
Lecture 35
CSE 331

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost ce (can be <0)

t in V

Output: Shortest path from every s to t

1 1

100

-1000

899

s t

Shortest path has
cost negative

infinity

Assume that G
has no negative

cycle

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges

OPT(u,i) = min { OPT(u,i-1), min(u,w) in E { cu,w + OPT(w, i-1)} }

Some consequences
OPT(u,i) = cost of shortest path from u to t with at most i edges

OPT(u,i) = min { OPT(u, i-1), min(u,w) in E { cu,w + OPT(w,i-1)} }

OPT(u,n-1) is shortest path cost between u and t

Can compute the shortest path
between s and t given all

OPT(u,i) values

Bellman-Ford Algorithm

Runs in O(n(m+n)) time

Only needs O(n) additional space

Reading Assignment

Sec 6.8 of [KT]

Longest path problem

Given G, does there exist a simple path of length n-1 ?

Longest vs Shortest Paths

Two sides of the “same” coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length n-1?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

P vs NP question

P: problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Is P=NP?

Alternate NP definition: Guess witness and verify!

Proving P ≠ NP

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known
proof techniques

provably will not work

Proving P = NP

Will make cryptography collapse

Compute the
encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

NP

NP-complete
problems

Solving any ONE
problem in here in

poly time will prove
P=NP!

A book on P vs. NP

The course so far…

https://www.teepublic.com/sticker/1100935-obama-yes-we-can

The rest of the course…

Under certain assumptions,

https://www.madduckposters.com/products/megamind-no-you-cant?variant=13565168320556

No, you can’t– what does it mean?

NO algorithm will be able to solve a problem in polynomial time

Still for worst-case
runtime

No, you can’t take- 1

What is the best lower bound you can prove?

No, you can’t take- 2
Lower bounds based on output size

Exists graphs with
m3/2 triangles

No, you can’t take- 2
Lower bounds based on output size

On input n, output 2n many ones

Every algo takes (doubly) exponential time

But at heart
problem is “trivial”

From now on, output size is always O(N) and could even be
binary.

No, you can’t take -3

Argue that a given problem is AS HARD AS

a “known” hard problem

How can we argue
something like this?

Reductions

So far: “Yes, we can” reductions

https://www.teepublic.com/sticker/1100935-obama-yes-we-can

Reduce Y to X where X is “easy”

“Yes, we can” reductions (Example)

Overview of the reduction

Nothing special about GS algo

ANY algo for stable
matching problem

works!

Another observation

ANY algo for stable
matching problem

works!

Poly time steps

Poly time reductions

ANY algo for stable
matching problem

works!

Poly time steps

ANY algo for
stable matching
problem works!

Poly time steps

Algo for X

Arbitrary Y instance

Output for Y instancePre-process the input

Post-process the output

All processing
is poly-time

Algo for X

Arbitrary Y instance

Output for Y instancePre-process the input

Post-process the output

All processing
is poly-time

Poly time algo for X

Poly time algo for Y

!B !A

Algo for X

Arbitrary Y instance

Output for Y instancePre-process the input

Post-process the output

All processing
is poly-time

Poly time algo for X

Poly time algo for Y

No poly time algo for Y

No poly time algo for X

