Lecture 28

CSE 331

Dividing up P

First n/2 points according to the x-coord

Recursively find closest pairs

An aside: maintain sorted lists

P_x and P_y are P sorted by x-coord and y-coord

 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time

An easy case

Life is not so easy though

Euclid to the rescue (?)

$$d(p_i,p_j) = ((x_i-x_j)^2+(y_i-y_j)^2)^{1/2}$$

The distance is larger than the **x** or **y**-coord difference

Life is not so easy though

All we have to do now

The algorithm so far...

Input: n 2-D points $P = \{p_1, ..., p_n\}; p_i = (x_i, y_i)$

 $O(n \log n) + T(n)$

Rest of today's agenda

Implement Closest-in-box in O(n) time