Lecture 6

CSE 331

Please have a face mask on

Masking requirement

<u>UB_requires</u> all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

HW 1 gets released Today

Date	Торіс	Notes
Week 1 Mon, Jan 31	Introduction P P F21 PF19 PF18 PF17	Week 1 recitation notes (HW 0 out)
Wed, Feb 2	Main Steps in Algorithm Design	
Fri, Feb 4	Stable Matching Problem	[KT, Sec 1.1]
Week 2 Mon, Feb 7	Perfect Matchings	[KT, Sec 1.1] (HW 0 in) Week 2 recitation notes
Wed, Feb 9	Algorithms for stable matching problem	[KT, Sec 1.1]
Fri, Feb 11	Gale Shapley algorithm ▶F21 ▶F19 ▶F18 ▶F17 x²	[KT, Sec 1.1 (HW 1 out) Reading Assignment: Pigeonhole principle Reading Assignment: Asymptotic notation care package

Reading Assignments

Date	Торіс	Notes
Week 1 Mon, Jan 31	Introduction P P F21 F19 F18 F17	Week 1 recitation notes (HW 0 out)
Wed, Feb 2	Main Steps in Algorithm Design ⚠ 🖹 ▶ F21 ▶ F19 ▶ F18 ▶ F17	
Fri, Feb 4	Stable Matching Problem	[KT, Sec 1.1]
Week 2 Mon, Feb 7	Perfect Matchings	[KT, Sec 1.1] (HW 0 in) Week 2 recitation notes
Wed, Feb 9	Algorithms for stable matching problem	[KT, Sec 1.1]
Fri, Feb 11	Gale Shapley algorithm ▶F21 ▶F19 ▶F18 ▶F17 x²	[KT_Sec 1.1] (HW 1 out)
		Reading Assignment: Pigeonhole principle Reading Assignment: Asymptotic notation care package

Stable Marriage problem

Set of men M and women W

Preferences (ranking of potential spouses)

Matching (no polyandry/gamy in M X W)

Perfect Matching (everyone gets married)

Instablity

Input: M and W with preferences **Output:** Stable Matching

Stable matching = perfect matching+ no instablity

Two Questions

Does a stable marriage always exist?

If one exists, how quickly can we compute one?

Gale-Shapley Algorithm

David Gale

Lloyd Shapley

O(n²) algorithm

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to
   w proposes to m
   If m is free
        (m,w) get engaged
   Else (m,w') are engaged
        If m prefers w' to w
              w remains free
        Else
             (m,w) get engaged and w' is free
```

Output the engaged pairs as the final output

Rest of today's agenda

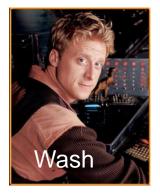
GS algorithm

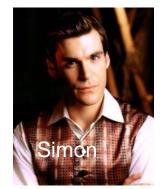
Run of GS algorithm on an instance

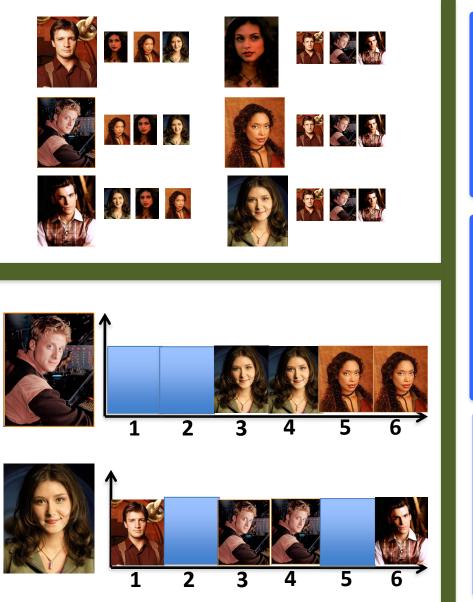
Prove correctness of the GS algorithm

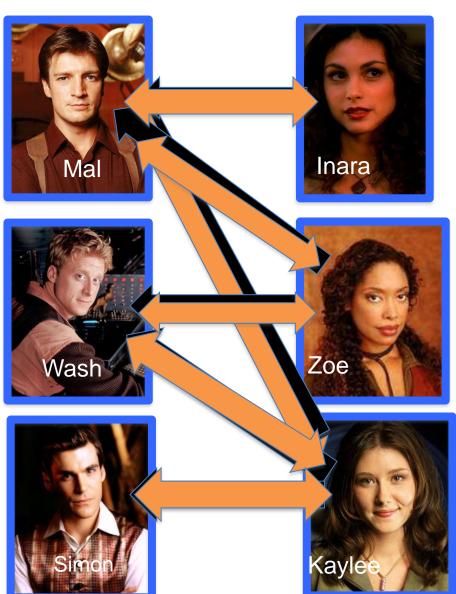
Back to the board...

Preferences







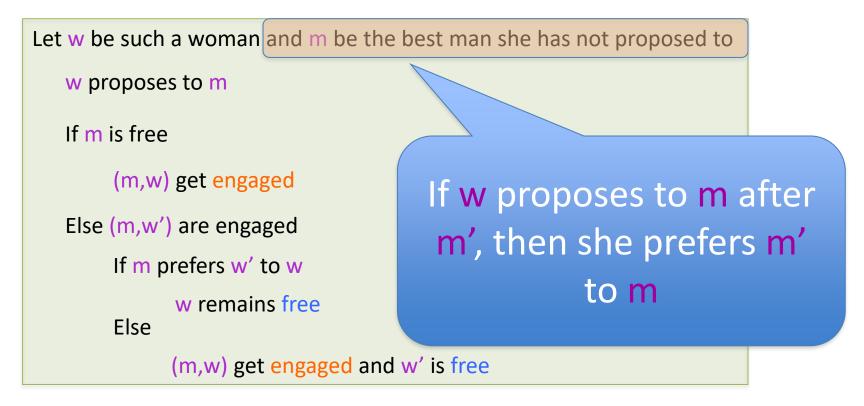


GS algorithm: Firefly Edition

Observation 1

Intially all men and women are free

While there exists a free woman who can propose



Output the engaged pairs as the final output

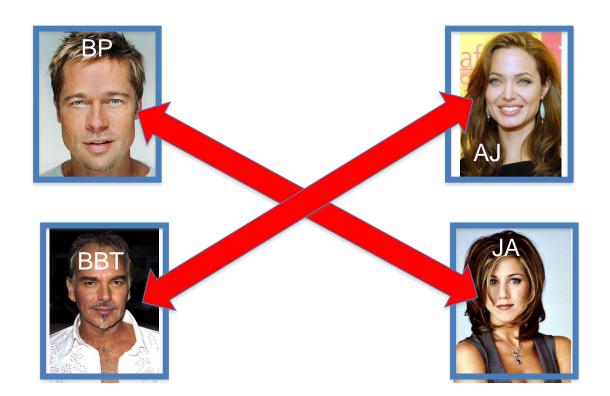
Observation 2

Intially all men and women are free

While there exists a free woman who can propose

Output the set S of engaged pairs as the final output

Questions/Comments?


Why bother proving correctness?

Consider a variant where any free man or free woman can propose

Is this variant any different? Can you prove it?

GS' does not output a stable marriage

