Lecture 31

CSE 331

Weighted Interval Scheduling

Input: n jobs (s_i, f_i, v_i)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: $\max \Sigma_{i \text{ in S}} V_j$

Assume: jobs are sorted by their finish time

Couple more definitions

```
p(j) = largest i < j s.t. i does not conflict with j
= 0 if no such i exists</pre>
```

OPT(j) = optimal value on instance 1,...,j

Note:

- 1. p(1), ..., p(n) can be computed in O(n log n) time. [Ex]
- 2. Any algo to computer p(1), ..., p(n) needs to make $\Omega(n \log n)$ comparisons. [Ex]

Property of OPT

A recursive algorithm

```
Proof of
                                             correctness by
                    Correct for j=0
Compute-Opt(j)
                                             induction on
If j = 0 then return 0
return max { v<sub>i</sub> + Compute-Opt(p(j)), Compute-Opt(j-1) }
              = OPT(p(j))
                                           = OPT(j-1)
   OPT(j) = max \{ v_i + OPT(p(j)), OPT(j-1) \}
```

Exponential Running Time

Using Memory to be smarter

Using more space can reduce runtime!

How many distinct OPT values?

A recursive algorithm

M-Compute-Opt(\mathbf{j}) = OPT(\mathbf{j})

M-Compute-Opt(j)

```
If j = 0 then return 0

If M[j] is not null then return M[j]

M[j] = \max \{ v_j + M\text{-Compute-Opt(}p(j) ), M\text{-Compute-Opt(}j\text{-}1 ) \}

return M[j]
```

Run time = O(# recursive calls)

Bounding # recursions

```
M-Compute-Opt(j)

If j = 0 then return 0

If M[j] is not null then return M[j]

M[j] = max { v<sub>j</sub> + M-Compute-Opt( p(j) ), M-Compute-Opt( j-1 ) }

return M[j]
```

Whenever a recursive call is made an M value is assigned

At most n values of M can be assigned

Property of OPT

Recursion+ memory = Iteration

Iteratively compute the OPT(j) values

Iterative-Compute-Opt

```
M[0] = 0
For j=1,...,n
M[j] = max \{ v_j + M[p(j)], M[j-1] \}
O(n) run time
```

Algo run on the board...

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Optimal solution can be computed from solutions to sub-problems

OPT(j) = max
$$\{v_j + OPT(p(j)), OPT(j-1)\}$$

There is an ordering among sub-problem that allows for iterative solution

OPT (j) only depends on OPT(j-1), ..., OPT(1)

Richard Bellman

Scheduling to min idle cycles

n jobs, ith job takes w_i cycles

You have W cycles on the cloud

What is the maximum number of cycles you can schedule?

Subset sum problem

Input: n integers $w_1, w_2, ..., w_n$

bound W

Output: subset S of [n] such that

(1) sum of w_i for all i in S is at most W

(2) w(S) is maximized