Lecture 35

CSE 331

Week 14
Mon, May 1

Wed, May 3
Fri, May 5
Week 15
Mon, May 8
Wed, May 10

Fri, May 12

Mon, May 15

Wed, May 17

Last two weeks will be rough...

The P vs. NP problem 3% 3™ I3°?' °%°

More on reductions 3% 3™ 3°?' °%

The SAT problem (3™ 7' 3°?' 3°%°

NP-Completeness 3™’ 3™ D°' °°

k-coloring problem 3™ 7' °?' °%°

k-coloring is NP-complete 3" 3™ °%' 3°%°

Final Exam

[KT, Sec 8.1]

[KT, Sec 8.2]

[KT, Sec. 8.3, 8.4] (HW 8 out)
(Project (Problem 3 cCoding) In)

[KT, Sec 8.7] (Quiz 2)
(Project (Problem 3 [ty in)

[KT, Sec 8.7]

(HW 8 in)
(Project (Problems 4 & 5 Coding) in)

(Project (Problems 4 & 5 [{Bitaastag) in)

(Project Survey in)

(11:45am-2:45pm)

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c, (can be <0)
tinV

Output: Shortest path from every sto t

Assume that
has no negative

Shortest path has cycle
cost negative
infinity

-1000

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges

OPT(u,i) = min { OPT(u,i-1), min, 1 e { €, + OPT(w, i-1)} }

Some consequences

OPT(u,i) = cost of shortest path from u to t with at most i edges

OPT(u,i) = min { OPT(u, i-1), mMing,) in -{ Cow T OPT(w,i-1)} }

is shortest path cost between and

Can compute the shortest path

between and given all
values

Bellman-Ford Algorithm

Runs in O(n(m+n)) time

Only needs O(n) additional space

Reading Assignment

Sec 6.8 of [KT]

Longest path problem

Given G, does there exist a simple path of length n-1 ?

Longest vs Shortest Paths

Two sides of the “same” coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length n-17?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

"“"“:..; Clay Mathematics Institute
| "Ti_,_ | *J Dedicated to increasing and disseminating mathematical knowledge

HOME ABDUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

b Birch and Swinnerton-Dyer

First Clay Mathematics Institute Millennium Prize Coniecture
Announced * Hodge Conjecture

F Navier-Stokes Equations

Prize for Resolution of the Poincaré Conjecture
Awarded to Dr. Grigoriy Perelman 1E|:tm_e

b Riemann Hypothesis

I R T I | DA I

March 18, 2010. The Clay Mathematics Institute (CMI) announces today that Dr.

P vs NP question

ABOUT PROGRAMS PEOPLE MILLENNIUM PROBLEMS PUBLICATIONS EVENTS NEWS

Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the solution to the quantum versions of the Yang-Mills equations. But

no proof of this property is known.

Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the

average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part 1/2.

[P vs NP Problem |

If it is easy to check that a solution to a problem is correct, is it also easy to solve the problem? This is the essence of the P vs NP question. Typical of

the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, how can one do this without visiting a city twice? If you give me a

solution, | can easily check that it is correct. But | cannot so easily find a solution.

P vs NP question

P. problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Alternate NP definition: Guess witness and verify!

Proving P # NP

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known
proof techniques

provably will not work

Proving P = NP

Will make cryptography collapse
N

Compute the

encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

Solving any ONE
problem in here in
poly time will prove

NP-complete
P=NP! problems

A book on P vs. NP

P, NP
pr .~ # _AND THE SEARCH
"« - FORTHE
=° 7% IMPOSSIBLE

he course so far...

https://www.teepublic.com/sticker/1100935-0obama-yes-we-can

The rest of the course...

Under certain assumptions,

https://www.madduckposters.com/products/megamind-no-you-cant?variant=13565168320556

No, you can’t—what does it mean?

NO algorithm will be able to solve a problem in polynomial time

Still for worst-case

runtime

No, you can’t take- 1

Adversarial Lower Bounds

Some notes on proving £2 lower bound on runtime of all algorithms that solve a given problem.

The setup

We have seen earlier how we can argue an £2 lower bound on the run time of a specific algorithm. In this page, we will aim higher

The main aim

Given a problem, prove an €2 lower bound on the runtime on any (correct) algorithm that solves the problem.

What is the best lower bound you can prove?

No, you can’t take- 2

Lower bounds based on output size

Lower Bound based on Output Size

Any algorithm that for inputs of size N has a worst-case output size of f(IN) needs to have a runtime of Q(f(/N)) (since it has to output all the f(N) elements of the output in
the worst-case).

Question 2 (Listing Triangles) [25 points]

The Problem

A triangle inagraph G = (V, E) is a 3-cycle; i.e. a set of three vertices {u, v, w} such that (i, v), (v, w), (4, w) € E. (Note that G is undirected.) In this problem you will
design a series of algorithms that given a connected graph G as input, lists all the triangles in G. (It is fine to list one triangle more than once.) We call this the triangle
listing problem (duh!). You can assume that as input you are given G in both the adjacency matrix and adjacency list format. For this problem you can also assume that G
is connected.

2. Present an O(mm) algorithm to solve the triangle listing problem.

Exists graphs with

m3/2 triangles

No, you can’t take- 2

Lower bounds based on output size

On input n, output 2" many ones

Every algo takes (doubly) exponential time

But at heart
problem is “trivial”

From now on, output size is always O(N) and could even be
binary.

No, you can’t take -3

Argue that a given problem is AS HARD AS

a “known” hard problem

How can we argue
something like this?

So far: “Yes, we can” reductions

https://www.teepublic.com/sticker/1100935-0obama-yes-we-can

Reduce Y to X where X is “easy”

Reduction

Reduction are to algorithms what using libraries are to programming. You might not have seen reduction formally
before but it is an important toal that you will need in CSE 331.

Background

This is a trick that you might not have seen explicitly before. However, this is one trick that you have used many times: it is one of the pillars of computer science. In a nutshell,
reduction is a process where you change the problem you want to solve to a problem that you already know how to solve and then use the known solution. Let us begin with a

concrete non-proof examples.

Example of a Reduction

We begin with an elephant joke (. There are many variants of this joke. The following one is adapted from this one (<.

° How do you stop a rampaging blue elephant?
° You shoot it with a blue-elephant tranquilizer gun.

. How do you stop a rampaging red elephant?
° You hold the red elephant's trunk till it turns blue. Then apply Answer 1.

° How do you stop a rampaging elephant?
. Make sure you run faster than the elephant long enough so that it turns red. Then Apply Answer 2.

In the above both and B are reductions. For example, in , you do some work (in this case holding the elephant's trunk: in this course this work will be a
PSR N " a PR PR oo A P .. . D

Al T 1 4\ 2 L

“Yes, we can” reductions (Example

Question 2 (Big G is in town) [25 points]

The Problem

The Big G company in the bay area decides it has not been doing enough to hire CSE grads from UB so it decides to do an exclusive recruitment drive for UB students. The
Big G decides to fly over n CSE majors from UB to the bay area during December for on-site interview on a single day. The company sets up m slots in the day and arranges
forn Big G engineers to interview the n UB CSE majors. (You can and should assume that m > n.) The fabulous scheduling algorithms at Big G 's offices draw up a
schedule for each of the n majors so that the following conditions are satisfied:

e Each CSE major talks with every Big G engineer exactly once;

¢ No two CSE majors meet the same Big G engineer in the same time slot; and

e Notwo Big G engineers meet the same CSE major in the same time slot.

In between the schedule being fixed and the CSE majors being flown over, the Big G engineers were very impressed with the CVs of the CSE majors (including, ahem, their
performance in CSE 331) and decide that Big G should hire all of the # UB CSE majors. They decide as a group that it would make sense to assign each CSE major S to a
Big G engineer E in such a way that after S meets E during her/his scheduled slot, all of S's and E's subsequent meetings are canceled. Given that this is December, the
Big G engineers figure that taking the CSE majors out to the nice farmer market at the ferry building in San Francisco during a sunny December day would be a good way to
entice the CSE majors to the bay area.

In other words, the goal for each engineer E and the major § who gets assigned to her/him, is to truncate both of their schedules after their meeting and cancel all
subsequent meeting, so that no major gets stood-up. A major S is stood-up if when S arrives to meet with E on her/his truncated schedule and E has already left for the day
with some other major S’ .

Your goal in this problem is to design an algorithm that always finds a valid truncation of the original schedules so that no CSE major gets stood-up.

To help you get a grasp of the problem, consider the following example for n = 2 and m = 4. Let the majors be S| and S, and the Big G engineers be E| and E;. Suppose
S1 and S> 's original schedules are as follows:

CSE Major Slot 1 Slot 2 Slot 3 Slot 4

S1 E; free E, free

Overview of the reduction

Matianal Resident Matching Program

Question 2 (Big G is in town) NRMP

Nothing special about GS algo

Question 2 (Big G is in town)

SSSSS

ANY algo for stable
matching problem
works!

Another observation

Question 2 (Big G is in town) NRMP

ANY algo for stable
matching problem
works!

Poly time reductions

Question 2 (Big G is in town) < NRMP

ANY algo for stable
matching problem
works!

Question 2 (Big G is in town) < -
— P

cse Major stot1 siot2 sots. stots. o it siot2 siota
5 5 oo e - 5 B oo E2 Gruncate horo)
P 5 . o - = 5 oo E) (runcate here)

ANY algo for
stable matching
problem works!

All processing
is poly-time

	Slide 1: Lecture 35
	Slide 2: Lecture 35
	Slide 3: Shortest Path Problem
	Slide 4: The recurrence
	Slide 5: Some consequences
	Slide 6: Bellman-Ford Algorithm
	Slide 7: Reading Assignment
	Slide 8: Longest path problem
	Slide 9: Longest vs Shortest Paths
	Slide 10: Two sides of the “same” coin
	Slide 11: Poly time algo for longest path?
	Slide 12: P vs NP question
	Slide 13: P vs NP question
	Slide 14: Proving P ≠ NP
	Slide 15: Proving P = NP
	Slide 16: A book on P vs. NP
	Slide 17: The course so far…
	Slide 18: The rest of the course…
	Slide 19: No, you can’t– what does it mean?
	Slide 20: No, you can’t take- 1
	Slide 21: No, you can’t take- 2
	Slide 22: No, you can’t take- 2
	Slide 23: No, you can’t take -3
	Slide 24: So far: “Yes, we can” reductions
	Slide 25: Reduce Y to X where X is “easy”
	Slide 26: “Yes, we can” reductions (Example)
	Slide 27: Overview of the reduction
	Slide 28: Nothing special about GS algo
	Slide 29: Another observation
	Slide 30: Poly time reductions
	Slide 31:

