Lecture 28

CSE 331

Dividing up P

First n/2 points according to the x-coord

Recursively find closest pairs

6 = min (blue, green)

An aside: maintain sorted lists

P,and P, are P sorted by x-coord and y-coord

Q, Q, R,, R, can be computed from P, and P, in O(n) time

An easy case

>0

6 = min (blue, green)

All “crossing” pairs have distance > &

Life is not so easy though

6 = min (blue, green)

Euclid to the rescue (?)

d(py,py) = ((x-x))*+{y;-y;)?) /2

The distance is larger than the x or y-coord difference

.x— - — -

X

Life is not so easy though

6 = min (blue, green)

All we have to do now

& 6
-

6 = min (blue, green)

Figure if a pair in S has distance < 6

The algorithm so far...

O(n log n) + T(n)
Input: n 2-D points P = {p,,...,p.}; p.i=(x,y.)

Sort P togetP, and P,

Closest-Pair (P, P,) O(n log n)

If n < 4 then find closest point by brute-force
Q is first half of P, and R is the rest

T(<4)=c

T(n) = 2T(n/2) + cn

Compute Q,, Q,, R, and R,

(d0,9,) = Closest-Pair (Q,, Q) O(n log n) overall

(ro,ry) = Closest-Pair (R,, R))

5« min (a0,)) LI
S = points (x,y) in Ps.t. [x—x*| <& ——m

—

return Closest-in-box (S, (q,,9,), (ro,r1)) =

Rest of today’s agenda

Implement Closest-in-box in O(n) time

