Lecture 9

CSE 331

Main Steps in Algorithm Design

Problem Statement

Problem Definition

Algorithm

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

j— ;

Implemented where? |[& Platform independent definition

TREE®

-

What are real instances? Worst-case Inputs

Efficient in terms of what? Input size N

Definition-I|

Analytically better than brute force

How much better? By a factor of 27

Definition-Il|

Should scale with input size

If N increases by a constant factor,
so should the measure

- steps ol apbsolute constants

Polynomial running time | coue:

Step: “primitive computational step”

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Asymptotic Analysis

BRUTE-FORCE DYNAMIC |
SOLUTTON: PROGRAMMING SELUNG ON ERAY:
0(n!) ALGORITHMS: 0(1)
’ O (ﬂ‘l zﬂ)
STILL WORKING
ON YOUR ROUTEY
\
~
SHUT THE
HEW UP

Travelling Salesman Problem
(http://xkcd.com/399/)

Which one is better?

25608 T

2000

1568 r

18608 [

566

Now?

48000

35000

36000

25000

20000

15660

16060

5600

And

now ?

de+06
3,5e+86
Je+B6
2., 95e+086
2e+06
1,5e+86
le+86

oaa8aa

18

The actual run times

3.5e+86 -

2,.5e+86 -

1.5e+86 -

le+B6 [

500068

a

Asymptotic View

Asymptotic Notation

< is O with glasses

> is Q with glasses

= is © with glasses

g(n) is O(f(n))

c*f(n) for some c>0

g(n) is Q(f(n))

g(n)

e*f(n) for some €>0

g(n) is O(f(n))

g(n)

e*f(n) for some €>0

>N

Properties of O (and Q)

. g is O(f) and f is O(h) then
Transitive g is O(h)

Step 1 // O(n) time

Step 2 // O(n) time

. gis O(h) and fis O(h) then__ ®
Additive g+ is O(h)

Overall:

O(n) time

TR g is O(hy) and fis O(h,) then
Multiplicative (i¢ic o)

While (loop condition) // O(n?) iterations

Stuff happens // O(1) time

Another Reading Assignment

CSE 331 Support Pages ~

Analyzing the worst-case runtime
of an algorithm

Some notes on strategies to prove Big-Oh and Big-Omega bounds on runtime of an algorithm.

The setup

Let .4 be the algorithm we are trying to analyze. Then we will define T(N) to be the worst-case run-time of .4 over all inputs of size N. Slightly more formally, let ¢ 4 (x) be the number
of steps taken by the algorithm .4 on input x. Then

TN = max t4(x).

X:X is of size N

In this note, we present two useful strategies to prove statements like T(N) is O(g(N)) or T(N) is Q(A(N)). Then we will analyze the run time of a very simple algorithm.

Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class today).

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

Let w be such a woman and m be the best man she has not proposed to

W proposes to m

If m is free
(m,w) get

Else (m,w’) are engaged
If m prefers w’ tow

W remains free
Else

(m,w) get and w’ is free

Output the engaged pairs as the final output

Implementation Steps

How do we represent the input?

How do we find a free woman w?

How would w pick her best unproposed man m?

How do we know who m is engaged to?

How do we decide if m prefers w’ to w?

Gale-Shapley Algorithm

Intially all men and women are free At most

iterations

While there exists a free woman who can propose

Let w be such a woman and m be the best man she has not proposed to

W proposes to m

If m is free
(m,w) get engaged time
Else (m,w’) are engaged implementatiOn

If m prefers w’ tow

W remains free
Else

(m,w) get engaged and w’ is free

Output the engaged pairs as the final output

Implementation Steps

How do we represent the input?

How do we find a free woman w?

How would w pick her best unproposed man m?

How do we know who m is engaged to?

How do we decide if m prefers w’ to w?

Overall running time

Init(1-4)

=

n? X (Query/Update(1-4))

Arrays and Linked Lists

n numbers a,,a,,...,a, Last

Front ‘1,
\
I T Flo [T .

2 a,
3 a,
Array Linked List
Access ith element O(1) O(i)
Is e present? O(n) (O(log n) if sorted) O(n)
s Insert an element O(n) O(1) given pointer
Delete an element O(n) O(1) given pointer
Static vs Dynamic Static Dynamic

Rest on the board...

	Slide 1: Lecture 9
	Slide 2: Main Steps in Algorithm Design
	Slide 3: Definition of Efficiency
	Slide 4: Definition-II
	Slide 5: Definition-III
	Slide 6: More on polynomial time
	Slide 7: Asymptotic Analysis
	Slide 8: Which one is better?
	Slide 9: Now?
	Slide 10: And now?
	Slide 11: The actual run times
	Slide 12: Asymptotic Notation
	Slide 13: g(n) is O(f(n))
	Slide 14: g(n) is Ω(f(n))
	Slide 15: g(n) is Θ(f(n))
	Slide 16: Properties of O (and Ω)
	Slide 17: Another Reading Assignment
	Slide 18: Gale-Shapley Algorithm
	Slide 19: Implementation Steps
	Slide 20: Gale-Shapley Algorithm
	Slide 21: Implementation Steps
	Slide 22: Overall running time
	Slide 23: Arrays and Linked Lists
	Slide 24: Rest on the board…

