
Lecture 25
CSE 331

Rankings

How close are two rankings?

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

Rankings

Input: A ranking a1, …, ai, aj, …an. (i.e., a permutation of 1, 2, …, n)

Implicit assumption: 1, 2, …, n is the “true” ranking (i.e., you compare other rankings to this
ranking).

Output: The number of inversions.

Inversion: (i, j) is an inversion if
1. i < j AND 2. ai > aj

Problem Formulation

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

Rankings

Example 1:

User 2: how many inversions?
Answer: every pair is an inversion.

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

Rankings

Example 1:

User 2: how many inversions?
Answer: every pair is an inversion.

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

Rankings

Example 1:

User 2: how many inversions?
Answer: every pair is an inversion.

Number of inversions = 3
2

= 3, inversions = {(1, 2), (1, 3), (2, 3)}.

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

Rankings

Example 1:

User 2: how many inversions?
Answer: every pair is an inversion.

Number of inversions = 3
2

= 3, inversions = {(1, 2), (1, 3), (2, 3)}.

User 1: How many inversions?

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

Rankings

Example 1:

User 2: how many inversions?
Answer: every pair is an inversion.

Number of inversions = 3
2

= 3, inversions = {(1, 2), (1, 3), (2, 3)}.

User 1: How many inversions?
Answer: one inversion: (2, 3).

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

(A Very Simple) Collaborative Filtering Example

Each user: a ranking of movies/shows on Netflix.

Assumption: Each user ranks all movies/shows on
Netflix.

Hypothesis: A user is close to another user if their
rankings are close.

Rankings

Example 2:
A = (1, 2, …, n).
How many inversions?
If a1, …, ai, aj, …an are sorted, then no inversions.

0

Example 3:
A = (n, …, 1).
How many inversions?

𝑛

2

0 # inversions 𝑛
2

User 1 User 2 User 3

1 3 1

2 2 3

3 1 2

1. Movie-X 2. Movie-Y 3. Movie-Z

Solve a harder problem

Input: a1, .., an

Output: LIST of all inversions

for i in 1 to n-1

for j in i+1 to n

If ai > aj

add (i,j) to L

return L

Optimal for
the listing
problem

Example 1: All inversions-- (2i-1,2i)

2 1 3 4 6 5 7 8

Q1: Solve listing problem in O(n) time?

Q2: Recursive divide and conquer algorithm to count the number of inversions?

Only check (i,i+1) pairs

CountInv (a,n)

if n = 1 return 0

if n = 2 return a1 > a2

aL = a1 , .., a[n/2]

aR = a[n/2]+1 , .., an

return CountInv(aL, [n/2]) + CountInv(aR, n- [n/2])

Can be horribly wrong in general
CountInv (a,n)

if n = 1 return 0

if n = 2 return a1 > a2

aL = a1 , .., a[n/2]

aR = a[n/2]+1 , .., an

return CountInv(aL, [n/2]) + CountInv(aR, n- [n/2])

5 6 1 2 All 4 “crossing” pairs
are inversions

Bad case: “crossing inversions”
CountInv (a,n)

if n = 1 return 0

if n = 2 return a1 > a2

aL = a1 , .., a[n/2]

aR = a[n/2]+1 , .., an

return CountInv(aL, [n/2]) + CountInv(aR, n- [n/2])

aL aR

Are aL

and aR

sorted?

Yes!

Example 2: Solving the bad case

5 6 …..

aL
aR

1

aL is sorted

First element is aL is larger than first/only element in aR

O(1) algorithm to count number of inversions?

return size of aL

Example 3: Solving the bad case

5 6 …..

aL
aR

1

aR is sorted

First/only element is aL is smaller than first element in aR

O(1) algorithm to count number of inversions?

return 0

Solving the bad case

aL aR

First element of aL is larger than first element of aR

First element of aL is smaller than first element of aR

5 6 …..

aL
aR

1

5 6 …..

aL
aR

1

Try to
modify

the
MERGE

algorithm

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Solve all sub-problems: Mergesort

Solve stronger sub-problems: Inversions

MergeSortCount algorithm
Input: a1, a2, …, an Output: Numbers in sorted order+ #inversion

MergeSortCount(a, n)

If n = 2 return (a1 > a2, min(a1,a2); max(a1,a2))

aL = a1,…, an/2 aR = an/2+1,…, an

return (c+cL+cR,a)

(cL, aL) = MergeSortCount(aL, n/2)

(cR, aR) = MergeSortCount(aR, n/2)

(c, a) = MERGE-COUNT(aL,aR) Counts #crossing-inversions+
MERGE

If n = 1 return (0 , a1)

	Slide 1: Lecture 25
	Slide 2: Rankings
	Slide 3: How close are two rankings?
	Slide 4: (A Very Simple) Collaborative Filtering Example
	Slide 5: (A Very Simple) Collaborative Filtering Example
	Slide 6: (A Very Simple) Collaborative Filtering Example
	Slide 7: (A Very Simple) Collaborative Filtering Example
	Slide 8: (A Very Simple) Collaborative Filtering Example
	Slide 9: (A Very Simple) Collaborative Filtering Example
	Slide 10: (A Very Simple) Collaborative Filtering Example
	Slide 11: Solve a harder problem
	Slide 12: Example 1: All inversions-- (2i-1,2i)
	Slide 13: Can be horribly wrong in general
	Slide 14: Bad case: “crossing inversions”
	Slide 15: Example 2: Solving the bad case
	Slide 16: Example 3: Solving the bad case
	Slide 17: Solving the bad case
	Slide 18: Divide and Conquer
	Slide 19: MergeSortCount algorithm

