Lecture 32
CSE 331



Subset sum problem

Input: n integers wy, W, ..., W,
bound W
Output: subset S of [n] such that

(1) sum of w; for all i in S is at most W

(2) w(S) Is maximized



Recursive formula

OPT(j, B) = max value out of w,,..,w;, with bound B

I1‘Wj > B
OPT(j, B) = OPT(-1, B)

else

OPT(j, B) =max{OPT(-1, B), w; + OPT(]-1,B-w)) }



Algo run on the board...



Recursive formula

OPT(j, B) = max value out of w,,..,w;, with bound B

Can compute final
| w; > B S with recursion/

backtracking
OPT(j, B) = OPT(j-1, B)

OPT(j, B) =max{OPT(-1, B), w; + OPT(]-1,B-w)) }




Knapsack problem

Input: N Wﬂﬁ'gE(W1WIL’)W2, - -(WNWH)!
bound W
Output: subset S of [n] such that

(1) sum of w; for all i in S is at most W

(2) W(S)iks mresiimize



Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c, (can be <0)

tinV
Output: Shortest path from every sto t

Assume that
has no negative

Shortest path has cycle
cost negative
infinity

-1000



When to use Dynamic Programming

There are polynomially many sub-problems

Optimal solution can be computed from solutions to sub-problems

Richard Bellman

There is an ordering among sub-problem that allows for iterative solution



	Slide 1: Lecture 32
	Slide 2: Subset sum problem
	Slide 3: Recursive formula
	Slide 4: Algo run on the board…
	Slide 5: Recursive formula
	Slide 6: Knapsack problem
	Slide 7: Shortest Path Problem
	Slide 8: When to use Dynamic Programming

