Lecture 21 CSE 331

Minimum Spanning Tree Problem

Input: Undirected, connected G = (V, E), edge costs c_e

Output: Subset $E' \subseteq E$), s.t. T = (V, E') is connected C(T) is minimized

If all $c_e > 0$, then T is indeed a tree

Rest of today's agenda

Greedy algorithm(s) for MST problem

Kruskal's Algorithm

Input: G=(V,E), $c_e > 0$ for every e in E

 $T = \emptyset$

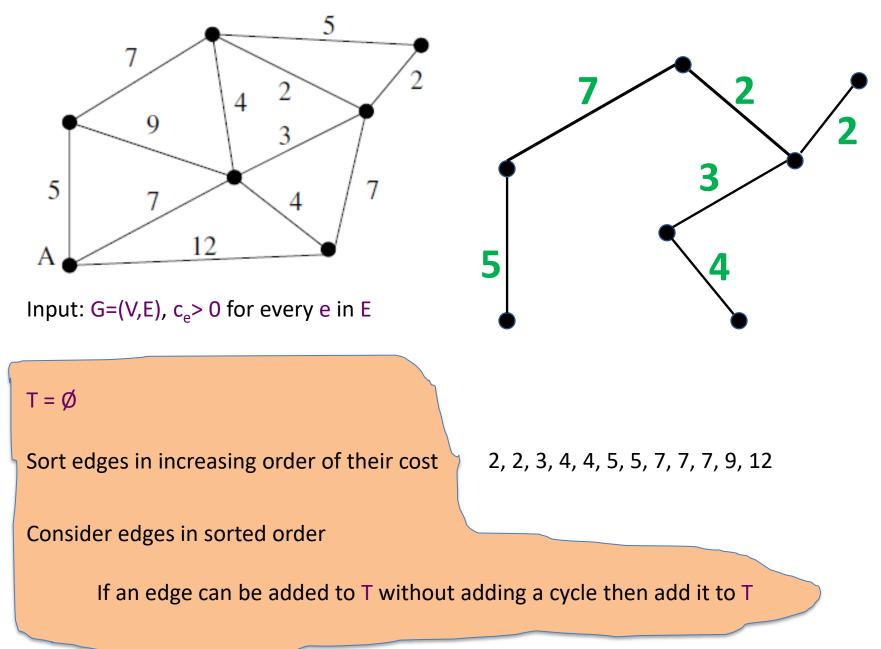
Sort edges in increasing order of their cost

Consider edges in sorted order

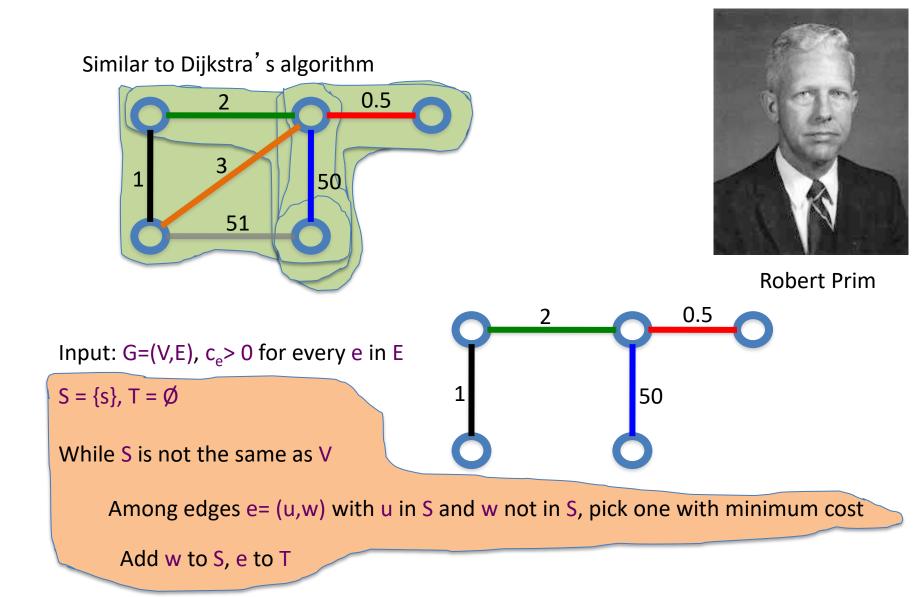
Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

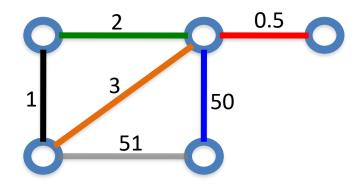
Kruskal's Algorithm



Prim's algorithm



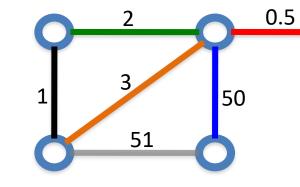
Reverse-Delete Algorithm



Input: G=(V,E), $c_e > 0$ for every e in E

T = E

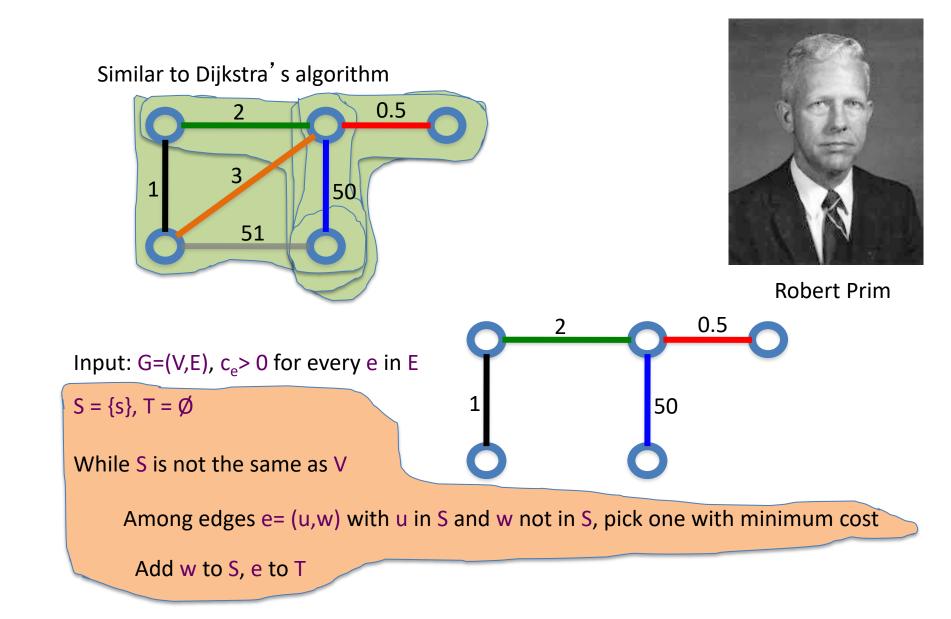
Sort edges in decreasing order of their cost



Consider edges in sorted order

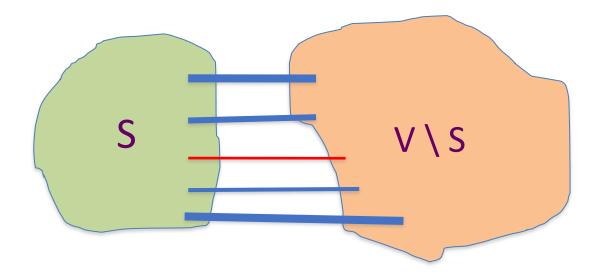
If an edge can be removed T without disconnecting T then remove it

Prim's algorithm



Cut Property Lemma for MSTs

Condition: S and V\S are non-empty



Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Agenda

Optimality of Prim's algorithm

Prove Cut Property Lemma

Optimality of Kruskal's algorithm

Remove distinct edge weights assumption

On to the board...