Lecture 31

CSE 331



Weighted Interval Scheduling

Input: n jobs (s,f,v)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max 2;;, sV,

Assume: jobs are sorted by their finish time



Couple more definitions

p(j) = largesti<js.t. i does not conflict with j

e
=0 if no such i exists

OPT(j) = optimal value on instance 1,..,j

Note:

1. p(1), ..., p(n) can be computed in O(n log n) time. [Ex]

2. Any algo to computer p(1), ..., p(n) needs to make Q(n log n ) comparisons. [Ex]



Property of OPT

P

OPT(j) = max{vj:rOPT( p(j) ), OPT(j-1) }

Given -
how can one figure out if

in optimal solution or not?




A recursive algorithm

Proof of
correctness by

Correct for j=0

Compute-Opt(j) induction on

= OPT( p(j)) = OPT(j-1)

(OPT(j) = max {v;+OPT(p(j) ), OPT(j-1) }




Exponential Running Time
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Only 5 OPT
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Using Memory to be smarter

Using more space can reduce runtime!



How many distinct OPT values?



A recursive algorithm

M-Compute-
Opt( ) = OPT( )
M-Compute-Opt(j)

Run time = O(# recursive calls)




Bounding # recursions

M-Compute-Opt(j)

overall

Whenever a recursive call is
made an  value is assigned

At most valuesof can be assigned




Property of OPT

OPT(j) = max{v;+ OPT(p(j)), OPT(j-1) }

Given

one can compute




Recursion+ memory = |teration

lteratively compute the OPT(j) values

lterative-Compute-Opt




Algo run on the board...



Reading Assignment

Sec 6.1, 6.2 of [KT]



When to use Dynamic Programming

There are polynomially many sub-problems

OPT(1), ..., OPT(n)

Optimal solution can be computed from solutions to sub-problems  Richard Bellman

OPT(j) = max{ v; + OPT( p(j) ), OPT(j-1) }

There is an ordering among sub-problem that allows for iterative solution

OPT (j) only depends on OPT(j-1), ..., OPT(1)



Scheduling to min idle cycles

n jobs, it" job takes w, cycles

il il

_ Wi
You have W cycles on the cloud S amazon

What is the maximum number of cycles you can schedule?



Subset sum problem

Input: n integers wy, W, ..., W,
bound W
Output: subset S of [n] such that

(1) sum of w; for all i in S is at most W

(2) w(S) Is maximized
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