
Lecture 14
CSE 331

Graph representations

Adjacency matrix

0

1

1

1

0

0

1

0

0

Adjacency List

(u,v) in E?O(1) O(n) [O(nv)]

All neighbors of u?O(n) O(nu)

Space?O(n2) O(m+n)

Better for
sparse graphs
and traversals

2m = Σ u in V nu

Use CC[v] array

Lj+1 set of vertices not chosen yet but are connected to Lj

Use linked lists

Breadth First Search (BFS)

Build layers of vertices connected to s

L0 = {s}

Assume L0,..,Lj have been constructed

Stop when new layer is empty

O(m+n) BFS Implementation
BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0

Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to Li+1

i++

return cc

O(m+n) BFS Implementation

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0

Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to Li+1

i++

Array

Linked List

Input graph as
Adjacency list

Version in KT
also

computes a
BFS tree

return cc

All the layers as one
BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0

Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to Li+1

i++

All layers are
considered in first-
in-first-out order

Can combine all layers
into one queue: all the
children of a node are

added to the end of the
queue

return cc

An illustration

1

2 3

4 5

6

7

8

1 2 3 4 5 7 8 6

Queue O(m+n) implementation

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Intitialize Q= {s}

While Q is not empty

Delete the front element u in Q

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to the back of Q

O(n)

O(1)

O(1)

Repeated nu times

O(nu)

Repeated at most
once for each

vertex u

Σu O(nu) =
O(Σu nu) =

O(m)
O(1)

Implementing DFS in O(m+n) time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

1

2 3

4 5

6

7

8

1

2

4

5

6

3

8

7

3

5

3

7

DFS stack implementation

DFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Intitialize Ŝ = {s}

While Ŝ is not empty

Pop the top element u in Ŝ

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Push w to the top of Ŝ

Same
O(m+n) run

time analysis
as for BFS

Reading Assignment

Sec 3.3, 3.4, 3.5 and 3.6 of [KT]

	Slide 1: Lecture 14
	Slide 2: Graph representations
	Slide 3:
	Slide 4: Breadth First Search (BFS)
	Slide 5: O(m+n) BFS Implementation
	Slide 6: O(m+n) BFS Implementation
	Slide 7: All the layers as one
	Slide 8: An illustration
	Slide 9: Queue O(m+n) implementation
	Slide 10: Implementing DFS in O(m+n) time
	Slide 11: A DFS run using an explicit stack
	Slide 12: DFS stack implementation
	Slide 13: Reading Assignment

