
Lecture 16

CSE 331

Quiz 1 this FRIDAY

Project groups finalized

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for 1≤ i ≤ n

Output: A schedule S of the n intervals

No two intervals in S conflict

|S| is maximized

Example 3

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Greedily solve your blues!

Project

331 HWExam study

Party!

Write up a term paper

Arrange tasks in some order and iteratively pick non-
overlapping tasks

Saturday Sunday Monday Tuesday Wednesday

Making it more formal

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Associate a
value v(i)

with task i
Choose i in R that minimizes v(i)

What is a good choice for v(i)?

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Associate a
value v(i)

with task i
Choose i in R that minimizes v(i)

v(i) = f(i) – s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Smallest duration first

Choose i in R that minimizes f(i) – s(i)

v(i) = s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Earliest time first?

Choose i in R that minimizes s(i)

So are we
done?

Not so fast….

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Earliest time first?

Choose i in R that minimizes s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Pick job with minimum conflicts

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

So are we
done?

Nope (but harder to show)

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that minimizes v(i)

Algorithm?

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that minimizes f(i)

Earliest finish time first

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that minimizes f(i)

Find a counter-example?

It
works!

Final Algorithm

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R with the earliest finish time

Add i to S

Remove all requests that conflict with i from R

Return S*= S

Argue correctness

Observation: A valid schedule sorted by start/finish time gives
the same order.

Assume that input intervals are sorted (in increasing order) by
finish time
==> f(1) f(2) f(3) … f(n).

(If the input is not sorted, sort it in O(nlogn) time.)

Task 3 Task 4 Task 5

Greedy Algorithm

0. R [n]
1. S Φ
2. while R ≠ Φ

(2.1) let i be the smallest index in R
(2.2) add i to S
(2.3) remove i from R
(2.4) delete all j R that conflict with i

3. Return S* S

Greedy Algorithm
0. R [n]
1. S Φ
2. while R ≠ Φ

(2.1) let i be the smallest index in R
(2.2) add i to S
(2.3) remove i from R
(2.4) delete all j R that conflict with i

3. Return S* S

Theorem: S* is an optimal solution.

(that is, ∀ inputs, among all possible valid schedules for the input, S* has the
maximum number of intervals.)

Ex 1: Algorithm terminates.
Ex. 2: S* is a valid schedule.

Proof of correctness of Greedy algorithm:
1. Greedy stays ahead
2. Exchange argument (minimize max. lateness, sec. 4.2 of KT)

Greedy “stays ahead”

Greedy

OPT

Argue correctness on the board…

	Slide 1: Lecture 16
	Slide 2: Quiz 1 this FRIDAY
	Slide 3: Project groups finalized
	Slide 4: Interval Scheduling Problem
	Slide 5: Example 3
	Slide 6: Greedily solve your blues!
	Slide 7: Making it more formal
	Slide 8: What is a good choice for v(i)?
	Slide 9: v(i) = f(i) – s(i)
	Slide 10: v(i) = s(i)
	Slide 11: Not so fast….
	Slide 12: Pick job with minimum conflicts
	Slide 13: Nope (but harder to show)
	Slide 14
	Slide 15: Algorithm?
	Slide 16: Earliest finish time first
	Slide 17: Find a counter-example?
	Slide 18: Final Algorithm
	Slide 19: Argue correctness
	Slide 20: Greedy Algorithm
	Slide 21: Greedy Algorithm
	Slide 22: Greedy “stays ahead”
	Slide 23: Argue correctness on the board…

