
Lecture 19

CSE 331



Shortest Path problem

Input: Directed graph G=(V,E)

Edge lengths, le for e in E

“start” vertex s in V

Output: Length of  shortest paths from s to all nodes in V
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Towards Dijkstra’s algo: part one

Determine d(t) one by one

s

u x y
d(s) = 0



Towards Dijkstra’s algo: part two

Determine d(t) one by one
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Let u be a neighbor of s with smallest l(s,u)
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Towards Dijkstra’s algo: part three

Determine d(t) one by one

s

u x y

Assume we know d(v) for every v in R

Compute an upper bound d’(w) for every w not in R

wd(u) + l(u,w)d(w)

d(w)           d(x) + l(x,w)

d(w)           d(y) + l(y,w)

d’(w) = min e=(u,w) in E, u in R d(u)+le



Dijkstra’s shortest path algorithm

Input: Directed G=(V,E), le ≥ 0, s in V

R = {s}, d(s) =0

While there is a x not in R with (u,x) in E, u in R

d’(w) = min e=(u,w) in E, u in R d(u)+le

Pick w that minimizes d’(w)

Add w to R
d(w) = d’(w)
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