Lecture 12

CSE 331

Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Algorithm motivation

Breadth First Search (BFS)

BFS via examples

In which we derive the breadth first search (BFS) algorithm via a sequence of examples.

Expected background

These notes assume that you are familiar with the following:

- · Graphs and their representation. In particular,
 - o Notion of connectivity of nodes and connected components of graphs
 - o Adjacency list representation of graphs
 - Notation:
 - G = (V, E)
 - \blacksquare n = |V| and m = |E|
 - CC(s) denotes the connected component of s
- · Trees and their basic properties

The problem

In these notes we will solve the following problem:

Breadth First Search (BFS)

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume $L_0,...,L_i$ have been constructed

 L_{i+1} set of vertices not chosen yet but are connected to L_i

Stop when new layer is empty

BFS Tree

BFS naturally defines a tree rooted at s

L_i forms the jth "level" in the tree u in L_{j+1} is child of v in L_{j} from which it was "discovered" 3

Argue on the board...

Connectivity Problem

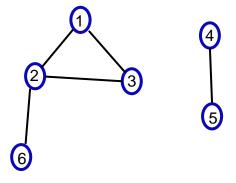
Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Connected component of s: CC(s)

Connected Components

Set of all vertices connected to vertex s is called its connected component cc(s).



$$cc(2) = \{1, 2, 3, 6\}$$

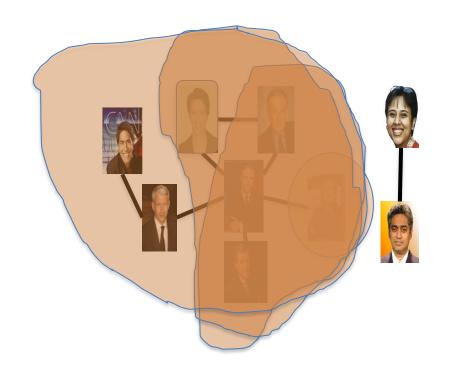
$$cc(5) = \{4, 5\}$$

Two facts about BFS trees

All non-tree edges are in the same or consecutive layer

If u is in L_i then dist(s,u) = i

Computing Connected Component



Explore(s)

Start with $R = \{s\}$

While exists (u,w) edge w not in R and u in R

Add w to R

Output $R^* = R$

Argue correctness on the board...