Lecture 9

CSE 331

Please have a face mask on

Masking requirement

<u>UB_requires</u> all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

Proof Details of Lemma 1

Gale Shapley algorithm terminates

This page collects material from Fall 17 incarnation of CSE 331, where we proof details for the claim that the Gale-Shapley algorithm terminates in $O(n^2)$ iterations.

Where does the textbook talk about this?

Section 1.1 in the textbook has the argument (though not in as much detail as below).

Fall 2017 material

Here is the lecture video (it starts from the part where we d the proof details):

Proof by contradiction

Assume the negation of what you want to prove

After some reasoning

Source: 4simpsons.wordpress.com

Two obervations

Obs 1: Once m is engaged he keeps getting engaged to "better" women

Obs 2: If w proposes to m' first and then to m (or never proposes to m) then she prefers m' to m

Proof of Lemma 3

By contradiction

Assume there is an instability (m,w')

w' last proposed to m'

m prefers w' to w

w' prefers m to m'

Contradiction by Case Analysis

Depending on whether w' had proposed to m or not

Case 1: w' never proposed to m

w' prefers m' to m

By Obs 2

Assumed w' prefers m to m'

Source: 4simpsons.wordpress.com

Case 2: w' had proposed to m

Case 2.1: m had accepted w' proposal

m is finally engaged to w

Thus, m prefers w to w'

Case 2.2: m had rejected w' proposal

m was engaged to w" (prefers w" to w')

By Algo def

m is finally engaged to w (prefers w to w")

By Obs 1

m prefers w to w'

Overall structure of case analysis

Questions?

Extensions

Fairness of the GS algorithm

Different executions of the GS algorithm

Main Steps in Algorithm Design

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where?

What are real instances?

Worst-case Inputs

 $N = 2n^2$ for SMP

Efficient in terms of what?

Input size N

Definition-II

Analytically better than brute force

How much better? By a factor of 2?

Definition-III

Should scale with input size

If N increases by a constant factor, so should the measure

Polynomial running time

At most c·N^d steps (c>0, d>0 absolute constants)

Step: "primitive computational step"

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Asymptotic Analysis

Travelling Salesman Problem

(http://xkcd.com/399/)

Which one is better?

Now?

And now?

The actual run times

g(n) is O(f(n))

g(n) is $\Omega(f(n))$

g(n) is $\Theta(f(n))$

Properties of O (and Ω)

Transitive

g is O(f) and f is O(h) then

g is O(h)

Step 1 // O(n) time Step 2 // O(n) time

Additive

g is O(h) and f is O(h) then g+f is O(h) Overall: O(n) time

Multiplicative

g is $O(h_1)$ and f is $O(h_2)$ then g*f is $O(h_1*h_2)$

Overall: O(n²) time

While (loop condition) // O(n²) iterations
Stuff happens // O(1) time

Another Reading Assignment

CSE 331

Support Pages -

Analyzing the worst-case runtime of an algorithm

Some notes on strategies to prove Big-Oh and Big-Omega bounds on runtime of an algorithm.

The setup

Let \mathcal{A} be the algorithm we are trying to analyze. Then we will define T(N) to be the worst-case run-time of \mathcal{A} over all inputs of size N. Slightly more formally, let $t_{\mathcal{A}}(\mathbf{x})$ be the number of steps taken by the algorithm \mathcal{A} on input \mathbf{x} . Then

$$T(N) = \max_{\mathbf{x}: \mathbf{x} \text{ is of size } N} t_{\mathcal{A}}(\mathbf{x}).$$

In this note, we present two useful strategies to prove statements like T(N) is O(g(N)) or T(N) is O(h(N)). Then we will analyze the run time of a very simple algorithm.

Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class today).

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to
   w proposes to m
   If m is free
        (m,w) get engaged
   Else (m,w') are engaged
        If m prefers w' to w
              w remains free
        Else
             (m,w) get engaged and w' is free
```

Output the engaged pairs as the final output

Implementation Steps

How do we represent the input?

How do we find a free woman w?

How would w pick her best unproposed man m?

How do we know who m is engaged to?

How do we decide if m prefers w' to w?

Arrays and Linked Lists

	Array	Linked List
Access ith element	O(1)	O(i)
Is e present?	O(n) (O(log n) if sorted)	O(n)
Insert an element	O(n)	O(1) given pointer
Delete an element	O(n)	O(1) given pointer
Static vs Dynamic	Static	Dynamic

Rest on the board...