Lecture 31

CSE 331

Weighted Interval Scheduling

Input: n jobs (s,f,v)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max 2;;, sV,

Assume: jobs are sorted by their finish time

Couple more definitions

p(j) = largesti<js.t. i does not conflict with j

e
=0 if no such i exists

OPT(j) = optimal value on instance 1,..,j

Note:

1. p(1), ..., p(n) can be computed in O(n log n) time. [Ex]

2. Any algo to computer p(1), ..., p(n) needs to make Q(n log n) comparisons. [Ex]

Property of OPT

P

OPT(j) = max{vj:rOPT(p(j)), OPT(j-1) }

Given -
how can one figure out if

in optimal solution or not?

A recursive algorithm

Proof of
correctness by

Correct for j=0

Compute-Opt(j) induction on

= OPT(p(j)) = OPT(j-1)

(OPT(j) = max {v;+OPT(p(j)), OPT(j-1) }

Exponential Running Time

L
I

Only 5 OPT

. values!

PN
OPT(3)
Formal

proof: Ex.

OPT(1)

OPT(1)

OPT(1)

Using Memory to be smarter

Using more space can reduce runtime!

How many distinct OPT values?

A recursive algorithm

M-Compute-
Opt() = OPT()
M-Compute-Opt(j)

Run time = O(# recursive calls)

Bounding # recursions

M-Compute-Opt(j)

overall

Whenever a recursive call is
made an value is assigned

At most valuesof can be assigned

Property of OPT

OPT(j) = max{v;+ OPT(p(j)), OPT(j-1) }

Given

one can compute

Recursion+ memory = |teration

lteratively compute the OPT(j) values

lterative-Compute-Opt

Algo run on the board...

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

OPT(1), ..., OPT(n)

Optimal solution can be computed from solutions to sub-problems Richard Bellman

OPT(j) = max{ v; + OPT(p(j)), OPT(j-1) }

There is an ordering among sub-problem that allows for iterative solution

OPT (j) only depends on OPT(j-1), ..., OPT(1)

Scheduling to min idle cycles

n jobs, it" job takes w, cycles

il il

_ Wi
You have W cycles on the cloud S amazon

What is the maximum number of cycles you can schedule?

Subset sum problem

Input: n integers wy, W, ..., W,
bound W
Output: subset S of [n] such that

(1) sum of w; for all i in S is at most W

(2) w(S) Is maximized

	Slide 1: Lecture 31
	Slide 2: Weighted Interval Scheduling
	Slide 3: Couple more definitions
	Slide 4: Property of OPT
	Slide 5: A recursive algorithm
	Slide 6: Exponential Running Time
	Slide 7: Using Memory to be smarter
	Slide 8: How many distinct OPT values?
	Slide 9: A recursive algorithm
	Slide 10: Bounding # recursions
	Slide 11: Property of OPT
	Slide 12: Recursion+ memory = Iteration
	Slide 13: Algo run on the board…
	Slide 14: Reading Assignment
	Slide 15: When to use Dynamic Programming
	Slide 16: Scheduling to min idle cycles
	Slide 17: Subset sum problem

