Definition

“ '« Now consider the aggregate keyword query

”John num courses” posed by a user trying to
compute the number of courses John has
taken.

* One of the possible CI’s that might be
generated for this is: ({Student.name
[=John],Courses.courseid}, Courses.courseid,

count, w=2).

* Depending on the query, there may be several
other Cl’s generated for a given query.

Cl Definition

* Now suppose that a user wishes to find the course
that is offered most often in each department, a
reasonable keyword query would be department
course with max num sections. A possible Cl for this
query is: ({Department.id, Courses.courseid,
Section.sectionid}, Section.sectionid, max count,
Courses.courseid).

* The task of generating a set of ClI’s from a given

keyword query is the responsibility of the Parser/
Analyzer and will be described later.

Cl Definition
P I s which do not have a w-node are defined to be
/(‘\/slmple Cl’s. A Cl which satisfies any one of the

“f ollowing tests is considered a trivial interpretation:
.

==L DEFINITION 2. A Trivial CI S = (C,a,F,w) is a CI that
@mtisﬁes one of:

o There exists c € C,c # a such that c — a (c function-
ally determines a),

+» o There exist two columns ¢; and ¢; in C that refer to
; é» the same attribute,

) \ o There exist two columns c; and c; in C such that c;
and c; are related as primary key and foreign key.

Cl Definition

j"@;frivial Cl’s are detected and eliminated in the
{ gnumeration stage — they are not scored or
al uSed to produce the final SQL query. This is
'--écause Trivial Cl's produce “uninteresting
@‘esults”, and we assume that the user is seeking
\ ":to locate some interesting result, and therefore

’{ "\‘ weight a more interesting interpretation higher.

Yo

;‘:w‘@
1Y o

Cl Definition

e For instance, if it is unlikely that the user
mentioned two keywords each separately
referring to the same attribute of the same
table (Condition 2). The intuition behind third
condition is similar —the user is unlikely to
mention both the foreign key and the primary
key columns by keywords in the query.

Cl Definition

~* And finally, the first condition will always

produce groups with identical values. Again,
we discard such interpretations in favor of
more interesting interpretataions.

* Pruning trivial Cl's is one of the important

ways in which SQAK reduces ambiguity while
translating keyword queries to an aggregate
query in SQL.

A Simple Query Network

* A Simple Query Network is a connected
subgraph of the schema graph.

* A schema graph is a graph with the nodes
representing tables, and edge representing
relationships between the tables such as
foreign key — primary key constraints.

* A Simple Query Network is said to be valid
with respect to a CI S = (C, a, F,w) if it satisfies
the following conditions:

A Simple Query Network

~Minimality (a) Deleting a node from Q will violate of one
of the remaining conditions, (b) () is a tree,

Completeness Tables(C') C Nodes(Q)),

\(@Aggregate Equivalence One of the nodes of g € Nodes(())
N ’:7? ~ 18 marked as an aggregate node and g = Table(a),

—

‘ ‘Node Clarity () does not contan any node with multiple
/ & incoming edges,

7
-D‘b \

/9

™

g —
: —

A Simple Query Network

e Figure 4 shows two SQNs (a) and (b). SQN (a)
is invalid with respect to the Cl from the

previous example: ({Student.id,
Courses.courseid}, Courses.courseid,

count, D).

* This is because it violates node clarity — the
node “Department” has two incoming edges.

A Simple Query Network

(o>

(a) Invalid (b) Valid

Figure 4. Example SQNs

A Simple Query Network
 We can think of an SQN as a completely
specified query corresponding to Cl. A valid
SQN statement completely specifies the query
by supplying the FROM, WHERE, and GROUP
BY clauses to the SELECT clause supplied by
the ClI.

 The task of converting a Cl to valid SQN is the
task of the SQN Builder.

* Avalid SQN can be uniquely translated into an
rSQL (reduced SQL, described below) query.
These algorithms will be described later.

A Simple Query Network

;{mlmallty condition requires us to use as few
odes in a Cl as possible in order to satisfy (a).
k{ b i learly, a minimal graph that connects all the
{ \‘nodes in the Cl will be a tree. This is why SQAK
| ,,,veqwres the SQN to be a tree.

Ny
N

A Simple Query Network

* The completeness requirement ensures that
none of the terms in the keyword query or Cl
are ignored. SQAK requires the resulting
statement to display every column in the CI.

* Aggregate Equivalence is a simple condition
that requires that the aggregate implied in the
Cl is the same as the one in the corresponding
SQN.

A Simple Query Network

e Since SQAK queries are aggregate queries, they are
likely to contain a group-by clause.

* Node Clarity is one of the principal mechanisms by
which SQAK trades off power of expression for ease
of use. It is a way of requiring the nodes in the graph
to be related strongly. The strongest relationship one
can require between a pair of nodes is that the path
connecting them in the SQN be a directed path.

* Ensuring this for every pair would lead to the

strongest connection between the nodes specified in
the query.

A Simple Query Network

* We find that the constraint of node clarity
effectively narrows down the space of possible
gueries that correspond to a Cl while still
allowing SQNs to represent a large class of
gueries.

 The expectation is that the non-expert user is
more likely to pose queries with stronger
relationships than with such weak
relationships. This is one of the central trade-
offs that allows SQAK its ease of use.

rSQL

/;,::We identify a subset of SQL that can express a
{(-® wide range of queries. By carefully choosing this
| @bset, SQAK achieves a judicious tradeoff that
—allows keyword queries to be translated to
{(@3ggregate queries in this subset while

“ a=controlling the amount of ambiguity in the

e

~ Tkystem. We call this subset of SQL “reduced
sQL” or simply rSQL.

o

? W\ Y
&7\

) \}
N

rSQL

 Queries in rSQL are essentially of two types —
simple aggregate queries and topl-queries.
Aggregate queries are simply queries that
compute some aggregate on one measure.

e A query such as “Find the number of courses
each student has taken” is an example of an
aggregate query. The keyword query
“students num courses” would solve this
problem in SQAK.

rSQL

e Atopl query computes either a max or a min
aggregate and also produces the entity
corresponding to that value. For instance,
consider the query “Find the department with
the maximum number of students”. This is an
example of a topl query. The keyword query
“department WITH max num students” would
solve this.

rSQL

* A more complex topl query is: “In each
department, find the student with the highest
average grade”. This too can be solved in SQAK
with the query “department student WITH
max avg grade”.

e We observe that a topl query is really a
combination of a group-by and a min or max
aggregate query in SQL.

System Architecture-Parser/Analyzer

* The Parser/Analyzer in SQAK parses the query and
transforms it into into a set of Candidate
Interpretations.

* For each token produced by the parser, the analyzer
generates a list of candidate matches to schema
elements (table names and column names).

* |t does this by searching through the names of the
schema elements and matching the token to the
element name using an approximate string matching
algorithm.

Parser/Analyzer

* If the match score between the schema element and
the keyword is higher than a threshold, it is
considered a possible match. Each possibility is given
a score based on the quality of the approximate
match.

* Additionally, SQAK also uses an inverted index built
on all the text columns of the database to match
keywords that might refer to a data value. Instead of
returning a document identifier, this inverted index
returns the table name and column in which the
keyword occurs.

Parser/Analyzer

 The analyzer also locates terms that match aggregate
functions (sum, count, avg) or their synonyms and
associates the aggregate function with the next term

in the query. The term preceding the reserved word
“with” is labeled the w-term.

* Once a list of candidate matches is generated for
each term, the list of Cl’s is generated by computing
the cross product of each term’s list. The analyzer is
also responsible for identifying trivial interpretations
using known functional dependencies in the database

and eliminating them before invoking the SQN-
Builder.

L e
Y

SQN Builder

ne intuition behind this approach is that the Cl
k‘ nust contain all the data elements that the user
) s interested in. The smallest valid SQN is the

(I 5|mplest way to connect these elements
together.

N

}

Scorer

 The SQN Builder produces the best SQN for
each Cl.

* Since each keyword query might have multiple
Cl’s, the set of all SQNs for a query are sent to
the Scorer which ranks them. The score for an
SQN is the sum of the weights of its nodes and
edges. The SQN with the smallest weight is
chosen as the best completion of the CI.

Scorer

"« The weights of the nodes are determined

using the match scores from the parser/
analyzer. The same match score for each node
is determined by the Analyzer —a value in [1,
o) where 1 implies a perfect match, and oo
implies no match.

e All edges have unit weight. Additional nodes
not in the Cl that may be included in the SON
are all given unit weights.

SIMPLE QUERY NETWORKS

* We now formally state the problem of computing a

valid SQN given a Cl and show that this problem is
NP-Complete.

 We then describe our heuristic algorithm to solve it
and discuss the merits of this algorithm.

 Formally, the problem of finding a minimal SQN can
be stated as a graph problem : Given a directed graph
G(V,E) and a set of nodes C, we are required to find
the smallest subtree T(B,F) such that CC B and no
node in B has multiple incoming edges from F.

SIMPLE QUERY NETWORKS

* |n fact, the minimal SQN problem is NP-
Complete.

* We provide a brief sketch of the proof: The
basic idea of this proof is by reduction from
the Exact 3-Cover problem.

SIMPLE QUERY NETWORKS

__'*» The Exact 3-Cover problem (X3C) can be stated as

follows: Given a set S with |S| =3k, and C =

{C1,C2, ...,Cn} where |Ci| =3 and CiCS. Is there a
cover of S in C of size k? The decision problem
corresponding to finding the minimal SQN is: Given a

graph G = (V,E), WCV,and a& W, is there an SON H
with at most r edges? It is easy to see that given H,

we can verify that it is an SQN with at most r edges in
polynomial time.

* Now, we transform an instance of the Exact 3-Cover

problem to an instance of the minimal SQN problem
as shown in Figure 5.

SIMPLE QUERY NETWORKS

Figure 5: Reducing X3C to minimal SQN

SIMPLE QUERY NETWORKS

= » We construct a vertex for each element Si of S,
and each element Ci of C. If Si € Ci, we add an
| | \ from Ci to Si. We add a new node a and
add C edges, from a to each Ci. We set the

/ o lodes to be covered as W ={a, s1, s2, ..., sn}.

k t is easy to show that an exact 3 cover of size k
/eX|sts if and only if there exists an SQN covering
\‘ S with at most r = 4k edges.

An Approximate Algorithm

* Having shown that finding the minimal SQN
for a given Cl is NP complete, we outline a

greedy backtracking heuristic to solve it
(Algorithm 1).

 The basic idea of the FindSQN algorithm is to
start with a copy of a partial solution (called
temp) initialized to contain only the aggregate
node. We then find a node in the Cl whose
distance to temp in the schema graph is
shortest.

An Approximate Algorithm

© ¢ The path between temp and this Cl node is

added to temp if node clarity is not violated.
The algorithm iteratively adds nodes from the
Cl nodes to temp in order of their distance
from the temp graph.

If at any point the algorithm is unable to
proceed without violating node clarity, the
algorithm backtracks — the last node added to
the current solution is discarded (along with
the path to that node), and the algorithm tries
to continue to add the node at the next

» shortest distance.

An Approximate Algorithm

* When all the Cl nodes are covered, the
algorithm terminates. If the algorithm is
unable to backtrack any further and has not
yet found a solution, it terminates and reports
a failure.

An Approximate Algorithm

’/s o FmdSQN is called with 4 parameters: the aggregated
(o S node, the list of other nodes in the CI, the current
",raph — a partial solution initialized to a one node

o aph consisting of just the aggregated node (temp
tarts by making a copy of this), and the schema graph.

k used iteratively to locate the Cl node that is closest to
/the current solution. ExpandAlIByOneEdge finds edges
|n the schema graph that are incident with the current
s\olutlon and terminate at a node not in the current

\a

An Approximate Algorithm

e After each invocation to this procedure, the
algorithm checks to see if the expanding temp
has encountered any of the nodes in
othernodes using the findNodesIinGraph call. If
it has, these nodes and the paths are added to
the curGraph, and are removed from
othernodes.

 The findSQN algorithm continues recursively
until othernodes is empty.

é;».;\
/

&P /

SRR
el N

Algorithm 1 Algorithm for Finding SQN
FindSQN(aggNode, otherNodes, curGraph, schema-

Graph)
if otherNodes is empty then

return curGraph

end if
Let expanded = false, temp = curGraph
while true do

expandAllIByOneEdge(temp,

expanded =

Graph, aggNode)
if expanded = false then return null

matchnodes = findNodesInGraph(othernodes,temp)
if matchnodes is empty then continue

atLeastOnePathAdded = false
for each match in matchnodes do
new_curGraph = curGraph

new_otherNodes = otherNodes
if match.path satisfies node clarity then

atLeastOnePathAdded = true
new_curGraph.addPath(match.path)

new_otherNodes.remove(match)
end if

end for
if atLeastOnePathAdded = true then
res = findSQN(aggNode, new_otherNodes,

new _curGraph, schemaGraph)
if res!= null then return true;

schema-

end if
else continue

end while

Algorithm 2 Procedure ExpandAllByOneEdge

procedure EXPANDALLBYONEEDGE(graph, schema-
;raph, aggNode)
exp = false
for each node n in graph do
for each edge e in schemaGraph do
if e is incident with n and e.destination is not
in graph then
t = n; t.path = t.path + e
add t and e to graph
Set exp = true
end if
end for
end for
return exp
end procedure

3 Discussion

< » Algorithm FindSQN is a heuristic. If it does not
encounter any backtracking, a loose upper bound for
' ;".% running time is O(g%E?), where q is the number of
A ﬁ;édes in the Cl, and E is the number of edges in the

Chema graph. (ExpandAlIByOneEdge runs in O(q2E)
€

imes and with no backtracking, it can be called at
k w—most E times).
) F“]In the worst case, the running time of findSQN is
W« u\\ exponential. Since this algorithm runs as part of the
,’.if‘f/;%\"iesponse to a keyword query, it is important to ensure
A

‘ i‘ieasonable response time.

Y
.

Discussion

e For this reason, SQAK terminates the
algorithm after a fixed amount of time and

returns no solution.

* For schemas with relatively low complexity
such as star and snowflake schemas, findSQN
is unlikely to encounter any backtracking. In
fact, backtracking usually happens only when
entities in the schema can be connected in
multiple ways, often of comparable strength
leading to significant ambiguity.

Discussion

' The FindSQN algorithm may fail to return a

solution for a query. This may happen either
because no valid SQN exists for the input, or
because our heuristic could not locate the
solution in the given amount of time. When
this happens, instead of simply returning to
the user with an empty response, SQAK re-
runs the algorithm by relaxing the node clarity
constraint and we are therefore guaranteed a
solution.

Discussion
* When SQAK returns such a solution, it alerts
the user by displaying a message that says that
the solution might not be accurate. Having
found the SQN using the above algorithm,
translating it to the corresponding rSQL query
is the next task.

* This is outlined in Algorithm 3. The case of
simple CI’s without a w-term is
straightforward. On the other hand, top1l
gueries require more involved processing to
produce the corresponding SQL statement.

Algorithm 3 Algorithm for Translating to rSQL

translateSQN(CIL,SQN)
if SQN does not have a w-node then
Return makeSimpleStatement{CI,SQN)
end if
if SQN has a w-node and a single level aggregate then
Produce view u = makeSimpleStatement(CI,SQN)
Remove w-node from u’s SELECT clause and GROUP
BY clause
r = makeSimpleStatement(CI,SQN)
Addu to r's FROM clause
Add join conditions joining all the columns in u to the
corresponding ones in r
return r
end if
if SQN has a w-node and a double level aggregate then
Produce view u = makeSimpleStatement (CI,SQN)
Produce view v = aggregate of u from the second level
aggregate term in the CI excluding the w-node in the SE-
LECT and GROUP BY clauses
Produce r = Join u and v, equijon on all the common
columns
Return r
end if
procedure MAKESIMPLESTATEMENT(CIL.SQN)
Make SELECT clause from elements CI
Make FROM clause from nodes in SQN
Make WHERE clause from edges in SQN
Make GROUP BY clause from elements of CI except
aggregated node
Add predicates in CI to the WHERE clause
Return statement
end procedure

Discussion

* Consider the keyword query department with
max num courses which tries to find the
department that offers the most number of
courses. The corresponding rSQL query that is
produced is:

WITH temp(DEPTID, COURSEID) AS (

SELECT DEPARTMENT.DEPTID, count
(COURSES.COURSEID)

FROM COURSES, DEPARTMENT
WHERE DEPARTMENT.DEPTID = COURSES.DEPTID
GROUP BY DEPARTMENT.DEPTID),
temp2(COURSEID) AS (
SELECT max (COURSEID)
FROM temp)
SELECT temp.DEPTID, temp.COURSEID
FROM temp, temp?2
WHERE temp.COURSEID =temp2.COURSEID

Discussion

* As an example for a double level aggregate
guery, consider the example department
student max avg grade which tries to find the
student with the highest average grade in each

department. The rSQL query produced by
SQAK is:

WITH temp(DEPTID, ID, GRADE) AS (
5\ SELECT STUDENTS.DEPTID, STUDENTS.ID,
4 /=7 avg(ENROLLMENT.GRADE)
‘~ ENROLLMENT, STUDENTS
_UA W i_f;j:'ERE STUDENTS.ID = ENROLLMENT.ID
OUP BY STUDENTS.DEPTID, STUDENTS.ID),
\ @ temp2(DEPTID, GRADE) AS |
}§ - SELECT DEPTID, max(GRADE)
{ \\/ FROM temp GROUP BY DEPTID)
Y, %\S*ELECT temp.DEPTID, temp.ID, temp.GRADE
g” OM temp, temp2
) \ ERE temp.DEPTID = temp2.DEPTID

“ AND temp.GRADE =temp2.GRADE

Approximate Matching

* The first hurdle when using a system like SQAK
is that the user often does not know the exact
names of the entities (table, attributes) she
wants to query. She may either misspell,
choose an abbreviation of the word, or use a
synonymous term.

 The problem of tolerating alternate terms can
be addressed by listing synonyms for each
schema element (such as “instructor” for
“faculty”).

Approximate Matching

= * However, this still leaves us the problem of

misspellings and abbreviations.

 SQAK solves this problem by matching a term
in the keyword query to a schema element
using an edit distance based measure. If this
distance is less than a threshold, then the
schema element is considered a potential
match for that term.

* This measure is computed as follows:

Approximate Matching

cdtt.dutancc(r.u

fo— . o editdistance(z,y)
=¢ BRI L
d=e 2

< 7y, oo other-

wise.
If the edit distance (expressed as a fraction of the
average length of the strings) is less than a
threshold , then the distance measure is e raised to f
times this fraction, and O otherwise. If this score is
nonzero, then the pair of strings is considered a
potential match. A larger value of the measure implies
a weaker match. The best possible score is 1, when
the edit distance is 0. A larger value of f imposes a
higher penalty for differences between the two
strings. A larger value of y allows more distant
matches to be considered for processing.

Tied or Close Plans
* Sometimes, a given keyword query may have
4 /omultiple corresponding rSQL queries with
*&identical scores. This often happens if the
| §,'c"hema contains many entities that are related

? nmultiple ways and the query is inherently
<@mb|guous

L\}\\: ¥In such cases, SQAK arbitrarily breaks the tie

\/and presents the results from one of the
+=queries. At the same time, SQAK also presents
)\\\\ ge alternate queries that had the same score
[\

alert the user that it could not uniquely
translate the query.

Tied or Close Plans

* Currently, SQAK simply lists the SQL and score

from the alternate interpretations. The user

can select any of them to see the results
corresponding to them.

* Providing appropriate visual representations
or keyword based summaries of this
information to make it easier for the user to
understand the choices available is an area of
future research.

Expressiveness

* |f the SQAK system encounters a keyword
query that does not contain an aggregate
term, we may simply interpret is as a regular
keyword query and use a similar system to

execute the query.

* Currently, SQAK does not admit any queries
that do not contain at least one aggregate
keyword.

Effectiveness

* Query “the average grade William obtained in
the courses offered by the EECS department”,
(William EECS avg grade) gets translated as:

Effectiveness

SELECT STUDENTS.NAME, DEPARTMENT.NAME,
avg(ENROLLMENT.GRADE)

FROM ENROLLMENT, STUDENTS, DEPARTMENT

WHERE STUDENTS.ID = ENROLLMENT.ID AND
DEPARTMENT.DEPTID = STUDENTS.DEPTID AND
lower(STUDENTS.NAME) LIKE "\%william\%" AND
lower(DEPARTMENT.NAME) LIKE "\%eecs\%’

GROUP BY STUDENTS.NAME , DEPARTMENT.NAME

Effectiveness

/'SQAK correctly interprets the attributes
corresponding to each field. However, the
équired guery is not the minimal SQN, but a

K ""ftable

%4 \K/ As is the case with any querying mechanism
y & that takes as input an incompletely specified

Savings

o Clearly, constructing a query such as EECS
num students is easier and quicker than
writing the corresponding SQL query:

SELECT DEPARTMENT.NAME, count
(STUDENTS.ID)

FROM STUDENTS, DEPARTMENT

WHERE DEPARTMENT.DEPTID =
STUDENTS.DEPTID AND

lower(DEPARTMENT.NAME) LIKE "%eecs%’
GROUP BY DEPARTMENT.NAME

Savings

< ¢ The cost of a keyword query is simply the number of
/‘* schema elements in the keyword query.

| entlons only one schema element — the students
\ble. Therefore its cost is 1. The corresponding SQL

\ <®uery mentions the tables Department and Students.
k l:lt also mentions the attributes Department.Name and
) ?']fStudents.lD. Additionally, it uses one join. The total

W« ;\\ é_cost of this query is 5. The total savings that SQAK

’.”é‘i"?;"\'” rovides for this query is5—-1=4.

| Savings

e SQL requires additional effort to be
syntactically correct. Furthermore, complex
qgueries in rSQL such as top1 queries with w-
terms have more involved query logic, and
this measure should be interpreted as a lower
bound on the amount of savings for that

query.
 We averaged the savings in the cost of query

construction for the queries in Tables 1 and 2.
This is summarized in Table 3.

Parameters

 SQAK has relatively few parameters. In fact,
the only aspect one needs to tune is the
“looseness” of the approximate match
between a schema element name (or its
synonyms) and the keyword.

* As described before, we use an edit distance
based method to match the keywords with the
schema elements. The two parameters we
explore here are

a) the mismatch tolerance threshold y and
b) the mismatch penalty f.

Parameters

< Con5|der queries that use mis-spelled or shortened

’ /C Vérsmns of the keywords. For instance, “department”
;‘ be shortened to “"dept”. “Students” might be
"’eIIed as “Stuents”. These were generated manually.

| ~n.some of the cases, the spelling error caused the
/Clgorlthm to map the term to a different schema
Iement and therefore the resulting query was
»ﬁdn‘ferent We varied y from 0.2 to 0.8. We repeat the
1 \/experlment forf=1.5, 2, 3, and 6. (a higher value of f

) ﬂwlmposes a greater penalty for a mismatch.)
ﬁp]

1e results are shown in Figure 7.

Parameters

02 T T T T
0.1 0.2 0.3 0.< 0.5 06 07 08 0o
Gamma

Figure 7. Mismatch Sensitivity

Parameters

e Asis evident from the figure, the accuracy of
SQAK is not highly sensitive to y. In fact, the

accuracy is nearly stable between the values
of 0.4 and 0.8.

* This simply means that for simple spelling

errors and shortenings, the distance measure
is robust enough that tolerating a small
amount of mismatch is enough to ensure that
the right schema element is picked for that
keyword.

Parameters

* |nterestingly, we see that when f = 1.5, the
accuracy is lower than then f=2.0. That is,
imposing a low penalty might make SQAK pick
the wrong query.

e Further, for the case of f=3.0, the accuracy
improves even more. This tops off at f=6.0
here, and no further improvements are
observed. We expectthatf=2or3 and vy
between 0.4 and 0.8 are good choices in
general.

Cost

b, In a system like SQAK where the user poses
keyword queries, response time is important.

‘%»The overhead of translating the keyword query
‘ <hou|d be small compared to the cost of
f,/\ctually executing the SQL query. We measured
'/(.té e time taken by SQAK to perform this

; |
k s=computation for the same sets of values of f

l ‘—r

£ @nd as above.
fﬁln each of the cases, SQAK was allowed to run
>t .completion.

resulting times are plotted in Figure 8.

Cost

' As is evident choosing a value of gamma between
0.4 and 0.6 along with an appropriate f should
provide good accuracy for very little overhead.

—

4550
g7
N

120 —

f=1.5
=2
=3
f=68

100

®
(w]
]
¢ompO

Time (milkseconds)
]
|

] | | 1 1
0.1 0.2 03 o= 05 oe 0.7 o=
Gamma

Figure 8: Query Translation Time

DISCUSSION AND RELATED WORK

* The SQAK system leverages and combines
several existing ideas from database research

to achieve the balance of expressive power
and ease of use.

DISCUSSION AND RELATED WORK

* The problem of keyword search in relational
databases has received much attention in
recent years. Early systems like BANKS,
DISCOVER, and DBXplorer designed efficient
ways to retrieve tuple trees that contained all
the keywords in the query.

* Arecent work that has addressed the problem
of desighing keyword based interfaces that can
compute powerful aggregates is KDAP.

DISCUSSION AND RELATED WORK

* Arecent effort describes a technique for
selecting a database from a set of different
databases based on the terms in a keyword
guery and how they are related in the context
of the database.

 The question of whether the techniqgues may
be used to extend SQAK to work over multiple
data sources is a topic of future investigation.

CONCLUSIONS

= » We argued that current mechanisms do not

I/« allow ordinary users to pose aggregate queries

7@onstrucﬁng a structured query in SQL from a

keyword query entered by a user who has little
N a:jknowledge of the schema.

“ellWe describe algorithms to solve the problems

")wolved and present a system based on this
|\ jg@lled SQAK.

CONCLUSIONS

 We demonstrate through experiments on multiple
schemas that intuitively posed keyword queries in
SQAK are translated into the correct structured
qguery significantly more often than with a naive
approach like Steiner.

* We show that the algorithms in SQAK work on
different databases, scale well, and can tolerate real
world problems like approximate matches and
missing schema information.

 We also show that SQAK requires virtually no tuning
and can be used with any database engine.

CONCLUSIONS

e In summary, we conclude that SQAK is a novel

approach that allows ordinary users to
perform sophisticated queries on complex
databases that would not have been possible
earlier without detailed knowledge of the
schema and SQL skills.

* We expect that SQAK will bring vastly
enhanced querying abilities to non-experts.

