Lecture 31

CSE 331

A recursive algorithm

```
Proof of
                                                    correctness by
                        Correct for j=0
Compute-Opt(j)
                                                     induction on j
If j = 0 then return 0
return max { v<sub>i</sub> + Compute-Opt(p(j)), Compute-Opt(j-1) }
           = OPT(p(j))
                                      = OPT(j-1)
   OPT(j) = max \{v_i + OPT(p(j)), OPT(j-1)\}
```

Exponential Running Time

Using Memory to be smarter

Using more space can reduce runtime!

How many distinct OPT values?

A recursive algorithm

Run time = O(# recursive calls)

Bounding # recursions

M-Compute-Opt(j)

Whenever a recursive call is made an walue is assigned

At most n values of M can be assigned

Property of OPT

Recursion+ memory = Iteration

Iteratively compute the OPT(j) values

Iterative-Compute-Opt

Algo run on the board...

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

OPT(j) = max
$$\{v_j + OPT(p(j)), OPT(j-1)\}$$

There is an ordering among sub-problem that allows for iterative solution

Scheduling to min idle cycles

n jobs, ith job takes w_i cycles

You have W cycles on the cloud

What is the maximum number of cycles you can schedule?

Subset sum problem

Input: n integers $w_1, w_2, ..., w_n$

bound W

Output: subset S of [n] such that

(1) sum of w_i for all i in S is at most W

(2) w(S) is maximized

Rest of today's agenda

Dynamic Program for Subset Sum problem

Algo on the board...