Lecture 11

CSE 331

Please have a face mask on

Masking requirement

<u>UB_requires</u> all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

Answering Q4

Query/update: OCD

Answering Q4

(4) How do we decide if m prefers w' to w?

Main Steps in Algorithm Design

Up Next....

Graphs are omnipresent

Español • Help • Speak up

What does this graph represent?

And this one?

And this one?

Buildings on North Campus connected by tunnels

Paths

Sequence of vertices connected by edges

Connected

Path length 3

Connectivity

u and w are connected iff there is a path between them

A graph is connected iff all pairs of vertices are connected

Connected Graphs

Every pair of vertices has a path between them

Basic Graph definitions

Q: () Ainline map (undirected) (.) Wikipedia anticles map (directed)

A attin B C D path is >D, C, B, AV D, C, B, A X A, B, C, DnL AIBICID (U_1, U_2) IB, C, BX A, B, C, B 01-02, (de'rected) A, C, DX A, C, DX (nu, 1-1, UN) Det: A path in (G= (V,E) is a sequence of vorthices U1,..., UK {UI-UK path > ... Vie K. Vie [K-] = Sh-... K-1> (4, Uit) EE Notes' (i) vi need not be destinct (i) trads for directed 61

Distance between u and v

Length of the shortest length path between u and v

Distance between RM and BO? 1

Tree

Connected undirected graph with no cycles

Rooted Tree

A rooted tree

Let the rest of the tree hang under "gravity"

Every n vertex tree has n-1 edges

Trees

This page collects material from previous incarnations of CSE 331 on trees, especially the proof that trees with n nodes have exactly n - 1 edges.

Where does the textbook talk about this?

Section 3.1 in the textbook has the lowdown on trees.

Fall 2018 material

Here is the lecture video:

Every n vertex tree has n-1 edges

Let G be an undirected graph on n nodes

Then ANY two of the following implies the third:

T is connected

T has no cycles

T has n-1 edges

Algorithms for checking connectivity

Checking by inspection

What about large graphs?

Are s and t connected?

Brute-force algorithm?

Algorithm motivation

Breadth First Search (BFS)

BFS via examples

In which we derive the breadth first search (BFS) algorithm via a sequence of examples.

Expected background

These notes assume that you are familiar with the following:

- · Graphs and their representation. In particular,
 - · Notion of connectivity of nodes and connected components of graphs
 - Adjacency list representation of graphs
 - Notation:
 - G = (V, E)
 - n = |V| and m = |E|
 - CC(s) denotes the connected component of s
- Trees and their basic properties

The problem

In these notes we will solve the following problem:

Connectivity Problem

Input: Graph G = (V, E) and s in V

Output: All t connected to s in G

Connected component of s

Breadth First Search (BFS)

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume L₀,..,L_i have been constructed

 L_{i+1} set of vertices not chosen yet but are connected by an edge to L_i

Stop when new layer is empty

BFS Tree

Computing Connected component

