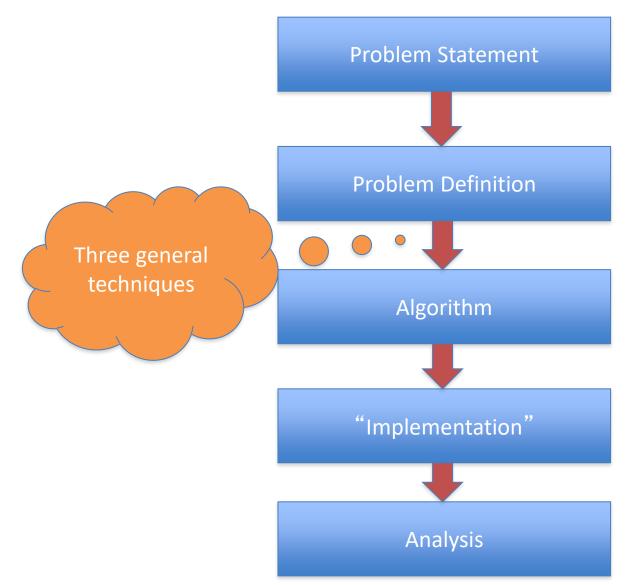
# Lecture 29

**CSE 331** 

#### High level view of CSE 331



**Data Structures** 

Correctness+Runtime Analysis

#### Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial

#### Divide and Conquer

Recursive algorithmic paradigm



Reduced large polynomial time to smaller polynomial time

#### A new algorithmic technique

**Dynamic Programming** 

# Dynamic programming vs. Divide & Conquer

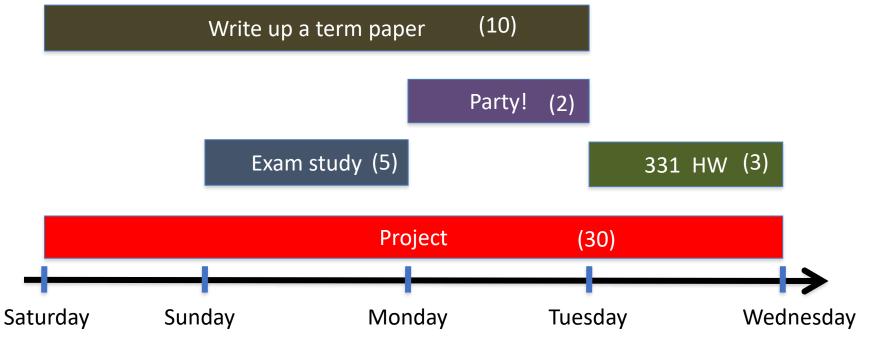
Both design recursive algorithms

Dynamic programming is smarter about solving recursive sub-problems

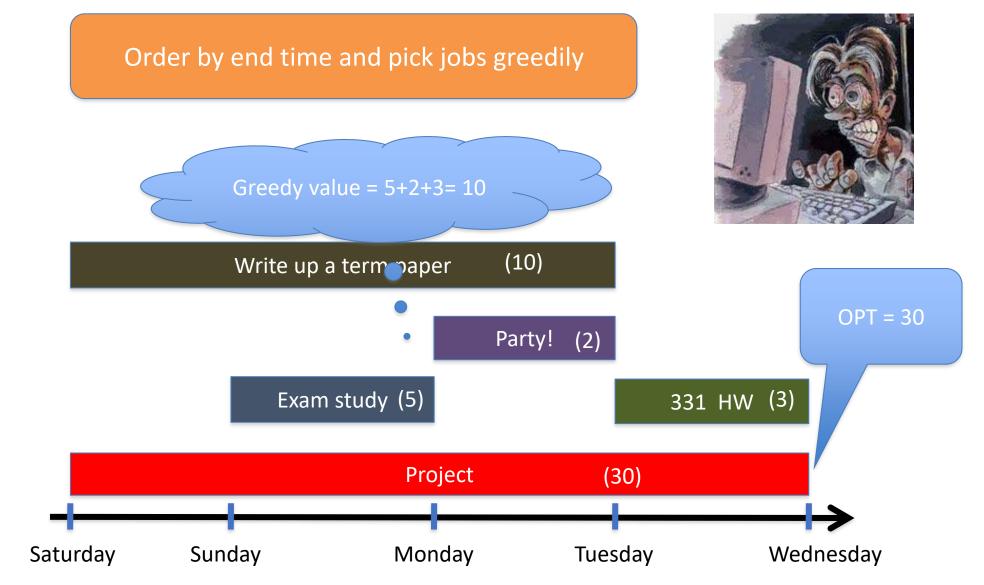
#### End of Semester blues

Can only do one thing at any day: what is the optimal schedule to obtain maximum value?





#### Previous Greedy algorithm



#### Today's agenda

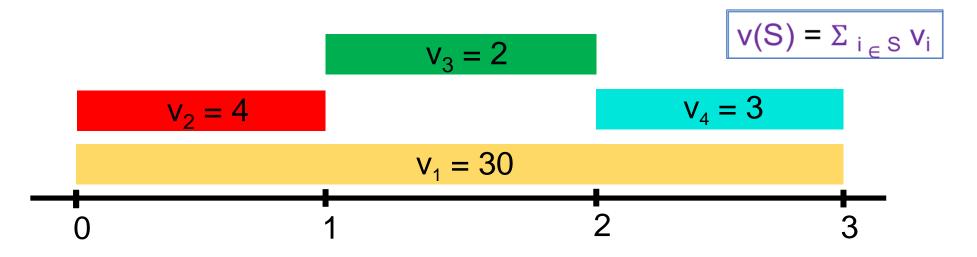
Formal definition of the problem

Start designing a recursive algorithm for the problem

#### Weighted Interval Scheduling

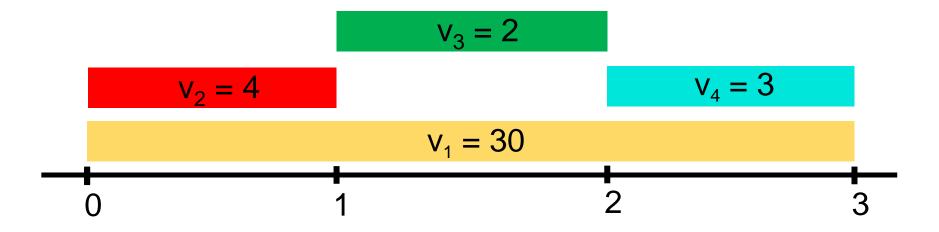


Output: A valid schedule  $S \subseteq [n]$  that maximizes v(S)



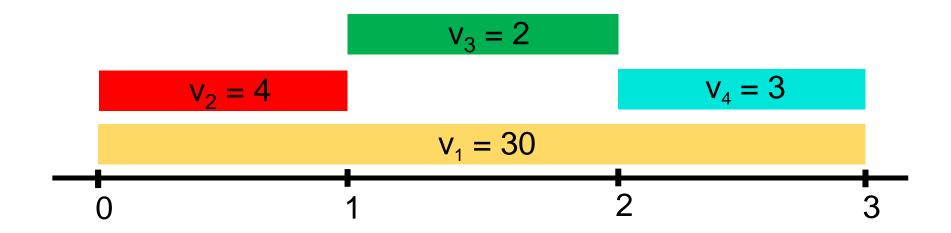
#### Previous Greedy Algorithm

R = original set of jobs  $S = \phi$  While R is not empty  $Choose i in R where f_i is the smallest Add i to S Remove all requests that conflict with i from R <math display="block">Return S^* = S$ 



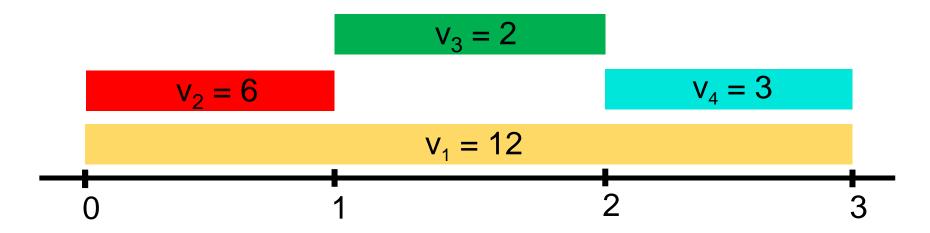
#### Perhaps be greedy differently?

R = original set of jobs  $S = \phi$  While R is not empty  $Choose i in R where v_i/(f_i - s_i) is the largest Add i to S Remove all requests that conflict with i from R <math display="block">Return S^* = S$ 



#### Can this work?

```
R = original set of jobs S = \phi While R is not empty Choose \ i \ in \ R \ where \ v_i/(f_i - s_i) \ is \ the \ largest \\ Add \ i \ to \ S \\ Remove \ all \ requests \ that \ conflict \ with \ i \ from \ R Return \ S^* = S
```



#### Avoiding the greedy rabbit hole



https://www.writerightwords.com/down-the-rabbit-hole/

Provably
IMPOSSIBLE
for a large
class of
greedy algos

There are no known greedy algorithm to solve this problem

#### Perhaps a divide & conquer algo?

# Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems

#### Perhaps a divide & conquer algo?

#### RecurWeightedInt([n])

if n = 1 return the only interval

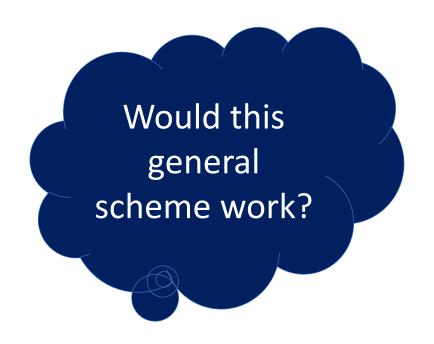
L = first n/2 intervals

R = last n/2 intervals

 $S_1 = RecurWeightedInt(L)$ 

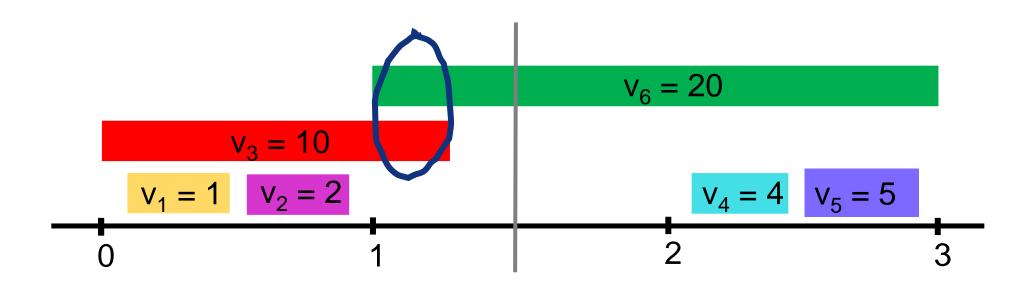
 $S_R = RecurWeightedInt(R)$ 

PatchUp(S<sub>1</sub>, S<sub>R</sub>)



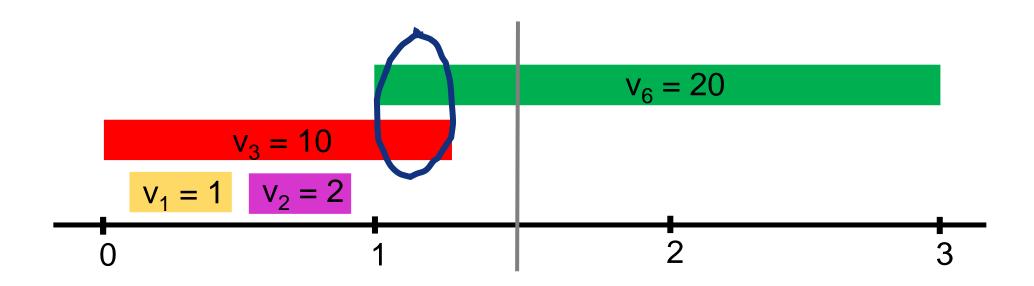
Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems

#### Sub-problems NOT independent!

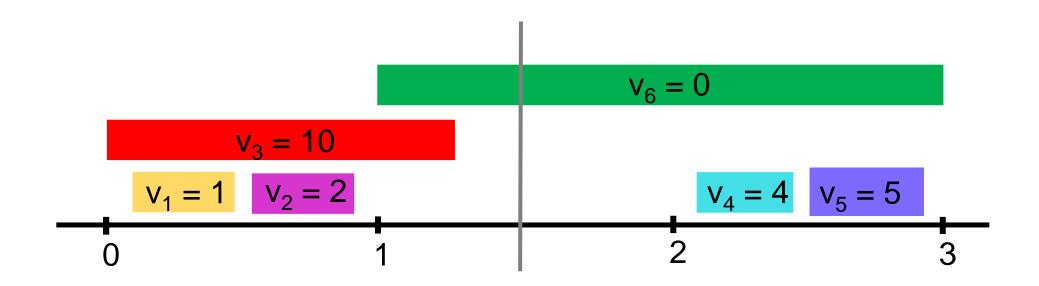


### Perhaps patchup can help?

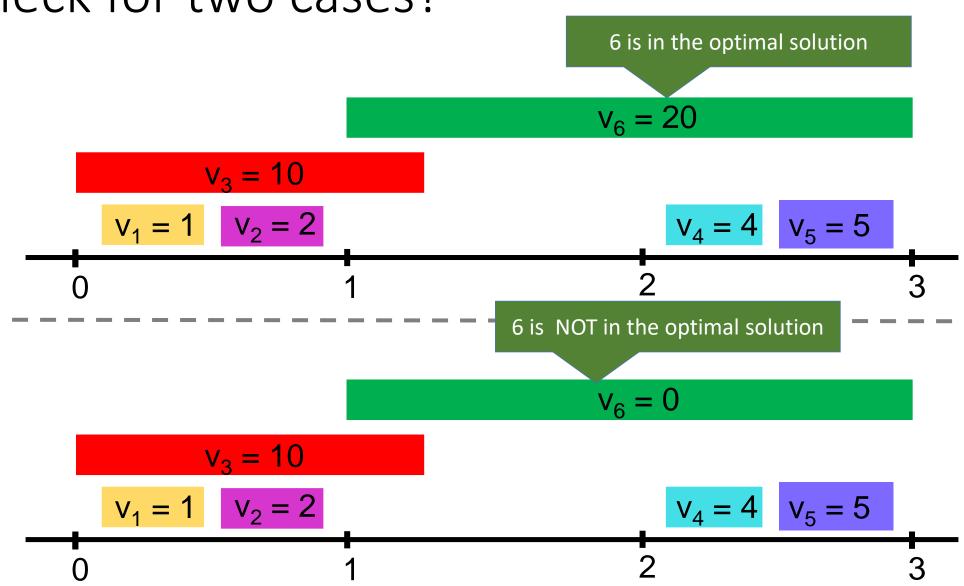
Patchup the SOLUTIONS to the sub-problems



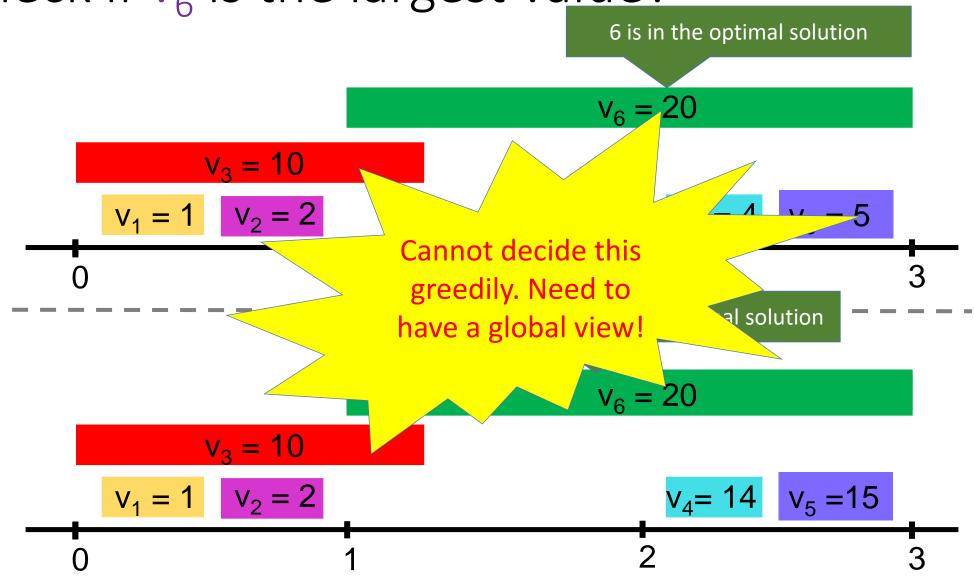
#### Sometimes patchup NOT needed!



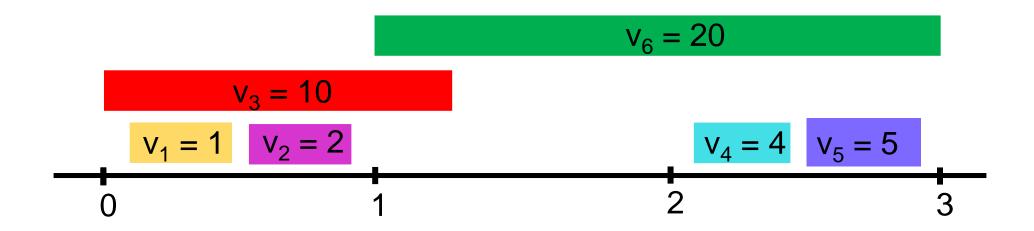
#### Check for two cases?



Check if  $v_6$  is the largest value?

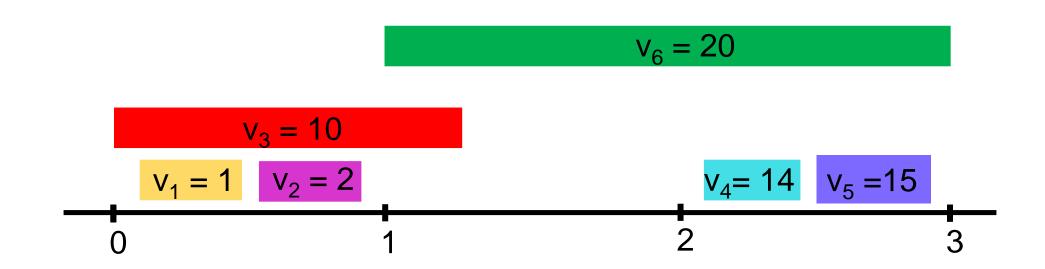


#### Check out both options!



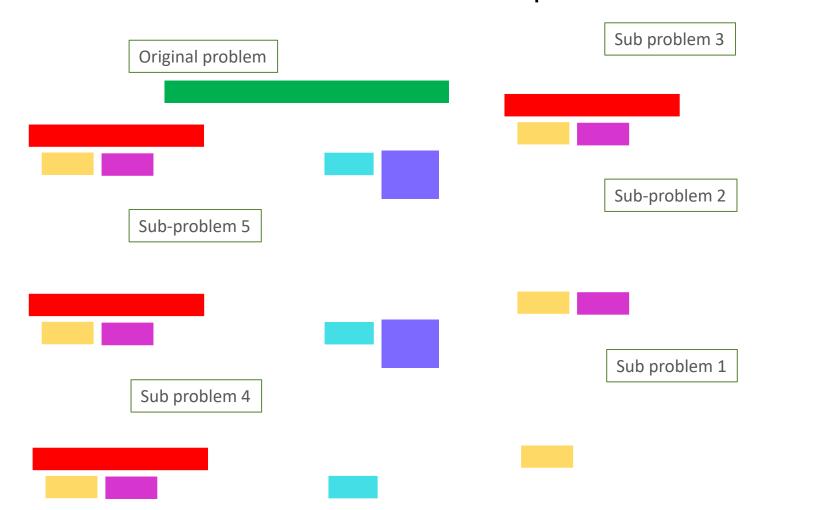
Case 1: 6 is in the optimal solution

## 6 is not in optimal solution



#### So what sub-problems?

Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems



#### Today's agenda

Finish designing a recursive algorithm for the problem