
Lecture 14

CSE 331

Please have a face mask on

Quiz 1 on March 11

O(m+n) BFS Implementation
BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0

Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to Li+1

i++

return cc

O(m+n) BFS Implementation

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0

Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to Li+1

i++

Array

Linked List

Input graph as
Adjacency list

Version in KT
also

computes a
BFS tree

return cc

All the layers as one
BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0

Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to Li+1

i++

All layers are
considered in first-
in-first-out order

Can combine all layers
into one queue: all the
children of a node are

added to the end of the
queue

return cc

An illustration

1

2 3

4 5

6

7

8

1 2 3 4 5 7 8 6

Queue O(m+n) implementation

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Intitialize Q= {s}

While Q is not empty

Delete the front element u in Q

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Add w to the back of Q

O(n)

O(1)

O(1)

Repeated nu times

O(nu)

Repeated at most
once for each

vertex u

Σu O(nu) =
O(Σu nu) =

O(m)
O(1)

Implementing DFS in O(m+n) time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

1

2 3

4 5

6

7

8

1

2

4

5

6

3

8

7

3

5

3

7

DFS stack implementation

DFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Intitialize Ŝ = {s}

While Ŝ is not empty

Pop the top element u in Ŝ

For every edge (u,w)

If CC[w] = F then

CC[w] = T

Push w to the top of Ŝ

Same
O(m+n) run

time analysis
as for BFS

Reading Assignment

Sec 3.3, 3.4, 3.5 and 3.6 of [KT]

Directed graphs

Model asymmetric relationships

Precedence relationships

u needs to be done before w means (u,w) edge

Directed graphs

Adjacency
matrix is not
symmetric

Directed Acyclic Graph (DAG)

No directed cycles

Precedence
relationships are

consistent

Topological Sorting of a DAG

Order the vertices so that all edges go “forward”

More details on Topological sort

Mid-term material until here

Main Steps in Algorithm Design

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis

n!

Correctness+Runtime Analysis

Data Structures

Where do graphs fit in?

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

A tool to define
problems

Rest of the course*

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general
techniques

Greedy algorithms

Build the final solution piece by piece

Being short sighted on each piece

Never undo a decision

Know when you see it

End of Semester blues

Saturday Sunday Monday Tuesday Wednesday

Project

331 homework 331 HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the
maximum number of tasks that you can do?

The optimal solution

331 HWExam study

Party!

Can only do one thing at any day: what is the
maximum number of tasks that you can do?

Saturday Sunday Monday Tuesday Wednesday

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for 1≤ i ≤ n

Output: A schedule S of the n intervals

No two intervals in S conflict

|S| is maximized

{ s(i), … ,f(i)-1 }

