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Abstract— In this paper, we introduce a robotic implemen-
tation of the theory of graph grammars[12], which we use
to model and direct self-organization in a formal, predictable
and provably-correct fashion. The robots, which we call pro-
grammable parts, float passively on an air table and bind to each
other upon random collisions. Once attached, they execute local
rules that determine how their internal states change and whether
they should remain bound. We demonstrate through experiments
how they can self-organize into a global structure by executing
a common graph grammar in a completely distributed fashion.
The system also presents a challenge to the grammatical method
(and to distributed systems approaches in general) due to the
stochastic nature of its dynamics. We conclude by discussing
these challenges and our initial approach to addressing them.

I. INTRODUCTION

Engineering self-organizing processes presents us with the
daunting problem of manipulating and coordinating vast num-
bers of objects so that they perform global tasks. Because
of the potentially enormous quantities of objects involved,
uniquely addressing and manipulating each one is impossi-
ble. Nevertheless, there are examples of complex machines,
such as the ribosome or the motor in a bacterial flagellum,
that seem to be built in bulk spontaneously out of large
numbers of simple components. This seems to occur when
simple components self-organize via local interactions into
more complex aggregates which, in turn, self-organize into
larger aggregates and processes. Our goal is to begin to
understand the relationship between local interaction rules and
the resulting global processes, and to use this understanding
to engineer self-organizing systems.

To this end we have focused on two things: The mathe-
matics of self-organization and the construction of systems
that simultaneously validate and challenge the mathematics.
These systems are interesting in their own right as idealized
models of self-organization that may shed light on, for ex-
ample, molecular self-organization. They may have practical
import as well. For example, a group of robots that self-
assembles into a solar array and maintains itself may be
useful for planetary exploration. We are also investigating the
possibility of implementing these ideas with MEMs in order
to mass-produce 3D objects — currently difficult with standard
fabrication techniques.

*This work is partially supported by NSF Grant #0347955.

Fig. 1.  Four programmable parts partially assembled into a triangle. The
parts bind upon random collisions and communicate via IR, deciding whether
to remain bound or to detach. A graph grammar stored on the microcontroller
of each part determines the ultimate global structure that will emerge. The
parts are not self-motive but instead are “mixed” on an air table by overhead
oscillating fans.

In this paper, we introduce an experimental self-organizing
robotic system and show how we can use graph grammars [12]
to direct its self-organization. Specifically, the system consists
of a number of simple robotic programmable parts (Figures 1
and 2). As described in Section Ill, each part is capable of
binding to other parts, communicating with the parts to which
it is bound, and detaching from other parts. The parts rely on
the environment for mobility: They float on an air-table and
are mixed by fans. Thus, all interactions between parts begin
with chance collisions.

The resulting dynamics are nondeterministic and concur-
rent: Many interactions may occur simultaneously and the
order in which interactions occur is not determined. We, there-
fore, provide each part with a rule book (i.e. a graph grammar)
that prescribes the outcome of each possible interaction. In our
system, each part has a microcontroller that can store both a
rule book and an internal state value. Each rule in the book is
of the form L = R. If the internal states and local topology
of a pair of interacting parts matches L, then the parts rewrite
their states and local topology with R. These ideas are made



formal in Section 1V.

It can be shown that a rule book can be designed so
that the parts assemble into any desired structure[12]. Rules
that produce limit cycles (i.e. processes such as sequences of
global shape changes) can be generated as well. In this paper,
we simply demonstrate the grammatical approach with the
programmable parts by considering, in Section V, the problem
of directing them to assemble into a hexagon (one of many
possible global structures).

The reader may notice the resemblance of graph grammar
rules to chemical reactions. In fact, there is a satisfying
relationship between the two ideas. What is required to lever-
age the similarity is a model of the “reaction rate” of each
rule based on geometry and the “concentration” of reactants
(parts matching the left hand side of a rule). We discuss this
relationship in Section VI. We also show how graph grammars
that produce the same final assembly can differ in how long
they take to form the assembly. Based on our observations,
we argue that one may augment graph grammars with kinetics
and determine the yields of various assemblies (we will report
on this in more detail in a forthcoming paper).

The paper concludes with a discussion of the main questions
raised so far by our initial experience with the testbed. The
number and depth of the questions is a sign that the testbed
is serving its purpose.

Il. PREVIOUS AND RELATED WORK

The programmable parts described here are similar to self-
reconfiguring modular robots built by many groups [20],
[15], [17], [14], the main difference being that the present
system consists of initially disconnected modules and the
modules themselves may not change form. There is other work
[19], [18] on building self-assembling robots similar to those
described here. Our work may be distinguished from other
work by the facts that our robots (1) have their own on-board
power supplies and (2) are programmed with graph grammars.

The idea of the programmable part was inspired by surface-
tension driven assembly of passive tiles [8], [2]. We were
intrigued by the potential of having the parts in these systems
actively “decide” whether to bind with others. An example
of a system not quite passive and yet not fully actuated is
Hosokawa, Shimoyama and Miura’s “kinetics” experiment [7]
consisting of triangular parts in a shaker. By careful placement
of magnets in the parts, they were able to achieve interesting
assemblies.

Similar to the graph grammar approach is idea of con-
formational switching, wherein particles undergo changes in
shape upon assembly events. Saitou described this process
symbolically with string assemblies [16]. Graph grammars
were introduced [5], [3] more than two decades ago and have
been used to describe a broad array of systems, from data
structure maintenance to mechanical system synthesis. Graph
grammars are, of course, a generalization of the standard
“linear” grammars used in automata theory and linguistics and
thus (incidentally), can perform arbitrary computation. The
use of graph grammars to model distributed assembly, to the
best of our knowledge, is new. We have used them to model

assembly, ratcheting, self-replication and other processes [10],
[11], [12].

Graph grammars as a means of programming modular
robots is also new to this paper. Other software environments
[21] deal with a lower level of abstraction (e.g. require more
details about communication). The benefit of the grammat-
ical approach is that the mathematics used to model self-
organization is equivalent to the code used to program the
parts.

I11. THE TESTBED
A. The Programmable Part

A programmable part (Figures 1 and 2) consists of an
equilateral triangular chassis that supports three controllable
latching mechanisms, three IR transceivers, and a PIC18F242
based control circuit mounted on a custom made PC board.
Each edge of the chassis is 12 cm long and the chassis is 1.2
c¢m high (although the motors add another 3 cm to the height
of the part). The polyurethane chassis is cast in a Si-rubber
mold, made from an original chassis printed using a 3D rapid
prototyping tool. The motor mounts are constructed similarly.

Each latch consists of three NeFeB permanent magnets: one
fixed and the other two mounted on the end of a small geared
DC motor. The position of the movable magnet is determined
using Hall Effect sensors and mechanical switches. The default
position of the magnets is such that the north pole of the fixed
magnet and the south pole of the movable magnet are pointing
out (see Figure 2). When two latches from different parts
come into contact, they temporarily bind — the fixed magnet
of one attaching to the movable magnet of the other. At that
point, a contact switch on each part is pressed and the parts
may communicate. If they mutually decide to remain bound
to each other, they do nothing. If at any point they mutually
decide to detach from each other, each temporarily rotates its
movable magnet 180°, forcing the parts apart. The movable
magnets then return to their default positions. Because they
are aggressively mixed, it is unusual for parts to immediately
re-bind. The latch only requires power when switching, and
does not require power to stay closed. Each part is powered
by a 200 mAh Li polymer battery, which remains charged
for approximately 2 hours in situations where motors are not
rotated more than once every 10 seconds.

The 3.6 MHz PIC microcontroller on each part coordinates
IR communications between neighboring parts and controls
the motors during detach events. The decisions to detach or
not are based on a graph grammar (Section 1V) stored in
memory. The requirements of a graph grammar are that an
internal state or label is associated with each latch, that labels
are updated according to rules when the combined labels of
two neighboring parts match a rule, and that the parts are able
to bind and detach according to the grammar rules. Thus, the
program on the PICs is quite simple: It is essentially a “graph
grammar interpreter”.

B. Infrastructure

The parts float on a custom-made 2 m? air table. To
maximize useful collisions, we use various methods for stirring
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Fig. 2. The components of the programmable part include low power
magnetic latches, infrared communications, and an on-board microcontroller.

the parts on the air table. For the experiments in this paper,
oscillating fans were placed at the corners of the table.

A camera is mounted approximately 3 m above the surface
of the table and is used to record the motion of the parts. We
adorn the parts with triangular “hats” that render them easy to
parse by the vision system (e.g. Figure 4). The positions and
orientations of the parts are processed by a workstation at 30
Hz. Because each part looks identical to the vision system, we
assign to them arbitrary IDs in software and track the parts
to associate trajectories with the 1Ds. The trajectories are then
exported to MATLAB for further analysis (e.g. Figure 5). In
the future we expect to use the output of the vision system in
real time to adjust the mixing strategy, thereby speeding up
the dynamics.

C. Simulation Environment

At the time this paper was written, we had built six
programmable parts. Because of the simplicity in their design,
the materials for each cost less than $100 total. We plan to
eventually build approximately 100 parts, which will allow us
to do more elaborate experiments than the one reported here. In
the meantime, we have built a realistic simulation environment
that allows us to “experiment” with a greater number of parts.
The simulation uses the Open Dynamics Engine [1] library,
which can routinely compute trajectories of hundreds of parts
and determine the result of collisions and contact situations
quickly. The main simplifications in the simulation are that
the magnets are modeled as pairs of point attractors to avoid
explicitly modeling their magnetic fields; the effect of the
fans is modeled as a time varying force field acting on only
the centers of mass of the parts; and communication is not
explicitly modeled.

V. GRAPH GRAMMARS FOR SELF-ORGANIZATION

We give a brief overview of the graph grammar approach to
directing the topological component of self-organization, and
focus on how it applies to programmable parts. An in-depth
treatment of our approach to graph grammars, a broad array

of examples, and the fundamental properties can be found in
our other papers on the subject [10], [11], [12].

A. Definitions

A simple labeled graph over an alphabet ¥ = {a,b,c,...}
is a triple G = (V, E,l) where V is a set of vertices, E is a
set of unordered pairs or edges from V,and [ : V — X is a
labeling function. We restrict our discussion to simple labeled
graphs and thus simply use the term graph. We denote an edge
{z,y} € E by xy. We denote by Vi, E¢ and ls the vertex
set, edge set and labeling function of the graph G.

Definition 4.1: A rule is a pair of graphs » = (L, R) where
Vi = Vg. The graphs L and R are called the left hand side
and right hand side of r respectively.

If (L, R) is a rule, we usually denote it by L = R. We also
represent rules graphically as in

b e
/N = /N
a c d— f ,
where the relative locations of the vertices represent their
identities. In the above rule, for example, V' = {1,2,3} and
vertex 1 is labeled by I7,(1) = a in the left hand size and by

Ir(1) = d in the right hand side.

A monomorphism between graphs G; and G5 is an injective
function h : Vg, — Vi, that preserves edges: zy € Eq, <
h(z)h(y) € Eg,. It is label-preserving if I, = lg, © h.

Definition 4.2: A rule » = (L, R) is applicable to a graph
G if there exists a label-preserving monomorphism h : V;, —
V. An action on a graph G is a pair (r, h) such that r is
applicable to G with witness h.

Definition 4.3: Given a graph G = (V, E,l) and an action
(r,h) on G with r = (L, R), the application of (r,h) to G
yields a new graph G’ = (V, E’,l") defined by

E' = (E—{h(z)h(y)lzy € L}) U{h(z)h(y)|zy € R}
V) = { l(x)if & h(Vy) .
g o h=Y(z) otherwise.

We write G 2 &’ to denote that G’ was obtained from G
by the application of (r, h).

Definition 4.4: A system is a pair (Go, ®) where Gy is the
initial graph of the system and & is a set of rules (called the
rule set or grammar).

Definition 4.5: A trajectory of a system (G, @) is a (finite
or infinite) sequence

r1,h1 r2,h2 r3,h3

Go Gy Ga

If the sequence is finite, then we require that there is no rule
in @ applicable to the terminal graph. The set of all graphs
reachable from G via some finite trajectory is called the
reachable set and is denoted R(Gg, ®). If C' is a component
of a reachable graph, it is called a reachable component. If no
rules in ® can alter a reachable component, the component
is said to be stable. The set of reachable components is
denoted C(Gy, ®) and the set of stable components is denoted
S(Go, D).



B. Properties of Graph Grammars

There are many properties and algorithms associated with
graph grammars. It is beyond the scope of this paper to de-
scribe them formally here. Therefore, we describe informally
the highlights and limitations of the theory.

Examples: As a simple example, one can create a graph
grammar that, starting with a disconnected soup of parts each
initially labeled a, forms unstable chains of arbitrary length
and stable cycles of length three or more:

a a = b-—0»
a b = b—c
b b = c—ec

d, =

One can also define rules sets that: make any given graph
uniquely stable; make certain families of graphs stable (such
as all k-connected graphs); make processes such as ratchets
and walkers; cause a seed graph to self-replicate in a soup of
“raw material” parts [11]; sort themselves according to given
ordering function; etc.

Concurrency: Two actions (r1,hq) and (rq, ho) with v =
(L1, Ry) and ro = (Lo, R9) are said to commute if ~1(L;) and
ha(Lo) are disjoint. A trajectory in which a set A of pairwise
disjoint actions are executed sequentially can be rewritten as
a concurrent action G; 2 G, since the order in which the
actions in A are applied does not matter. Those rule sets that
result in many rules being applied concurrently will result in
faster self-assembly.

Topology and Communication: Small rules (involving few
vertices) model local communication. We are usually con-
cerned with those that involve only two parts. Distributed
algorithms involving multiple hops, such as group communi-
cation and simple consensus protocols, can in fact be written
as grammars whose rules involve only two parts. Nevertheless,
there are limitations to local rules [13]. For example, due to
fundamental topological properties, it is impossible to find a
grammar with size-two rules that uniquely stabilizes a given
graph. It is possible with size-three rules, however [12].

Synthesis Algorithms: The synthesis problem for graph gram-
mars is: Given a specification of a desired global behavior
and an initial graph Gy, generate a grammar ¢ so that all
trajectories of (Go, ®) meet the specification. We have de-
vised algorithms that automatically generate grammars for the
problem of making a desired graph stable (the self assembly
synthesis problem) [12] and also algorithms that generate rules
for processes (such as ratcheting).

Deadlock Avoidance: Ninety parts trying to form into copies
of an assembly with twenty parts could get stuck in six non-
final sub-assemblies of fifteen parts each, at which point no
rule in & would apply. One way to avoid such situations is
for the parts to randomly disassociate from sub-assemblies to
which they have been bound for “too long”. Under certain as-
sumptions, it can be shown that this approach avoids deadlock
[9].

Limitations of Graph Grammars: There are at least two
limitations to the approach. First, it models only changes

in topology® — which parts are bound to which other parts.
Clearly, the geometry of triangular parts prevents certain
topologies from being formed. Presently, we have found that,
in practice, designing simple grammars that respect geometri-
cal constraints is not difficult. However, the formal relationship
between the graph grammars and their possible embeddings
into various geometrical settings is not presently understood;
many open mathematical questions in this area remain to be
explored.

Second, rules are applied non-deterministically (as opposed
to probabilistically, for example) and without an explicit notion
of time. Thus, for example, a graph may be reachable in the
abstract sense, but in a realistic setting its appearance in a
trajectory may be extremely unlikely. One may augment the
notion of state with a continuous component describing, for ex-
ample, the positions and velocities of all the robots. This leads
to a hybrid system and the various accompanying difficulties.
Alternatively, one may make various assumptions about the
probability that a given action will apply and how long it is
likely to take. This leads to a kinetics based interpretation of
graph grammars, which we describe in slightly more detail in
Section VI.

C. Rules for Triangular Programmable Parts

We associate a vertex with each of the latches on a given
programmable part and connect them with edges (perma-
nently) to indicate that latches are physically attached to each
other. Thus, we have embedded the purely topological object
C3 (a cycle of three vertices) into R? as indicated in Figure 3.
The state stored by the microcontroller is a triple of labels
(a,b,c), one for each latch. We do not distinguish between
latches, so that two states are equivalent if they vary only by
rotation. For example, (a,b,c) = (b, c,a). In practice, always
require that the embedding of C3 into R? is counterclockwise.
Since the parts are confined to motion in the plane, this
orientation will not change as the parts assemble.

When two parts interact, they compare their triples against
the stored grammar to determine the result of the interaction.
As an example, consider the system defined by the single rule:

‘|l\ /T l"\ /T

a a = a— a 1

o N e ~Np (r1)
Suppose that a set of parts is initialized so that each has
state (a,a,a) and that their interactions are governed by the
above rule only. When two parts labeled (a,a,a) collide,
their states match the left hand side of the above rule, so
they remain attached and change their states to (a, b, ), each
associating the latch involved in the connection with the
label a and the other latches with the labels b and ¢, going
counterclockwise from the active latch. The result is a “dimer”
assembly consisting of two triangles as in Figure 3(a). One can
easily show that dimer assemblies are stable components and
that “monomer” assemblies are not.



Fig. 3. The steps in the self-assembly of a hexagon using the rules described
in Section V. Note that the geometry of the embedding represented here is
for convenience. Graph grammars are purely topological, describing only the
way the network topology of the system changes.

V. HEXAGON FORMATION

In this section, we describe in detail a grammar for self-
assembling hexagons and show the results of using the gram-
mar with the programmable parts. We also demonstrate that
the choice of grammar is crucial by comparing the average
assembly time of three different grammars whose stable com-
ponents are hexagons.

A. A Graph Grammar for Hexagons

Suppose the programmable parts start in the state (a, a,a).
The grammar consists of two subsets: ® = &, U ®,,. The
first set ®. corresponds to controllable rules, that is, rules
initiated by the parts. The second set, ®,, corresponds to rules
that are initiated by the environment due to, for example, a
high velocity collision breaking apart two bound parts. We
first describe ®.. To assemble a hexagon, we first form dimers
by including the rule (1) from the previous section. Next, we
include three rules for joining dimers:

a
b |

\C

a
vl )

a a
|\c = ‘\c —
b/ e/ e

1gpecifically, a graph is considered to be a 1D simplicial complex.

b c b c
|>a — a<| = L>a — a<| (r3)
c e e
b e e
|\a — a/| = |\a — a/| (r4)
c/ \b c/ \b.

Rule () is used when parts from two different dimers collide
as in Figure 3(b). It results in a 4-mer. However, since only
two parts are involved in the binding event, the fact that the
rule was applied needs to be propagated to the ends of the
4-mer. This is accomplished by rules (rs) and (r4). A dimer
attaching to a 4-mer completes completes the hexagon. This
is done with two more rules, as shown in Figure 3(d):

c d e a
DR (rs)
a/ \a a/ \e
a a a a
| Se — | = | e — 0| (re)
b/ \d e/ \e.

Another possibility must accounted for, namely, that a dimer
attaches to a 4-mer using rule (r2) before rules (r3) and (r4)
propagate through the 4-mer. We have the following rules:

e c e d

N e N e

|C/a — a\(L = |C/a — a\l|) (r7)
b e b c

|\a — a/’ = |\a — a/’ (rg)
6/ \b 6/ \d

a a a a

| Sd — 0| = | >d o o (ro)
b/ \e b/ \c

c e c a

|\d — c/| = |\d c/| (r10)
o g o N

Either (r7) and (r9) are used to detach the errant dimer or (rs)
and (r19) are used, depending on where the dimer attached to
the 4-mer. See Figure 3(c).

The rules in ®, are sufficient to build hexagons in most
situations. In particular, if G consists of copies of Cj3 all
labeled by a, then S(Gy, ®.) contains exactly the hexagon
shown in Figure 3(d)(right).

Several problems arise however. First, it is possible that a
4-mer and a dimer continually bind and detach, preventing
other actions from occurring (i.e. there is a potential for
livelock). However, because the mixing is essentially random
(see Section VI), this is unlikely. Second, it is possible, with
12 parts for example, for three 4-mers to form at which point
no rules apply (i.e. there is a potential for deadlock). We do
not address this problem here, although it can be handled in
a straightforward manner [9]. Finally, it is possible for a sub-
assembly to break apart? due to a collision of sufficiently high
energy.

2In fact, it is a statistical certainty that assemblies will eventually break
apart. This inadvertently solves the deadlock problem by breaking apart “stale”
subassemblies so that their parts can be incorporated into others.



To address this last case, we define the set ®,, to deal with
uncontrollable events such as these. The set we use in our
experiments contains seven break rules and four propagation
rules, which (for lack of space) we do not list here. For
example, the following rule corresponds to a 4-mer breaking
in two:

e e c
|\b— c/| = ‘\b c/|
a/ \a a/ \a

(r11)

The propagation rules (not shown) are used to relay the fact
that the subassembly has broken to the other parts in it. They
relabel the parts and may even cause further breaks as when,
for example, a single part breaks off of a 4-mer resulting in a
3-mer that forces itself to break again into a singleton and a
dimer so that assembly the rules in ®. apply.

Note that combining the rules in @, to ®. destabilizes the
hexagon. However, the rules in &, are less likely to occur in
our setting, and thus we expect the hexagon to be more stable
than other assemblies. We hope to address this with a rigorous
probabilistic argument in a future paper.

B. Experiments

We programmed six programmable parts with the grammar
® = d.U P, and initialized them each to the state (a,a,a).
Then we placed the parts on the air table and mixed them
with four oscillating fans, as described in Section 111-B. Figure
4 shows several frames taken from video of an example
run. After approximately one minute (which was typical), the
hexagon was complete.

Another way to visualize progress of the system toward the
complete assembly of a hexagon is by plotting the distance
of each part to the center of mass of the parts. Since, in this
experiment, there are only six parts, this distance will reach
a minimum when all the parts are assembled. We show this
data, recorded using the overhead camera, in Figure 5 for the
same experiment shown in Figure 4.

C. Simulation

In simulation we can experiment with more parts. We are
particularly interested in evaluating different grammars with
the same stable components. For example, the grammar we
describe above is only one of many grammars that form
hexagons. Another way to form hexagons is to add parts one
by one and grow the hexagon linearly. Still another way is to
first form 3-mers and then hexagons from them.

We tried each of these grammars in simulations using 50
parts. For each grammar, we simulated the system 10 times
from random initial conditions for 20 minutes and recorded
the yield, which is defined to be the number of hexagons
formed divided by the total number of hexagons possible.
In Figure 6 we show the average yield for ten runs of each
grammar starting from random initial conditions. The dimer
grammar (Figure 6(c)) described above reached 70% yield on
average. The 3-mer grammar (Figure 6(b)) reached less than
30% yield on average. The one-by-one grammar (Figure 6(a))
often formed no hexagons after 20 minutes. In the next section,
we discuss why these grammars might perform so differently.

V1. MACROSCALE KINETICS

Following in the footsteps of Hosokawa et. al [7], we discuss
briefly the applicability of the standard chemical kinetics
model to our system by showing that the parts essentially
undergo diffusive motion and that one can in principle make
reasonable estimates about the reaction rates between sub-
assemblies (that is, the rate at which rules in the grammar
apply). We plan to report on the formal aspects of combining
graph grammars with reaction-diffusion dynamics in a future
paper. In particular, we intend only to motivate the potential
usefulness of the kinetics model here.

A. Evidence of “Molecular”” Motion

A graph grammar is a non-deterministic model, meaning
that it describes all of the trajectories that can occur. However,
the system we describe in this paper has considerably more
structure: Some trajectories are much more likely to occur
than others. In principle, it may be possible to determine the
exact motions of the parts and predict the resulting trajectories,
but this seems impractical. Instead, we would like to assume
that the system is undergoing reaction-diffusion dynamics. Our
data suggest that this is a good assumption.

Particles that diffuse make random walks with Maxwellian
velocity distributions. Figure 7(a) shows the distribution of
the magnitude of the translational velocities of 50 parts in
a 20 minute simulation. In the simulation, the motions of
the mixing fans were simple oscillations. The distribution is
approximately Maxwellian.

Particles undergoing Brownian motion (essential to dif-
fusion) “forget” their velocities quickly [4]. In Figure 7(b)
we show the velocity autocorrelation for a particular pro-
grammable part among six parts in a hardware experiment
using ® = @. The velocity of the part is essentially uncorre-
lated with its initial velocity after approximately 2.5s. The data
strongly support the assumption that the parts diffuse across
the air table.

B. The Binding Mechanism and Reactivity

One can determine the “reaction probability” of binding
events with a simple experiment. We programmed six parts
with ® = & (so that they immediately detach upon binding)
and allowed the system to run. Using the vision system,
we recorded the part trajectories and recorded the number
of collisions between any two parts and, for each collision,
whether it resulted in a binding event. In this experiment,
154/211 = 73% of the collisions resulted in binding events.

Figure 7(c) shows the data with circles for successful
bindings and dots for unsuccessful bindings. The horizontal
axis is the sum of the kinetic energies of the parts involved
in the collision. The vertical axis is the distance between the
centers of the parts involved in the collision, which is lowest
when the parts collide with two faces parallel, and highest
when the parts collide vertex on vertex. The data shows that
most collisions occur somewhere in between the two extremes
and that there is a slightly higher chance that low energy
collisions will result in bindings. Combined with the diffusion
rate, the probability of a binding given a collision gives us
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A series of false color frames from video data showing a collection programmable parts forming into a hexagon. The data in Figure 5 is from the

same run. Note: The airflow through the table is slightly uneven and parts tend to move toward the upper left corner.
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Fig. 5. The distance from each part to the center of mass of all parts plotted
as a function of time during hexagon formation. When the distances are the
same, the parts have formed a hexagon assembly.

Average Yield After 20 Minutes (50 Parts)

4y

o F——

°) yield(9%)

o 20 40 60 80 100

grammar

Fig. 6. Each of three grammars (a)-(c) that produce hexagons were used in
ten simulations of 50 parts. The hexagon yield after 20 minutes is shown for
each grammar.

the stochastic reaction rate [6] between two programmable
parts, which is the probability that two given parts will react
at any given time. Interestingly, one could obtain these values
theoretically based on the geometry and dynamics of the
parts. This would be similar to determining chemical reaction
rates from Schrodinger’s equation, albeit a significantly lower
dimensional problem. We plan to report on our effort in this
direction in a future paper.

C. Rule Rates

If we can determine the stochastic reaction rate between two
parts, we can determine the rate at which two larger assemblies
react via a given graph grammar rule by the same process as
described above. A simpler approximation (that is independent
of geometry and, therefore, quite approximate) is to define
the rule rate for an given graph. Formally, suppose G, H €

R(Go, ) are reachable graphs. Define the rate kg z(r) of a
rule » € ® to be the number of distinct ways it can be applied
to G to produce H:

ke,u(r) 2 [{(r,h) | G 2 HY.

We may now build a Markov chain whose states are integer
valued vectors v over the reachable components C(Go, ®). In
particular, v corresponds to the set of all reachable graphs G
for which the number of occurrences (up to isomorphism) of
component C' in G is v(C). We call this set [v]. For two
vectors u and v, we define the rate from v to v by

k‘u,Ué Z Z ZkG,H(T)-

Gelu] Hev] re®

Note that it may also be possible to combine k., , with the
bindings-per-collision data to produce an adjusted rate that
accounts for geometry.

As an example, consider the hexagon forming grammar
described above. Suppose wu; corresponds to a state with one
4-mer and one dimer. The dimer can react via (r5) with a
given 4-mer in two different ways and via (r) in two different
ways. If vy corresponds to a state with one hexagon, then
Fup, =2-2=14.

In contrast, consider the grammar (which the reader can
readily construct) that first forms 3-mers and then hexagons.
Suppose us is the state with two 3-mers and v; is the state
with one hexagon. Then k., ,,, = 2. This, together with the
geometrical fact that two 3-mers have to be very well aligned
to react, suggests that it may take quite some time for the
system to escape the state wo, whereas the state wu; (with
respect to the previous grammar), may be easier to escape.

VII.

We have built a testbed consisting of programmable parts
that self-organize in a predictable fashion according to the
mathematics of graph grammars. We demonstrated this by
programming the parts with a graph grammar whose unique
stable component is a hexagonal arrangement. Only six parts
were used in the experiment, however. We intend to build
approximately 100 parts so that we can investigate even more
compelling behaviors. We believe that this will be possible
based on the simplicity and low cost of the programmable
part design.

We also showed, through experiment and simulation, that
the parts diffuse and react in a way qualitatively similar to the
behavior of chemical systems. Formally extending the theory
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Fig. 7. (a) The distribution of the square of the part velocities from simulation. It is similar to a squared Gaussian distribution. (b) The velocity autocorrelation
for one part in an experiment with 6 parts and ® = & taken from vision data. Also shown is the average autocorrelation for all six parts. The horizontal line
is at R(0)e—"' and shows the correlation time. (c) Experimental data from the vision system with 6 programmable parts using ® = @ from Section IV-C.
Each data point represents a collision between two tiles. If the collision resulted in a binding, a circle appears, otherwise a dot appears.

of graph grammars to accommodate these ideas is a main area
of our current research.

There are many other ideas we plan to pursue that build
on the results presented here. We list some of them here. We
plan to investigate other grammars that assemble other shapes
and that define processes such as locomotion, self-repair and
transport. We hope to determine the binding probability for
two parts and for two subassemblies from first principles and
from that predict the rates at which grammar rules are applied
in our system. We plan to develop a method for analytically
evaluating an entire grammar using rule rates and geometry to
predict its yield.

Unlike with chemistry, however, with programmable parts
we will be able to engineer global behaviors quite exactly.
Of course, our programmable parts are not nearly as useful
as molecules. However, we believe that through building
and studying self-organizing systems, we may eventually be
able to apply the priciples we discover to engineering self-
organization at all scales.
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