
QURSED: Querying and Reporting Semistructured Data
Yannis Papakonstantinou

Computer Science and Eng. Dept.
University of California, San Diego

yannis@cs.ucsd.edu

Michalis Petropoulos
Computer Science and Eng. Dept.
University of California, San Diego

mpetropo@cs.ucsd.edu

Vasilis Vassalos
Information Systems Dept.

New York University

vassalos@stern.nyu.edu

ABSTRACT
QURSED enables the development of web-based query forms and
reports (QFRs) that query and report semistructured XML data,
i.e., data that are characterized by nesting, irregularities and
structural variance. The query aspects of a QFR are captured by
its query set specification, which formally encodes multiple
parameterized condition fragments and can describe large
numbers of queries. The run-time component of QURSED
produces XQuery-compliant queries by synthesizing fragments
from the query set specification that have been activated during
the interaction of the end-user with the QFR. The design-time
component of QURSED, called QURSED Editor, semi-automates
the development of the query set specification and its association
with the visual components of the QFR by translating visual
actions into appropriate query set specifications. We describe
QURSED and illustrate how it accommodates the intricacies that
the semistructured nature of the underlying database introduces.
We specifically focus on the formal model of the query set
specification, its generation via the QURSED Editor and its
coupling with the visual aspects of the web-based form and report.

1. INTRODUCTION
XML provides a powerful and simple way to represent and
exchange data, largely due to its self-describing nature. Its
advantages are especially strong in the case of semistructured
data, i.e., data whose structure is not rigid and is characterized by
nesting, optional fields, and high variability of the structure. An
example is a catalog for complicated products such as sensors:
they are often nested into manufacturer categories and each
product of a sensor manufacturer comes with its own variations.
For example, some sensors are rectangular and have height and
width, and others are cylindrical and have diameter and barrel
style. Some sensors have one or more protection ratings, while
others have none. The relational data model is cumbersome in
modeling such semistructured data because of its rigid tabular
structure.

The database community perceived the relational model’s
limitations early on and responded with labeled graph data models
[1] first and XML more recently. XML query languages (with
most notable the emerging XQuery standard [26]), XML

databases [22] and mediators [7,9,16,30] have been researched
and developed. They materialize the in-principle advantages of
XML in representing and querying semistructured data. Indeed,
mediators allow one to export XML views of data found in
relational databases [9,31], HTML pages, and other information
sources, and to obtain XML’s advantages even when one starts
with non-XML legacy data. QURSED automates the construction
of web-based query forms and reports for querying semistructured
XML data.

Web-based query forms and reports are an important aspect of
real-world database systems [3,23], albeit semi-neglected by the
database research community. They allow millions of web users to
selectively view the information of underlying sources. A number
of tools [31,32,35] facilitate the development of web-based query
forms and reports that access relational databases. However, these
tools are tied to the relational model, which limits the resulting
user experience and impedes the developer in his efforts to
quickly and cleanly produce web-based query forms and reports.
QURSED is, to the best of our knowledge, the first web-based
query forms and reports generator with focus on semistructured
XML data.

QURSED produces query form and report pages that are called
QFRs. A QFR is associated with a query set specification, which
typically describes a large set of parameterized queries that may
be instantiated and emitted from the query form page to the XML
query processor in the course of its interaction with the end-user.
The emitted queries are expressed in XQuery and the query results
are expressed directly in HTML, for performance reasons.

1.1 System Overview and Architecture
We discuss next the QURSED system architecture (see Figure 1),
the process and the actions involved in producing a QFR and the
process by which a QFR interacts with the end-user, emits a query
and displays the result. We also introduce terms used in the rest of
the paper. QURSED consists of the QURSED Editor, which is the
design-time component, the QURSED Compiler, and the
QURSED Run Time Engine.

The Editor inputs the XML Schema that describes the structure of
the XML data to be queried and an HTML query form page that
provides the visual (HTML) part of the form page, including the
HTML form controls [29], such as select ("drop-down
menus") and text ("fill-in-the-box") input controls, that the end-
user will be interacting with. It may also input:

1. An optional HTML template report page that provides the
visual pattern of the report page. In particular, it depicts the
nested tables and other components of the page. It is just a
template, since we may not know in advance how many rows
appear in each table. The query form and template report

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD ’2002, June 4-6, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06…$5.00.

pages are typically developed with an external “What You
See Is What You Get” (WYSIWYG) editor, such as
Macromedia HomeSite. If a template report page is not
provided, the developer can build one using the Editor.

2. An optional set of functions and predicates (and their
signatures) understood by the target XML query processor
and a set of functions and predicates understood by the run-
time engine of QURSED.

Then the Editor displays the XML Schema and the HTML pages
to the developer, who uses them to visually build the query set
specification of the QFR and the query/visual association. The
specification focuses on the query aspects of the QFR and
describes the set of queries that the form may emit. The query
description is based on the formalism of the Tree Query Language
(TQL) described in Section 4. The specification’s key components
are the parameterized condition fragments and the result tree.
Each condition fragment stands for a set of conditions (typically
navigations and selections, joins are also possible) that contain
parameters. The query/visual association indicates how each
parameter is associated with corresponding HTML form controls
[29] of the query form page. The form controls that are associated
with the parameters contained in a condition fragment constitute
its visual fragment. The result tree specifies how the source data
instantiate and populate the HTML template report page.

The QURSED Compiler takes as input the output of the Editor
and produces dynamic server pages, in the form of Java Server
Pages, which control the interaction with the end-user. The
dynamic server pages, the query set specification and the
query/visual association are inputs to the QURSED Run-time
Engine. In particular, the dynamic server pages allow the end-user
to enter her input parameters on the query form page and handle
the navigation on the report page. The engine, based on the query
set specification and the query/visual association, generates an
XQuery expression when the end-user clicks “Execute Query”,
which is sent to the XML Data Server and its HTML result is
displayed on the report page. Query generation proceeds in two
steps: The set of active condition fragments, i.e., of fragments
whose parameters (if any) have been given values, is combined
into a TQL query. Then the TQL query is translated into an
XQuery expression that directly produces the HTML report page.

The rest of the paper is organized as follows. The related work
and the list of contributions of QURSED are presented in Section
2. In Section 3 the running example is introduced and the end-

user experience is described. Section 4 describes TQL, and
Section 5 presents the query set specification formalism. Section 6
presents the Editor.

2. RELATED WORK & NOVEL
CONTRIBUTIONS OF QURSED
The QURSED system relates to three wide classes of systems,
coming from both academia and industry.

Web-based Form and Report Generators, such as Macromedia
DreamWeaver Ultradev and ColdFusion, and Microsoft Visual
Interdev. All of the above enable the development of web-based
applications that create form and report pages that access
relational databases. QURSED is classified in the same category,
except for its focus on semistructured data.

In all of the above generators the developer uses a set of wizards
to visually explore the tables and views defined in a relational
database schema and selects the one(s) she wants to query using a
query form page. By dragging ‘n’ dropping the attributes of the
desired table to HTML form controls [29] on the page, she creates
conditions that, during run-time, restrict the attribute values based
on the end-user’s input. The developer can also select the tables
or views to present on a report page, and by dragging ‘n’ dropping
the desired attributes to HTML elements on the page, e.g., table
cells, the corresponding attribute values will be shown as the
element’s content. The developer also specifies the HTML region
that will be repeated for each record found in the table, e.g., one
table row per record. These actions are translated to scripting code
or a set of custom HTML tags, such as the JSP library of tags, that
these products support and generate. The custom tags incorporate
common database and programming languages functionality and
one may think of them as a way of folding a
programming/scripting language into HTML.

Those tools are excellent when flat uniform relational tables need
to be displayed. The visual query formulation paradigm offered to
the developer allows the expression of projections, sort-bys, and
simple conditions. However, the development of form and report
pages that query and display semistructured data requires
substantial programming effort.

Visual Querying Interfaces, such as QBE [24] and Microsoft’s
Query Builder (part of Visual InterDev), which target the
querying of relational databases, and EquiX [8], BBQ [18],
VQBD [6], the Lorel’s DataGuide-driven GUI [14], and PESTO
[4], which target the querying of XML or object-oriented

QURSED Run Time Engine

QURSED
Compiler

XML Data
Server

QURSED
Editor

(Optional)
Custom

Predicates
Query Set

Specification

XQuery
Expressions

XML/XHTML

Query Form
Page

Report
Pages

APP SERVER

BROWSER

XHTML
Query Form

Page
(Optional)

XHTML
Template

Report Page

Query Form
Page

Query/Visual
Association Dynamic

Server Pages

WYSIWYG
XHTML
Editor

Deployment

XML
Schema

Active Condition Fragments
to TQL Query

TQL Query
to XQuery Expression

Developer

Web Designer End-User

Figure 1. QURSED System Architecture

databases. These are applications that allow the exploration of the
schema and/or content of the underlying database and the
formulation of queries.

Unlike the form and report generators, which produce web front-
ends for the “general public”, visual querying interfaces present
the schema of the underlying database to experienced users, who
are often developers building a query, help them formulate queries
visually, and display the result in a default fashion. The user has
to, at the very least, understand what is the meaning of “schema”
and what is the model of the underlying object structure, in order
to be able to formulate a query. For example, the QBE user has to
understand what a relational schema is and the user of Lorel’s
DataGuide GUI has to understand that the tree-like structure
displayed is the structure of the underlying XML objects. These
systems have heavily influenced the design of the Editor because
they provide an excellent visual paradigm for the formulation of
fairly complex queries.

Data-Intensive Web Site Generators, such as Autoweb [12],
Araneus [2] and Strudel [10]. These are excellent examples of the
ongoing research on how to design and develop web sites from
database content. An extensive discussion on this class of systems
can be found in [11]. All of them offer a data model, a navigation
model and a presentation model. They provide important lessons
on how to decouple the query aspects of web development from
the presentation ones. (Decoupling the query from the
presentation aspects is an area where commercial web-based form
and report generators suffer.) Strudel is based on labeled directed
graphs for both data and web site modeling, which is close to the
XML model of QURSED. The query language of Strudel, called
StruQL, is used to define the way data are integrated from
multiple sources (data graph), the pages that make up the web site,
and the way they are linked (site graph). Each node of the site
graph corresponds to exactly one query, which is manually
constructed. Query forms are defined on the edges of the site
graph by specifying a set of free variables in the query, which are
instantiated when the page is requested, producing the end node
of the edge. Similarly, Autoweb and Araneus perceive query
forms as a single query, in the sense that the number of conditions
and the output structure are fixed. In Strudel, if conditions need to
be added or the output structure to change, a new query has to be
constructed and a new node added to the site graph. In other
words, every possible query and output structure has to be written
and added to the site graph. QURSED is complementary to these
systems, as it addresses the problem of encoding a large number
of queries in a single QFR and grouping and representing
different reports by a single site graph node.

This paper is a continuation of the work in [19], where we
described a software architecture that allows an extensible set of
HTML input controls to be associated with element definitions of
an XML schema via an annotation on the XML Schema. The
paper did not describe how the system encodes or composes
queries and results of queries based on user actions.

2.1 Contributions
Forms and Reports for Semistructured Data. QURSED generates
form and report pages that target the needs of interacting with and
presenting semistructured data. Multiple features contribute in this
direction:

1. QURSED generates queries that handle the structural
variance and irregularities of the source data by employing
appropriate forms of disjunction. For example, consider a
sensor query form that allows the user to check whether the
sensor fits within an envelope with length X and width Y,
where X and Y are user-provided parameters. The
corresponding query has to consider whether the sensor is
cylindrical or rectangular, since X and Y have to be compared
against a different set of dimension attributes in each case.

2. On the report side, data can be automatically nested
according to the nesting proposed by the source schema or
can be made to fit HTML tables that have variance in their
structure and different nesting patterns. Structural variance
on the report page is tackled by producing heterogeneous
rows in the resulting HTML tables.

Loose Coupling of Query and Visual Aspects: QURSED separates
the logical aspects of query forms and reports generation from the
presentation ones, hence making it easier to develop and maintain
the resulting form and report pages. The visual component of the
forms can be prepared with any HTML editor. Then the developer
can focus on the logical aspects of the forms and reports: Which
are the condition fragments? How should the report be nested?
The coupling between the logical and the visual part is loose,
simple, and easy to build: The query parameters are associated
with HTML form controls, the condition fragments are associated
with sets of HTML form controls, and the grouped elements (see
Section 4) of the result tree are associated with the nested tables
of the report.

Powerful and Succinct Query Set Specification: We provide
formal syntax and semantics for the QFR query set specifications,
which describe large numbers of meaningful semistructured
queries. The specifications primarily consist of parameterized
condition fragments, whose combinations lead to large numbers
of parameterized queries.

The query set specifications are using the Tree Query Language
(TQL), which is a calculus-based language. TQL is designed to
handle the structural variance and missing fields of semistructured
data. Nevertheless, TQL’s purpose is not to be yet another
general-purpose semistructured query language. Its design goals
are to:

1. Facilitate the definition of query set specifications and, in
particular, of condition fragments.

2. Provide a tree-based query model that captures easily the
schema-driven generation of query conditions by the forms
component of the Editor and also maps well to the model of
nested tables used by the reports.

3. EXAMPLE
This section describes an example XML Schema and the data
model of QURSED, and introduces as the running example a
QURSED-generated web interface. It concludes by describing the
end-user experience with that interface.

3.1 Example XML Schema and Data Model
Consider the example XML Schema of Figure 2, which models
proximity sensor products, and a sample data set that conforms to
it. This is the form in which the Editor displays the schema to the
developer. Indicated are the optional (? suffix) and repeatable (*
and + suffices) elements and the choices and sequences (OR and

SEQ elements) of elements. Also, the elements of primitive type
[25] are indicated with a wildcard (* label) as element name (leaf
nodes only.) Like many XML Schemas, it has nesting and many
“irregular” structures such as choice groups and optional elements
[28]. The top element is called sensors and contains one

manufacturer element for each manufacturer whose sensors
are featured in the data set. Each manufacturer contains a name
and a list of product subelements, whose direct subelements
model the basic information of each sensor. The technical
specification of each sensor is modeled by the specs element,
whose content is quite irregular. For example, the body type may
be rectangular, in which case the sensor has height and
width dimensions, or cylindrical, in which case it has
diameter dimension and barrel_style, and each sensor
can have zero, one or more protection_rating elements.

XML Schemas, like the one in Figure 2, have the expressive
power to describe irregularities and nesting, and they can be
visualized in an intuitive manner. The developer can carry out a
set of tasks, such as formulate queries and transform data, on the
schema structure the underlying database system uses, without the
need of another abstraction — as is the case with relational
databases.

We model XML as labeled ordered tree objects (lotos). Each
internal node of the labeled ordered tree represents an XML
element and is labeled with the element’s tag name. The list of
children of a node represents the sequence of elements that make
up the content of the element. A leaf node holds the string value
of its parent node.

3.2 Example QFR and End-User Experience
Using QURSED, a developer can easily generate a web interface
like the one shown in Figure 3 that queries and reports proximity
sensor products. This interface will be the running example and
will illustrate the basic points of the functionality and the
experience that QURSED delivers to the end-user of the interface.

The browser window displays a query form page and a report
page. On the query form page form controls are displayed for the
end-user to select or enter desired values of sensors’ attributes.
The state of the query form page of Figure 3 has been produced
by the following end-user actions:

• Placed the equality condition “NEMA3” on “Protection
Rating 1”.

• Left the preset option “No preference” on “Body Type” and
placed the conditions on “Dimension X” being less than 20
“mm” and “Dimension Y” less than 40 “mm”. These two

sensors

manufacturer
name

product
part_number

“Turck”

“A123”
image
“A123.jpg”

specs
sensing_distance
“11”

body_type
cylindrical

barrel_style

diameter
“17”

“Smooth”
protection_ratings
protection_rating
“NEMA1”

operating_temp
min

max
“-20”

“200”

protection_rating
“NEMA3”

manufacturer
name

product
part_number

“Turck”

“B123”
specs
sensing_distance
“25”

body_type
rectangular

width

height
“10”

“30”
protection_ratings
protection_rating
“NEMA3”

operating_temp
min

max
“-30”

“350”

protection_rating
“NEMA4”

Figure 2. Example XML Schema and
Conforming Data Set

Figure 3. Example QFR Interface

dimensions define an envelope in which the end-user wants
the sensors to fit, without specifying a particular body type.

After the end-user submits the form, she receives the report of
Figure 3. The results depict the information of product
elements: the developer had decided earlier that products should
be returned. QURSED organizes the presentation of the qualifying
XML elements in a way that corresponds to the nesting suggested
by the XML Schema. Notice, for example, that each product
display has nested tables for rectangular and
cylindrical values.

Sections 4 and 5 illustrate the query set specification QURSED
uses to represent the possible queries. Section 6 elaborates on the
visual steps the developer follows on the Editor interface to
deliver query form and report interfaces, like the one shown in
Figure 3, using QURSED.

4. TREE QUERY LANGUAGE (TQL)
User interaction with the query form page results in the generation
of TQL queries, which are subsequently translated into XQuery
statements. TQL shares many common characteristics with
previously proposed XML query languages like XML-QL [27],
XML-GL [5], LOREL [21], XMAS [16] and XQuery [26]. TQL
facilitates the development of query set specifications that encode
large numbers of queries and the development of a visual interface
for the easy construction of those specifications. This section
describes the structure and semantics of TQL queries. The
structure and semantics of query set specifications are described
in the next section.

A TQL query q consists of a condition tree and a result tree. An
example of a TQL query is shown in Figure 4, and corresponds to
the TQL query generated by the end-user’s interaction with the
query form page of Figure 3.

Definition 1 (Condition Tree). The condition tree of a TQL
query q is a labeled tree that consists of:

• Element nodes n having an element name name(n), which is
a constant, a name variable or a wildcard (*), and an element
variable var(n). There can be multiple nodes with the same

constant element name in a condition tree, but element and
name variables are unique and are denoted by the $ symbol.

• AND nodes, which are labeled with a boolean expression b
consisting of predicates combined with the boolean
connectives AND, OR and NOT. The predicates consist of
arithmetic and comparison operators and functions that use
element and name variables and constant values as operands
and are understood by the underlying query processor. Each
element and name variable used in b belongs to an element
node that is either an ancestor of the AND node, or a
descendant of the AND node such that the path from the
AND node to the element node does not contain any OR
nodes. The boolean expression may also take the values true
and false.

• OR nodes.

The following constraints apply to condition trees:

1. The root element node of a condition tree is an AND node.

2. OR nodes have AND nodes as children.

3. Element nodes with a wildcard as element name can only
appear as leaf nodes.

Figure 4 shows the TQL query for the example of Figure 3. Note
that conditions are placed on height and width of rectangular
sensors, and two conditions are placed on diameter of cylindrical
sensors. These conditions correspond to the conditions on
Dimensions X and Y on the query form page of Figure 3. Omitted
are the variables not used in the condition or the result tree.

The semantics of condition trees is defined in two steps: OR-
removal and binding generation. The formal definition of both
steps is given in [20]. OR-removal is the process of transforming
a condition tree with OR nodes into a forest of condition trees
without OR nodes, called conjunctive condition trees in the
remainder of the paper. Intuitively, OR-removal is analogous to
turning a logical expression to disjunctive normal form [13]. OR-
removal for the condition tree of Figure 4a produces four
condition trees, two of which are shown in Figure 5. The

sensors
manufacturer

product

sensing_distance

body_type

cylindrical
diameter

AND

specs

PROT1 = “NEMA3”

name

part_number

protection_ratings
protection_rating

$PROD

OR
AND

rectangular

width

height

AND

$DIA <= 20 AND $DIA <= 40

$HEI <= 20 AND $WID <= 40

tr
td

$NAME
td
$PART

“Cylindrical”

$DIA

html

GROUPBY ($PROD, $NAME, $DIST)
SORTBY ($NAME DESC, $DIST)

GROUPBY ($PART)
td
$DIST

td
table
tr
td

td
tr

“Rectangular”

$WID

$HEI

table
tr
td

td

td

tr

$IMG
td

img

* $PART

* $DIST

* $DIA

* $HEI

* $WID

* $PROT1

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

* $NAME

GROUPBY ($CYL)

GROUPBY ($REC)

$REC

$CYL

GROUPBY ($IMG)

$S

image
* $IMG

OR
AND true

AND true

barrel_style
* $BAR

$BAR
td

GROUPBY ($BAR)

body
table

(a) Condition Tree (b) Result Tree

Figure 4. TQL Query Corresponding to Figure 3

semantics of the original condition tree is given in terms of the
semantics of the resulting conjunctive condition trees.

A conjunctive condition tree C produces all variable bindings for
which an input loto t “satisfies” C. For a conjunctive condition
tree with element and name variables $V1,…,$Vk, a binding is
represented as a tuple [$V1:v1,…,$Vk:vk] that binds $Vi to node
vi, where ki ≤≤1 . A binding of some of the variables in a
(conjunctive) condition tree is called a partial binding. A binding
requires total tuple assignment [21], i.e., every variable binds to a
node or a string value.

The semantics of a condition tree is defined as the union of the
bindings returned from each of the conjunctive condition trees in
which it is transformed by OR-removal. For example, the result of
the four conjunctive condition trees that are the result of OR-
removal on the condition tree of Figure 4a on the source loto of
Figure 2 is shown in Table 1. The union of the sets of bindings
does not remove duplicate bindings or bindings that are subsumed
by other bindings (e.g., CCT2 row is subsumed by CCT1 row in
Table 1.) The necessary duplicate elimination is performed during
construction. Notice that the union is heterogeneous, in the sense
that the conjunctive condition trees can contain different element
variables and thus their evaluation produces heterogeneous
binding tuples.

Remark. The semantics of an OR node is that of union and it
cannot be simulated by a disjunctive boolean condition labeling
an AND node. OR nodes therefore are critically necessary for
queries over semistructured data sources (e.g., sources whose
XML Schema makes use of choice elements and optional
elements.)

The condition tree corresponds intuitively to the WHERE part of
XML query languages such as XML-QL [27], LOREL [21] and
XMAS [16], to the extract and match parts of XML-GL [5], and

to the FOR and WHERE clauses of a FLWR expression of the
upcoming XQuery standard [26]. As is described in what follows,
the result tree correspondingly maps to the CONSTRUCT clause of
XML-QL and XMAS, the SELECT clause of LOREL, the clip
and construct parts of XML-GL, and the RETURN clause of a
FLWR expression of XQuery. A result tree specifies how to build
new XML elements using the bindings provided by the condition
tree.

Definition 2 (Result Tree). A result tree of a TQL query q is a
node-labeled tree that consists of:

• Element nodes n having an element name name(n), which is
either a constant (if n is an internal node or a leaf node) or a
variable (if n is a leaf node) that appears in the condition tree
of q.

• A group-by label G and a sort-by label S on each node. A
group-by label G is a (possibly empty) list of variables
[$V1,…,$Vn] from the condition tree of q. A sort-by label S
is also a list of variables from the condition tree of q, where
an ascending or descending order is determined for each
variable. Each variable in the sort-by list of a node must
appear in the group-by list of the same node.

Every occurrence of an element or name variable in an element
node must be in the scope of some group-by list. Similar to logical
quantification, the scope of a group-by list of a node is the subtree
rooted at that node. Figure 4b shows the result tree for the
example of Figure 3. Note that we omit the headers of the HTML
tables from the result tree because of space limitations.

Given a TQL query with condition tree CT and result tree RT, the
answer of the query on given input is constructed from the set of
bindings of CT. The result is a loto constructed by structural
recursion on the result tree. The recursion uses partial bindings of

sensors
manufacturer

product

sensing_distance

body_type
cylindrical
diameter

AND

specs

$PROT1 = “NEMA3” AND
$DIA <= 20 AND $DIA <= 40

name

part_number

protection_ratings

$PROD

* $PART

* $DIST

* $DIA

* $NAME

protection_rating
* $PROT1

$CYL

sensors
manufacturer

product

sensing_distance

body_type
cylindrical
diameter

AND

specs

$PROT1 = “NEMA3” AND
$DIA <= 20 AND $DIA <= 40

name

part_number

protection_ratings

$PROD

* $PART

* $DIST

* $DIA

* $NAME

$CYL

image
* $IMG

barrel_style
* $BAR protection_rating

* $PROT1

barrel_style
* $BAR

CCT1 CCT2

Figure 5. Conjunctive Condition Trees

Table 1 Bindings for Conjunctive Condition Trees of Figure 5

$NAME $PROD $PART $IMG $DIST $BODY $CYL $DIA $BAR $PROT1
Turck product

part_number
“A123”

.

.

.

A123 A123.jpg 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA3 CCT1

$NAME $PROD $PART $DIST $BODY $CYL $DIA $BAR $PROT1
Turck product

part_number
“A123”

.

.

.

A123 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA3 CCT2

$NAME $PROD $PART $DIST $BODY $REC $HEI $WID $PROT1
Turck product

part_number
“B123”

.

.

.

B123 25 rectangular rectangular
height
“10”

.

.

.

10 30 NEMA3 CCT4

the variables to instantiate the group-by variables of element
nodes. The formal semantics of result trees can be found in [20].

Figure 6 shows the resulting loto from the TQL query of Figure 4
and the bindings of Table 1. For each of the two distinct partial
bindings of the triple [$PROD, $NAME, $DIST], one tr element
node is created. For each such binding and tr element, different
subtrees are created, corresponding to the two different bindings.

The QURSED system uses the TQL queries internally, but issues
queries in the XQuery language [26] by translating TQL queries
to equivalent XQuery statements. The algorithm for translating
TQL queries to equivalent XQuery statements is given in [20].
The TQL query generated by a query form page is a member of
the set of queries encoded in the query set specification of the
QFR. The next section describes the syntax and semantics of
query set specifications.

5. QUERY SET SPECIFICATION
Query set specifications are used by QURSED to succinctly
encode in QFRs large numbers of possible queries. In general, the
query set specification can describe a number of queries that is
exponential in the size of the specification.

The developer uses the Editor to visually create a query set
specification, like the one in Figure 4. This section formally
presents the query set specification that is the logical
underpinning of QFRs, including the visual interfaces and
interactions described in Section 6.

Definition 3 (Query Set Specification). A query set specification
QSS is a triple <CTG, RT, F>, where:

• CTG, the condition tree generator, is a condition tree with
two modifications. First, AND nodes ai can be labeled with a
set of boolean expressions B(ai), and second, boolean
expressions can use parameters (a.k.a. placeholders [15]) as
operands of their predicates. Parameters are denoted by the
$# symbol and must have a primitive type [25]. The same
constraints apply to a CTG as to a condition tree.

• RT is a result tree.

• F is a non-empty set of condition fragments. A condition
fragment f is defined as a subtree of the CTG, rooted at the
root node of CTG, where each AND node ai is labeled with
exactly one boolean expression b∈B(ai). Each variable used
in b belongs to a node included in f. F always contains a
special condition fragment fR, called result fragment, that

includes all the element nodes whose variables appear in RT
and all its AND nodes are labeled with the boolean value
true and has no parameters. The result fragment intuitively
guarantees the “safety” of the result tree.

tr

td
Turck

td
A123

“Cylindrical”

17

table

td
11

td
table
tr
td

td
tr

td
img
A123.jpg

tr

td
Turck

td
B123

td
25

td

“Rectangular”

30

10

table
tr
td

td

td

tr

td

Smooth
td

html
body

Figure 6. Resulting loto for Bindings of Table 1

$PROT2

f1

tr

td
$NAME

td
$PART

“Cylindrical”

$DIA

html

GROUPBY ($PROD, $NAME, $DIST)
SORTBY ($NAME DESC, $DIST)

GROUPBY ($PART)
td
$DIST

td
table
tr
td

td
tr

“Rectangular”

$WID

$HEI

table
tr
td

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($CYL)

GROUPBY ($REC)

$DIST <= $#DIST

$DIA <= $#DIMX AND $DIA <= $#DIMY

$HEI <= $#DIMX AND $WID <= $#DIMY

sensors

manufacturer

product

sensing_distance

body_type

cylindrical

diameter

AND

specs

name

part_number

protection_ratings

protection_rating

$PROD

OR

AND

rectangular

width

height

AND

* $PART

* $DIST

* $DIA

* $HEI

* $WID

*

* $NAME

$PROT1 <= $#PROT1

$NAME <= $#NAME

protection_rating
* $PROT1

$CYL

$REC

max
*

min
operating_temp

*

image
* $IMG

OR
AND

AND true

true

$PROT2 <= $#PROT2

barrel_style

* $BAR

$MIN <= $#MIN AND $MAX <= $#MAX

$MIN

$MAX

$BAR
td

GROUPBY ($BAR)

f2 fR

body
table

(a) Condition Tree Generator

(b) Result Tree

Figure 7. Query Set Specification

For example, the query set specification of Figure 7 encodes,
among others, the TQL query of Figure 4. The CTG in Figure 7a
corresponds partially to the set F of condition fragments defined
for the query form page of Figure 3. Three condition fragments
are indicated with different shades of gray: the subtree and the
boolean expression on the root AND node of condition fragment
f1 (dark gray) that applies a condition to the child of the name
element node; the subtree and the boolean expressions of
condition fragment f2 (medium gray) that apply conditions to the
element nodes of the dimensions of cylindrical and rectangular
sensors; and the subtree of the result fragment fR (light gray) that
includes all the element nodes whose variables appear in RT in
Figure 7b.

Given a partial valuation ν over P, where P is a subset of the
parameters appearing in the query set specification, the set of TQL
queries Q encoded by a query set specification QSS consists of:

1. the set of condition trees generated by

a. instantiating each parameter pi that appears in CTG and
is a member of P with the constant value ν(pi).

b. picking a subset S ⊆ F of condition fragments that
includes the result fragment fR and creating the tree CT
that is their union.

c. for each AND node nAND in CT, labeling it with the
conjunction of the boolean expressions that label nAND
in each condition fragment f∈S.

2. the result tree RT.

The condition fragments included in the subset S ⊆ F must have
all their parameters instantiated during Step 1 above. Such
condition fragments are called active fragments. Since the partial
valuation ν does not provide values for all the parameters used in
CTG, some condition fragments will be inactive and cannot
participate in S. During the end-user’s interaction with the query
form page, whenever the end-user fills out all the form controls on
the query form page that correspond to the parameters of a
condition fragment f, then f becomes active, and it is automatically
included in S by the QURSED run-time engine.

Figure 4 shows a TQL query, where the condition tree is
generated from the query set specification of Figure 7 by the
following steps:

• Use the constant values the end-user provides in Figure 3 to
instantiate the corresponding parameters. More specifically,
the partial valuation ν is ν($#PROT1)=“NEMA3”,
ν($#DIMX)=“20” and ν($#DIMY)=“40”.

• Include in S the condition fragment f2, which imposes
conditions on the dimensions of the sensor’s body type, the
condition fragment that imposes a condition on protection
rating (not indicated in Figure 7a), and the result fragment fR.
The condition fragment f1 on manufacturer’s name is
excluded from S, because the parameter $#NAME used in its
boolean expression is not instantiated, as Figure 3 shows.

• Take the union of the condition fragments in S.

• Label the root AND node of Figure 4a with the boolean
expression that imposes a condition on protection rating, and
the other two AND nodes with the boolean expressions that
impose conditions on the sensor’s dimensions.

The result tree of the TQL query of Figure 4 is the same with the
one of the query set specification of Figure 7. How the developer
produces a query set specification via the Editor is described in
Section 6.

6. QURSED EDITOR
This section presents the QURSED Editor, which is the interface
the developer uses to build QFRs. The Editor takes as input an
XML Schema and allows a set of visual actions that result in the
development of a query set specification QSS. These actions are
grouped according to the part of the QSS they build, namely,
condition tree generator and condition fragments, and result tree.
The Editor also takes as input two HTML pages, the query form
page and the template report page. The query form page is used
with actions related to the specification of the condition tree
generator and the condition fragments, while the report page is
used in actions related to the creation of the result tree. A key
benefit of the Editor is that it enables the easy generation of
semistructured queries with OR nodes by considering the
structure of the schema, namely choice elements, and
automatically performing corresponding actions. The following
subsections describe the visual actions and their translation to
corresponding parts of the query set specification, using the QSS
of Figure 7 and the QFR of Figure 3 as an example.

6.1 Building Condition Tree Generators
The developer builds a condition tree generator, like the one in
Figure 7a, by defining a set of condition fragments driven by the
input schema. Figure 8a shows the main window of the Editor,
where the left panel presents the schema in the form of Figure 2,
described in Section 3.1, and the right panel presents the query
form page. The query form page on the right panel is displayed as
an HTML tree that contains a form and a set of form controls, i.e.,
select and input elements nodes that have a unique name
attribute [29]. The HTML tree corresponds to the page shown on
Figure 8b rendered in the Macromedia HomeSite WYSIWYG
HTML editor.

The developer uses the Editor to define the condition fragment f1
of Figure 7a that imposes an equality condition on the
manufacturer’s name, by performing the four actions indicated by
the arrows on Figure 8a:

Action 1 Create Condition Fragment: Click on the “New
Condition Fragment” button and provide a unique ID,
which is manufacturer_name in this case. On the
middle panel, a new row appears in the upper table that
lists the condition fragments defined so far, and the
expression editor opens at the bottom.

Action 2 Build Boolean Expression: In the expression editor,
drag ‘n’ drop the equality predicate that has two,
initially unspecified, operands.

Action 3 Specify Elements as Operands: Set the left operand of
the equality by dragging ‘n’ dropping the * child node
of the name element node from the schema. The path
from the schema root to the dragged element node
appears in the left operand box and is also indicated by
the highlighting of the * node on the left panel.

Action 4 Bind Form Controls to Operands: Bind the right
operand of the equality predicate to an HTML form
control, which will provide the value for the operand at

run-time. Perform the binding by dragging ‘n’
dropping the select element node named
man_name_select from the query form page. The
name of the form control appears in the right operand
box.

The actions of Figure 8a generate the subtree of the condition tree
generator of Figure 7a that is indicated as condition fragment f1
from elements in the source schema. The construction of the CTG
is accomplished by incrementally constructing the subtree
necessary for each condition fragment. In particular, in Action 3,
the selection of a schema element e as an operand to a predicate
has the following effect to the CTG:

• the addition of e to the CTG (if it's not already in CTG.)

• the creation of a name variable for e (again, if one doesn't
already exist.)

• the addition of the path from the schema root to e to the
CTG, ignoring SEQ and OR elements in the schema.

For example, the developer’s action to drag the * child node of
the name element node from the schema and drop it to the left
operand of the equality predicate (Action 3) results in the
construction of the path of the condition tree generator of Figure
7a that leads from the root to the * child node of the name
element node and the generation of the $NAME element variable.
Moreover, Action 4 of Figure 8a binds parameters in the
condition fragment to HTML form controls thus establishing a
query/visual association and creating the visual fragment
corresponding to the condition fragment (cf Section 1.1.) For
example, the visual fragment for the condition fragment f1 of
Figure 7a is the “Manufacturer” form control shown in Figure 8b.
Action 4 also results in a parameter being created and bound to an
HTML form control. In our example, the parameter $#NAME that
appears in the boolean expression of f1 in Figure 7a is generated
and is associated with the man_name_select form control on
the query form page. Note that, even though the visual actions

generate variables and parameters, the developer does not need to
be aware of their existence or semantics.

In the above process, paths from the schema are added to the
condition tree generator during the creation of condition
fragments without repetition. For example, if the developer drags
the * child node of the name element node and drops it to the
predicate of another condition fragment f, only one path will be
created in the CTG, and only one element variable, $NAME, will
be associated with the name element node. Both fragments f and
f1 will use this same path and variable. In general, a path of the
schema is not repeated in the condition tree generator and only
one variable is generated for each element node. There are cases,
though, where the same element node needs to be used multiple
times (as in relational self-joins [17].) To accomplish that, the
Editor provides the developer with an action that expands the
schema [18]. This action can be performed only on a repeatable
element of the schema and results in multiple copies of the
element having the same name appearing on the schema panel of
the Editor. Figure 8a shows two copies of the
protection_rating element created on the schema panel,
and the condition tree generator in Figure 7a illustrates the effect
of the two condition fragments.

Finally, we demonstrate how the Editor introduces OR nodes in
the condition fragments based on the choices of elements that
appear in the schema. On the query form page of Figure 8b, the
end-user has the option to input two dimensions X and Y that
define an envelope for the sensors, without specifying a particular
body type, i.e., selecting the “No preference” option of the “Body
Type” form control. The schema of Figure 2 shows that sensors
can be either cylindrical or rectangular, denoted by the choice
(OR) element that has the cylindrical and rectangular
elements as children. If the sensor is cylindrical, it has a diameter,
and if it is rectangular, it has height and width. The developer
defines the condition fragment and builds the following boolean
expression for it:

Action 1

Action 2

Action 3
Action 4

(b) WYSIWYG HTML Editor(a) QURSED Editor

Figure 8. Building a Condition Fragment

($DIA <= $#DIMX AND $DIA <= $#DIMY) OR ($HEI
<= $#DIMX AND $WID <= $#DIMY)

The Editor detects that the above condition fragment with that
boolean expression will generate unsatisfiable queries, since no
sensor has both diameter and height, and the semantics of
bindings, as explained in Section 4, demand full variable
assignment. The Editor then tries to resolve this problem by
automatically transforming the OR boolean connective of the
above expression to an OR node in the condition fragment, as the
resulting condition fragment f2 in Figure 7a indicates. The OR
node has as parent the body_type element node, and it
intuitively corresponds to the choice element in the schema of
Figure 2. Two AND nodes are also introduced, one for each child
of the body_type element node, having as only child the
cylindrical and rectangular element node respectively.
The AND nodes are labeled with the disjuncts in the initial
boolean expression: ($DIA <= $#DIMX AND $DIA <=
$#DIMY) and ($HEI <= $#DIMX AND $WID <=
$#DIMY). In general, the Editor brings boolean expressions with
disjunction to disjunctive normal form and tries to identify
potential unsatisfiable disjuncts: if two element variables in a
disjunct correspond to schema nodes that are nested under the
same choice element, then the Editor notifies the developer that
the expression is unsatisfiable. Otherwise, the Editor tries to
rewrite the boolean expression and the condition tree generator to
replace the disjunctions with OR nodes in the tree. The checking
and rewriting algorithm is given in [20].

6.2 Building Result Trees
The Editor allows the developer to easily build the result tree
component of a query set specification, The developer only
specifies which element nodes of the schema she wants to present
on the report page. Then, the Editor automatically builds a result
tree that creates report pages presenting the source data in the
form of HTML tables that are nested according to the nesting
present in the source schema. If the developer wants to structure
the report page in a different way than the one the schema
dictates, the Editor provides a second option, where the developer
provides as input a template report page to guide the result tree

generation. The automatic, schema-driven result tree construction
is presented next. Template-driven result tree construction is
described in [20].

6.2.1 Schema-Driven Result Tree Construction
The developer can automatically build a result tree based on the
nesting of the input schema. For example, Figure 9 shows a report
page created from the result tree for the schema and the data set of
Figure 2. The creation of the RT and the template report page is
accomplished by performing the following two actions, indicated
by the numbered arrows on the Editor’s window of Figure 10.

Action 1 Select Element Nodes: The developer uses the check
boxes that appear next to the element nodes of the
schema to select the ones she wants to present on the
report page. On Figure 10, the element nodes name,
part_number, image, sensing_distance,
cylindrical and rectangular are selected.
This action builds the result fragment fR indicated in
the condition tree generator of Figure 11a. The
variables that will be used in the result tree are also
indicated.

Action 2 Build the Template Report Page: The developer clicks
on the “Build Report” button and the Editor
automatically generates the template report page
displayed on the right panel of Figure 10 as a tree of
HTML element nodes. It also automatically generates
the element mappings and the group-by mappings that
appear in the tables of the middle panel. Figure 11c
shows how a WYSIWYG HTML editor renders the
template report page.

Action 1

Action 2

Figure 10. Selecting Elements Nodes and Constructing Template Report Page

Figure 9. Automatically Generated Report Page

With Action 2, the Editor automatically generates the result tree
of Figure 11b that presents the element nodes selected in 6.2.1
using HTML table element nodes that are nested according to
the nesting of the schema. For illustrating purposes, each table
element node in Figure 11b is “annotated” with the schema
element node that it corresponds to. This demonstrates, for
example, that the “product” table is nested in the “manufacturer”
table, as is the case in the schema. The table headers in Figure 11c
are also created, from the tag names of the selected element nodes.
The headers are omitted from Figure 11b for presentation
purposes. In the tables, the Editor places the element variables of
the element nodes selected in 6.2.1 as children of td (table data
cell) element nodes. For example, in the result tree of Figure 11b
the element variable $NAME appears as the child of the td
element node of the “manufacturer” table.

As with the actions of Section 6.1, Action 2 also defines mappings
of element nodes from the schema (called by the Editor source
element nodes) to nodes in the template report page (called target
element nodes). The mappings appear in the “Element Mappings”
table in the middle panel of Figure 10. The target HTML element
nodes are identified by the system by their unique name attribute
and the path from the root of the schema to the element node
identifies the source element nodes. As in the previous section,
the effect of the mapping action is that the path from the root of
the schema to the selected element nodes is copied to the result
fragment of the CTG (if it's not already there via the actions of
Section 6.1), and that an element variable is generated in the
result fragment and added as a leaf to the result tree. The
placement of the $NAME variable in the result tree is indicated in
Figure 10 with the black arrow from the left to the right panel.
The mappings in Figure 10 correspond to the result tree of Figure
11b and the result fragment of the CTG of Figure 11a.

Figure 11a demonstrates the ability of QURSED and TQL to
flexibly deal with structural variance and optional element nodes.
For example, for the optional image element node selected in
6.2.1, the Editor introduces an OR node to the result fragment
with two AND nodes as children, where one of them is labeled
with the boolean value true and has no children. According to the
semantics presented in Section 4, this tree will generate bindings
for the sensors that don’t have an image element node, as in the
case of sensor “B123” in Figure 9. The Editor also handles the
repeatable element nodes and the choice elements (i.e., OR
elements) in the schema by

• automatically generating OR nodes in the result fragment.

• automatically generating corresponding table elements and
group-by lists in the result tree.

For example, in Figure 11b the existence of the manufacturer
element results in the generation the “manufacturer” table
element node and the group-by list of its tr (table row) child
element node. According to the semantics of Section 4, this
group-by list will generate one table row for each binding of the
$MAN element variable. The group-by list of that tr element node
is highlighted in the lower middle panel of Figure 10. Also the
choice of cylindrical or rectangular element in the
schema is translated to

• an OR node in the result fragment in order to generate the
bindings for sensors of either body type.

• the group-by lists on the “cylindrical” and “rectangular”
table element nodes in order to generate the appropriate
table depending on each sensor’s body type. The group-by
lists appear in the “GroupBy Mappings” table in the lower
middle panel of Figure 10.

The complete algorithm for generating the table element nodes
and the group-by lists, including the heuristics employed by the
algorithm, are given in [20].

tr
td
$PART

$DIA

table
GROUPBY ($PROD)

GROUPBY ($PART)

$DIST
td

td

$WID

$HEI

table

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($DIST)

GROUPBY ($CYL)

GROUPBY ($REC)

true

true

sensors
manufacturer

product

sensing_distance

body_type

cylindrical
diameter

AND

specs

name

part_number
$PROD

OR
AND

rectangular

width

height

AND

* $PART

* $DIST

* $DIA

* $HEI

* $WID

* $NAME

$CYL

$REC

image
* $IMG

OR
AND

AND true

true

barrel_style
* $BAR

$BAR GROUPBY ($BAR)

fR

tr
table

GROUPBY ($MAN)
td
$NAME GROUPBY ($NAME)

td

td

tr
table

td

product

manufacturer

cylindrical

rectangular

(a) Condition Tree Generator

(b) Result Tree

(c) Template Report Page

body
html

$MAN

Figure 11. Automatically Generated Result Fragment, Result
Tree and Template Report Page

7. REFERENCES
[1] S. Abiteboul, P. Buneman, D. Suciu: Data on the Web,

Morgan Kaufman, California, 2000.

[2] P. Atzeni, G. Mecca, P. Merialdo: To Weave the Web, in
proceedings of the 23rd International Conference on Very
Large Databases (VLDB), 1997.

[3] P. Bernstein et al.: The Asilomar report on database
research, SIGMOD Record 27(4), 1998.

[4] M. Carey, L. Haas, V. Maganty, J. Williams: PESTO: An
Integrated Query/Browser for Object Databases, in
proceedings of the 22nd International Conference on Very
Large Databases (VLDB), 1996, pp. 203-214.

[5] S. Ceri et al.: XML-GL: a Graphical Language for
Querying and Restructuring XML Documents, in
proceedings of WWW8, 1999.

[6] S. Chawathe, T. Baby, J Yeo: VQBD: Exploring
Semistructured Data (demonstration description), in
proceedings of the ACM SIGMOD International
Conference on Management of Data, page 603, 2001.

[7] S. Cluet et al.: Your Mediators Need Data Conversion!, in
proceedings of the ACM SIGMOD International
Conference on Management of Data, 1998.

[8] S. Cohen et al.: EquiX – Easy Querying in XML
Databases, in proceedings of the ACM Workshop on The
Web and Databases (WebDB), 1999.

[9] M. Fernandez, A. Morishima, D. Suciu: Efficient
Evaluation of XML Middle-ware Queries, in proceedings
of the ACM SIGMOD Conf., 2001.

[10] M. Fernandez, D. Suciu and I. Tatarinov: Declarative
Specification of Data-intensive Web sites, in proceedings
of the Workshop on Domain Specific Languages, 1999.

[11] P. Fraternali: Tools and Approaches for Data Intensive
Web Application Development: a Survey, in the ACM
Computing Surveys 31(3), 1999, pp. 227-263.

[12] P. Fraternali, P. Paolini: Model-Driven Development of
Web Applications: the Autoweb System, in the ACM
Transactions on Office Information Systems 18 (4), 2000.

[13] M.R. Genesereth and N.J. Nillson: Logical Foundations of
Artificial Intelligence, Morgan Kaufmann, 1987.

[14] R. Goldman, J. Widom: Interactive Query and Search in
Semistructured Databases, in proceedings of the ACM
Workshop on The Web and Databases (WebDB), 1998.

[15] A. Levy, A. Rajaraman, J. D. Ullman: Answering Queries
Using Limited External Processors, in Principles of
Database Systems (PODS), 1996, pp. 227-237.

[16] B. Ludascher, Y. Papakonstantinou, P. Velikhov:
Navigation-Driven Evaluation of Virtual Mediated Views,
in Extending Database Technology (EDBT), 2000.

[17] J. Melton, A. R. Simon: Understanding the new SQL: A
Complete Guide, Morgan Kaufmann, 1993.

[18] K. Munroe, Y. Papakonstantinou: BBQ: A Visual Interface
for Browsing and Querying XML, in VDB5, 2000.

[19] M. Petropoulos, V. Vassalos, Y. Papakonstantinou: XML
Query Forms (XQForms): Declarative Specification of
XML Query Interfaces, in proceedings of WWW10, 2001.

[20] Y. Papakonstantinou, M. Petropoulos, V. Vassalos:
QURSED: Querying and Reporting Semistructured Data
(extended version.)
www.db.ucsd.edu/People/michalis/pubs/sig02ext.pdf

[21] D. Quass et al.: Querying Semistructured Heterogeneous
Information, in proceedings of the Fourth International
Conference on Deductive and Object-Oriented Databases
(DOOD), 1995, pp. 319-344.

[22] H. Schöning, J. Wäsch: Tamino - An Internet Database
System, in proceedings of EDBT, 2000, pp. 383-387.

[23] A. Silberschatz, M. Stonebraker, J. D. Ullman: Database
Systems: Achievements and Opportunities - The
"Lagunita" Report of the NSF Invitational Workshop on
the Future of Database System Research held in Palo
Alto, California, February 22-23, 1990, SIGMOD Record
19(4): 6-22, 1990.

[24] M. Zloof: Query By Example, in proceedings of the
National Compute Conference, AFIPS, Vol. 44, 1975, pp.
431-438.

[25] P. V. Biron, A. Malhotra: XML Schema Part 2: Datatypes,
W3C Recommendation 02 May 2001.
http://www.w3.org/TR/xmlschema-2/

[26] D. Chamberlin et al.: XQuery 1.0: An XML Query
Language, W3C Working Draft 07 June 2001.
http://www.w3.org/TR/xquery/

[27] A. Deutsch et al.: XML-QL: A Query Language for XML,
W3C note, 1998.
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

[28] D. C. Fallside: XML Schema Part 0: Primer, W3C
Recommendation 02 May 2001.
http://www.w3.org/TR/xmlschema-0/

[29] D. Raggett, A. Le Hors, I. Jacobs: HTML 4.01
Specification, W3C Recommendation 24 December 1999,
http://www.w3.org/TR/html.

[30] H. Garcia Molina et al.: The TSIMMIS approach to
mediation: Data models and Languages, in the Journal of
Intelligent Information Systems 8(2),1997, pp. 117-132.

[31] J. Shanmugasundaram et al.: Efficiently Publishing
Relational Data as XML Documents, in proceedings of the
26th International Conference on Very Large Databases
(VLDB), 2000.

