
Lecture 15

CSE 331

Few points…
• Project group signups

– Your UBIT ID is XXX if XXX@buffalo.edu is the email ID
• Please don’t enter your person number!

• HWs
– Cite your sources

– Answers should be self-contained

– Separate out proof idea and proof details

• Summary in idea and detailed proof in details.

– Upload a legible PDF file. If Autograder can’t open it, we can’t grade it.

– Please don’t cheat!

• Recitations in week 6 and 7

– Week 6: TAs will briefly go over the sample midterm, suggest
studying tips, etc.

– Week 7: (this is the midterm week!) Q/A with the TAs.

Project groups due TODAY!
Deadline: Friday, March 4, 11:59pm

Greedy algorithms

Build the final solution piece by piece

Being short sighted on each piece

Never undo a decision

Know when you see it

End of Semester blues

Saturday Sunday Monday Tuesday Wednesday

Project

331 homework 331 HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the
maximum number of tasks that you can do?

The optimal solution

331 HWExam study

Party!

Can only do one thing at any day: what is the
maximum number of tasks that you can do?

Saturday Sunday Monday Tuesday Wednesday

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for 1≤ i ≤ n

Output: A schedule S of the n intervals

No two intervals in S conflict

|S| is maximized

{ s(i), … ,f(i)-1 }

Algorithm with examples

Interval Scheduling Problem

• Input: n intervals; ith interval: [s(i), f(i)).

• Output: A valid schedule with maximum number of intervals in

it (over all valid schedules).

• Def: A schedule S ⊆ [n] ([n] = {1, 2, …, n})

• Def: A valid schedule S has no conflicts.

• Def: intervals i and j conflict if they overlap.

Interval Scheduling Problem

i

j

i

j

Conflicts:

No conflicts:

Example 1

No intervals overlap

Algorithm?

No intervals overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove i from R

Return S*= S

Example 2

At most one overlap/task

Algorithm?

At most one overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Remove i from R

Example 3

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Greedily solve your blues!

Project

331 HWExam study

Party!

Write up a term paper

Arrange tasks in some order and iteratively pick non-
overlapping tasks

Saturday Sunday Monday Tuesday Wednesday

Making it more formal

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Associate a
value v(i)

with task i
Choose i in R that minimizes v(i)

What is a good choice for v(i)?

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Associate a
value v(i)

with task i
Choose i in R that minimizes v(i)

v(i) = f(i) – s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Smallest duration first

Choose i in R that minimizes f(i) – s(i)

v(i) = s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Earliest time first?

Choose i in R that minimizes s(i)

So are we
done?

Not so fast….

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Earliest time first?

Choose i in R that minimizes s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Pick job with minimum conflicts

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

So are we
done?

Nope (but harder to show)

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

