Lecture 22

CSE 331

Prim's algorithm

Cut Property Lemma for MSTs

Condition: S and V\S are non-empty

Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Agenda

Optimality of Prim's algorithm

Prove Cut Property Lemma

Optimality of Kruskal's algorithm

Remove distinct edge weights assumption

On to the board...

Kruskal's Algorithm

Input: G=(V,E), $c_e > 0$ for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Kruskal's Algorithm

Theorem 2: Kruskal's algorithm is correct.

(Similar to correctness of Prim's)

Consider a run of the algorithm when it is about to add edge (u, w) to T.

<u>**Goal**</u>: show that e is the cheapest "crossing" edge across some cut (S, $V\S$).

Define S:

Let S be the set of vertices connected to u using only the edges in T (i.e., u has a path to all nodes in S).

