Lecture 28
CSE 331

Dividing up P

First n/2 points according to the x-coord

Recursively find closest pairs

6 = min (blue, green)

An aside: maintain sorted lists

P,and P are P sorted by x-coord and y-coord

Q,, Q, R,, R, can be computed from P, and P, in O(n) time

An easy case

All “crossing” pairs have distance > &

6 = min (blue, green)

Life is not so easy though

6 = min (blue, green)

Euclid to the rescue (?)

X=r==
X

The distance is larger than the x or y-coord difference

Life is not so easy though

6 = min (blue, green)

All we have to do now

S

6 = min (blue, green)

Figure if a pair in S has distance < 6

The algorithm so far...

O(n log n) + T(n)
Input: n 2-D points P = {p,,...,p,.}; pi=(x,V:)

Sort PtogetP, and P,

Closest-Pair (P,, P,) O(n log n) T(<4)=c

T(n) = 2T(n/2) + cn

If n < 4 then find closest point by brute-force
Q is first half of P, and R is the rest

Compute Q,, Q, R, and R,

Yy X

(do,q,) = Closest-Pair (Q,, Q) O(n log n) overall

(ro,ry) = Closest-Pair (R,, R))

6 = min (d(qy,9,), d(re,r))_J
S = points (x,y) in P s.t. [x—x*| <& m

. N
e ————

Rest of today’s agenda

Implement Closest-in-box in O(n) time

	Slide 1: Lecture 28
	Slide 2: Dividing up P
	Slide 3: Recursively find closest pairs
	Slide 4: An aside: maintain sorted lists
	Slide 5: An easy case
	Slide 6: Life is not so easy though
	Slide 7: Euclid to the rescue (?)
	Slide 8: Life is not so easy though
	Slide 9: All we have to do now
	Slide 10: The algorithm so far…
	Slide 11: Rest of today’s agenda

