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Abstract— The behavior of systems of stochastically interact-
ing particles, be they molecules comprising a chemical reaction
network or multi-robot systems in a stochastic environment,
can be described using the Chemical Master Equation (CME).
In this paper we extend the applicability of the CME to the case
when the underlying system of particles is not well-mixed, by
constructing an extended state space. The proposed approach
fits into the general framework of approximating stochastic
processes by Hidden Markov Models (HMMs). We consider
HMMs where the hidden states are equivalence classes of states
of some underlying process. The sets of equivalence classes w
consider are refinements of macrostates used in the CME. We
construct a series of HMMs that use the CME to describe
their hidden states. We demonstrate the approach by building
a series of increasingly accurate models for a system of robots
that interact in a non-well-mixed manner.

I. INTRODUCTION

Modeling stochastically interacting particles is key ti
many problems in science and engineering. Chemical |
actions [1], gene regulatory networks [2], and stochast
multi-robot systems [3] are examples of systems describ

in this fashion. Models of these systems typically consi 8

of a set of heterogeneous particles stochastically movi
in a reaction volume. The positions, velocities, and irdgérn
states of all particles together make up thierostateof the

efficient exact and approximate algorithms for generating
sample paths [6] and systems engineering tools for creating
and analyzing reduced order models have been applied in [7].
These modeling and analysis tools have been successfully
applied to many of the aforementioned systems of intergctin
particles.
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system. The stochastic behavior of the microstate capturgig. 1. Histogram of distances between interaction pastrigte histograms
all system properties, but microstate models are generaﬁpow the distribution of distances to the next four intécacpartners from

difficult to analyze due to the enormous size of their stat

a’ distinguished part on thBrogrammable Parts Testbd®]. The arrows
fdicate the hight of the peak near zero when it is out of rafje data

spaces. However, many system properties of interest do ngtrom simulation of the system described in Section V-D véthparts at
require detailed knowledge of the microstates. For exampl@ density ofp = 102555,

the steady state distribution of particle types or the flatitun
characteristics in the number of particle types do not mequi
detailed knowledge of the microstate positions and va&sit

However, many interesting real systems are not well-
mixed, so the theoretical underpinning of the CME does

As a result, we attempt to build models with a coarser systenot apply. One approach for dealing with such systems is
description. This is the case in the chemical master equatito model the whole microstate process. When the stochastic
(CME) [4] where the state describes the copy number of eachotion of the particles is described by Brownian motion,
particle type, but not each particle’s position and velodit  this is the Smoluchowski model and tools for efficiently
this paper, we call these coarser statescrostatesUnder simulating sample paths in this model exist [9]. Howeves th
the assumption that the particles are well-mixed, thatisyt approach introduces a continuum of states for representing
are uniformly distributed on the reaction volume and diéfus each particle’s position, which makes tools for the diseret
quickly, the stochastic process describing the developmestate CME inapplicable. Instead, we propose to augment the
of the macrostates is a Markov process whose dynamics aracrostatesof the system using thextended state space
described by the CME [5]. approach, in which each particle keeps track of the types
The CME is amenable to many mathematical tools becausé previous interaction partners. In this paper we fornealiz
the probability mass function of the system states is g@aebrnideas introduced in [10]. The extended extended state space
by linear ordinary differential equations. Further, thesdst formulation is a compromise between explicitly accounting



for the position, velocity, and identity of each particle, 1 3

and only using the copy number of particle types as the 2 I

system state. This formulation approximates the dynamics ~

of the macrostate as a Hidden Markov Model with a CME

description for the hidden states. -
In this paper we propose a new approach for producing I

tractable models of non-well-mixed processes. An example S

2
system of stochastically interacting robots with this Enp 3

is described in [8]. Thérogrammable Parts Testb@bnsists g 5 Representation of an HMM. The state space of the Mackain
of randomly stirred robots floating on an air table. Specifiis X = {0,1,2,3} and represented circles. The numbers on the edges
cally, this paper focuses on the case when the well-mixed dﬁpresent transition probabilities. By adding an outputfion f : X — YV
. . this Markov chain can be turned into an HMM, the boxes represtates
sumption underlying the CME does not hold because repegk; map to the same output.
interactions between particles are likely. The robotsrate
stochastically, but the parts are not well-mixed as Fig. |
indicates. Each histogram shows the distribution of distan . -
to future interaction partners at the time of an interactiine ~ r€ memoryless. Thene-step transition probabilities
peak close to 0 corresponds to the probability of intergctin A C PIX . — X — ) for i
. . . 17 - n - n — or ) € Xa

again with the same part. The last histogram represent a i) (Ko =1l i b
uniform distribution of reaction partners over the reattio specify the transition dynamics of a Markov chain. In a
domain. The peak is roughly; high, which is the probability stationary process matrid is independent of.. The initial
of picking the same partner from the 24-1=23 options. Thgijstribution of a stochastic process is described by theovec
differing shape between the first two histograms in Fig. },, = p{X, = i}, for i € X. The pair(«, A), completely
highlights the increased likelihood of reacting with closgjescribes the probability measure over trajectories of a
neighbors. In Section V we construct a model that captur@garkov chain [11, Thm. 8.1].
this behavior. . . . A Hidden Markov Mode(HMM) is a stochastic process

The paper is organized as follows. Section Il introducegith state spacé whose probability measure on trajectories
necessary notation and mathematical background. Settiondan be described the by a Markov chathand anoutput
discusses properties of the Kullback-Leibler divergerate,r function f : X — Y, whereY is called theoutput space
which we used to quantify the difference between processesince the functionf can be many-to-one, the resulting
Section IV introduces a method for approximating arbitraryprocess)’ can be non-Markov although the processis.
stationary, discrete state, discrete time stochasticess®s HMMs are a rich class of models and in general can have
by Markov chains and details the construction of HiddeRandom output functions, however, the simpler deternimnist
Markov Models from equivalence classes of the microstaigytput description suffices for this paper. Like the traosit

space. In Section V we define a particular set of equivalenggobabilities, which can be represented as a maffixan
classes that are designed to capture repeat reactions gaO\written as dY| x | X| matrix B,

apply this approach to the non-well-mixed Programmable
Parts Testbed. B { 1 if f(j) =i
771 0 otherwise
Il. MATHEMATICAL FORMALISM
Example 1. Fig. 2 is a schematic representation of an HMM,
with state spaceX = {0,1,2,3} and output spac&” =
A discrete timestochastic processt’ is a collection of {a,b}. The nodes represent states of the Markov chain, the
random variables{ X, },en, parameterized by the natural arrows represent transitions, and the two grey boxes repres
numbersN. A stochastic process generategjectories i.e. the two output states. The functighis given by
functions from the index seN to the state spac&. A

A. Markov Processes

particular trajectoryw € N — X is an assignment of each 0 = a

random variableX,, to a particular value: € X. We view a f= 1 = a

stochastic process aspaobability spaceon trajectories, i.e. 2 = b

(N— X, F, P), whereF is generated by cylinder sets [11, 3 = b

Sec. 2]. When the Markov chain is stationary adds irreducible, the
A discrete state process with the property that initial distribution « is determined by the relatiodA” o = «.

The parameters for the HMM in Fig. 2 are
P{Xn+1 = xn+1|X'n =Tp, Xp-1=Tp_1,...., X0 = xO}

= P{Xn+l = xn-‘rl‘Xn = l‘n}a (1) % % 0 0
4|0 001

wherez; € X is called aMarkov chain Probability measures - % 00 3 |’
with property (1) are calleMarkov probability measuresnd 5 0 % 0



B = ( L1100 ) 7 are equivalent with respect to the quantity of interestext. F
00 11 example, in Section V the partitioH is generated by putting

and all states with the same copy number of each species in the
o= (E 3 4 E)T ) same seth € H. Any coarser partition would not capture
19 19 19 19 this system feature we are trying to model. Associated with
The Markov chainX is specified byA anda and together each partitionH,, is an equivalence relatior,,. Given two
with output functionB define an HMM. partitions in this hierarchyH,, and H,, with n > m, the
B. Equivalence Relations coarser H,, naturally defines an equivalence relation on the

. . . . . finer H,,,
The remainder of this section is about notation related "

to equivalence classes, partitions, and quotient spaces. A h,, ~,, h., < 3h,, € H,, St hy C hyy AR C hyy.
equivalence relation~ on a given space, divides X into ) . ) ) .
a set of disjoint subsets calledjuivalence classeShe set of SINCe this equivalence relation df), is induced by the same

equivalence classes is called tpgotient spacend denoted equivalence relation that induces,, on X, we .Wi“ use

by X,. The mapr : X — X, that maps each element of the same symbol to denote both. Further, we identify each
X to its equivalence class is called thaotient map Every eIgmenF 'r_'Hn/_N_m V‘,”th the elemgnt Ny, that. creates It.
equivalence relation oiX produces equivalence classes thaf¥ith this identification We can view the quotient map:
form a partition of X, a set of disjoint subsets of whose n — Hy, as amapping tdly, instead offf,,.,,. For

union is X . Similarly, every partition induces an equivalenceorec's'on' SUb and supgr—scrlpts will be added to the qnbt!
map 7 to indicate the involved spaces. For example, with

relation. C
By defining an equivalence relation on the state space " > ™ Tm : Hn — Hi IS given by
of a stochastic proces’, we can form a new stochastic 7 (hn) = hy, Where hy, C .

processt, . by composingX,, with 7

I1l. THE KULLBACK-LEIBLER DIVERGENCERATE
X/ = {(X/)n}tnen Where (X, ), =mo X,.

. . . . . To compare probability measureB,and @, for a random
In particular, if X' is Markov thenX,. is an HMM with  processY we use the Kullback-Leibler (KL) divergence rate

output spaceX,.. If the original processt is stationary, or relative entropy rate [12], defined as,
then so isX/ ..

o1 P(w)
Example 2. We can create the same process as in Example 1 Dx(P|Q) = i N Z P(w)log (Q(w)) )

by defining an equivalence relation da = {0, 1, 2, 3} such weXN
that When this limit exists it is called the divergence rate betwee
0~1 and 2~ 3. the processes defined under the probability measbraad

Q. For stationary, ergodic processes this limit always exist
save the absolute continuity requiremeftg @@ [13, THM

If one identifiesa € Y from Example 1 with{0,1} and : . . e o
. . . ’ 4.2]. This requirement is satisfied by the approximations
b € Y with {2,3} then the HMM given in Example 1 can introduced in the next section.

be expressed a¥;, the output functiory' is represented by The KL-divergence rate measures how different the prob-

equivalence classes. States with the same output are in the,. . :
q X P ability measure@ is from a true measuré®. Since the
same equivalence class.

problem considered in this paper is the approximation of
The notion ofrefinemengives apartial order on the space a given process, we let the true measure on trajectories
of all partitions. Given two partitiong/ and H’' of a space be the one generated by the original process. The other
X, H' is a refinement of, written asH’' C H , iff distribution,@ in (3), is the measure on trajectories generated
Vi e B JheH st W ch by the various approxima_tions. Since the remaining _sestion
compare processes on different output spaces, derived from
The top elementT of this partial order is induced by the probability measures on trajectories in the hidden stales,
equivalence relation in which all elements are equivalenautput space will be added t® as a subscript to avoid
ThebottomelementL is induced by the equivalence relationconfusion. For example, the expressibn (P||Q) denotes
where every element is equivalent only to itself. the divergence rate whete € N — X, under two different
Given a particular partition’7 of X we construct series probability measure$> and @, while Dx,.(P| Q) denotes
of refinements to build increasingly better HMM approximathe divergence whew € N — X, _.
tions of X. For the remainder of this paper assume that we Since the KL-divergence rate is an asymptotic property of
have a procesg’ with state spaceX, a partition H of X, two stochastic processes it is suitable to measure diffeen
and a series of successive refinemeHtssuch that in their steady state behavior. The theorems in the next
section all require stationarity, which can be interpreasca
LECHLHLCH=HLT. 2) system startir?g in its steady sytate. For transient chre)riam
The partitionH is given by the aspect of the system we wanthis approach does not capture the differences in probabili
to model. It should be chosen so that all elementsfincaH  measures on trajectories. One possible alternative agiproa

This induces the two equivalence clasg§ésl} and {2, 3}.



is to use the KL-divergence on finite length trajectoriesThe entries ofA can be computed from the underlying
The immediate difficulty then is computing with probability processY. For example, the (1,1) entry of is given by
measures on the potentially very large discrete space of
possible trajectories. We use this approach to estimate the P{X1€{0,1} | Xo € {0,1}} =
KL-divergence rate for a small example in Section V, but do Z P{X1=j| Xo=i}P{Xo=1i] Xo€{0,1}}
not explore the theory of creating approximate models thatic{o,1}

capture transient behavior. Instead, we leave this irtiages =1 g + % g +0 g +0 g =2

2 3
guestion as future work. ) R
Theorem 1. [13, Remark 4.7]Choosing the parameter@

IV. APPROXIMATION and A for the Markov approximation as in (4)-(5) minimizes

) ) the KL-divergence rateD x (P|| P), between a stationary
In this section we construct Markov processes that UsS§,q the Markov proces&A’.

equivalence classes af, .. as their states. Each such process . o

is an approximation of the process.. and does not take  The remark in [13] sets up a minimization problem for
into account the larger state spade We think of the the KL-divergence rate. The resulting optimization proble
equivalence classes as macrostates and the state &pac&€an be explicitly solved via Lagrange multipliers, see Ap-
as the microstates. Both the approximation and the originﬁpn{jix A. N . .
process define probability measures®n- X, and thus ~ Given a partitionH,, of the state spaceX in the hi-
the KL-divergence rate can be used to comp#ye and its  erarchy (2) we use the following notation. The Markov

approximation. approximationt’, . of &, is a Markov chain with state
space H,. Once again, we specifyX,. by an initial
A. Markov Approximations distribution and transition probabilities according tof)-(

In this section we construct a Markov chain approxi{>): Denote the resulting probability measure on trajeesor

mations of an arbitrary stationary proceds We give the N— H, by P,.
optimal choice for the transition probabilities, in the sen B. HMM Approximations
that this choice minimizes the KL-divergence rate between

- . . . Recall that for processt with state spaceX, we have
the original process and its Markov approximation. P P

a partition H that is determined by some quantity we are
Definition 1. Given an arbitrary stationary stochastic pro- interested in modeling, and a fixed series of successive
cessX, a Markov approximationt is a Markov chain that refinementsH, (2). Our goal is to build a hierarchy of
has the same state space &s HMMs that can serve as approximations for a macrostate
processY,.,. For each partitionf,,, in the refinement (2),
we construct a Markov chain approximatiﬂf?;wn If m <mn,
we can construct an HMM)?/NH)/ ~m, by usingzl?, as the
a; = P{X, =i} = P{X, = i}. (4) output map.

For example(X.,)/ ~1 is the HMM that has the Markov
In addition, we choose matching one step transition probapproximation ofX,., as its hidden states and : Hs —
bilities. Fori, j € X, H, as its output function. The KL-divergence rate between

- ~ PN ) . , this process and’,.., is denoted b
Ajj=P{X1=j| Xo=1i} =P{X1=j| Xo=1i}. (5 P /o Y

Any choice of (a, A) will define a Markov process with
state spaceX. For X we pick the initial distributionn as

_ _ N - D, (P|Py). (6)
Assignments (4)-(5) define a probability measufe on

trajectories of X' as described in Section Il-A. When the Theorem 2 and Conjecture 3 relate the divergence rates
original processY is Markov, thenP and P will be the of the different HMMs that can be formed within the hierar-
same for all trajectories. However, when the original pssce chy (2). First, we relate processes with the same probgbilit
is not Markov, then the Markov approximatiot will match ~ measure on its hidden state states, but with different dutpu
only the one step transitions df, but will define a different Spaces.

probability measure on trajectories. Theorem 2. Given a stationary stochastic proceds with

Example 3. Let ) the the output process,... The Markov ~State spaceX, a probability measure” and two partitions

approximatioroA) is given by the initial conditions H,, C H, of X in the hierarchy (2) the following relation
holds,
- ( a0 + ) - ( 4 ) D, (P|Py) > Dy, (P|Py)
az +as i with n < m < k.

and one step transition probabilities Proof: We prove the statement for two arbitrary
5 probability measures” and Q. The proof uses Jensen’s
A= 3 3 inequality to show that this relation holds for each term

3 L in the limit for (3). Fixing N, a term fromDy;,, has the form



P(w) P(w)\ the trajectories in the hidden states, so it should also tead
> P(w)log (W) =) P(w)l (Q(w) a good HMM approximation as well.
wEHN pEH T m(w)=p ®) Theorem 2 suggests that in order to make a more accurate
' N . , . model of a process one could simply decrease the size of
For a fixedp € H,’, looking only at the inner sum gives the output space by going up the hierarchy of refinements
Pw)\ _ Qw) to a coarser partition. In fact, if the output spaceTisthen
Z Pw)log <Q(w)> B Z P@) 1Og< the divergence rate is zero no matter what the underlying
) state space is. However, as indicated in (2), corresponds
Becauselog is a concave function, applying Jensen’s into some given partitiorff that is determined by the process

P(w)

w(w)=p w(w)=p

equality to (9) gives we want to model.H specifies the least amount of detalil
the output space must have. For example, in the next section
ﬁ ZP(w) log (%) <log (%) , the coarsest equivalence relation is the one resultingen th
w w w macrostates used by the CME.
where 3" stands foer)_ . Using expression(l(Ol)O) Fig. 3 illustrates the results of Thgorem 2 and Conjec-
in (9) yields = ture 3._ I_n order to decrease the KL—leer_gence rate betvyeen
the original process and an approximation, one can either
ZP(‘”)lOg <P(‘*’)> > ZP(‘*’) log (Zw P(W)>’ increase the size of the hidden state space, or decrease
— Qw) ” > Qw) the size of the output space. The approach taken when
(11) constructing theextended state spader stochastic reaction
where the right hand side is equal tB(p)log (% . networks in the next section, is to increase the size of the
Finally, establish that state space for constructing more accurate models.
1 P(w)
v 2o () ...
weHN N o =~
" n g D, (P|| Ps)
L Pw) o PPl < D (PIIy)
-N Z Z P(w)log(Q(w)) S5 a T TR
PEHY m(w)=p 82| Du(PIB) < Du(PIP) < Du(PIB)

Vi Vi Vi
1

P(P)) Diny(P||P P P E
> — E P 10g< . 1, (P Ps) Du,(P|Py) < Dpg,(P||Py) < Du,(P|Po)
N (°) Q(p)

pEHN Increasing size
. of States Space
It follows that Dy, (P||Q) > Dg, (P||@) since the rela-

tion is true for each term in the limit (3). By inspecting
relation (11), we note that equality holds when probak#iti

have a constant ratio on each equivalence clasgijn
>, PWw) _ Pw)
>, QRW T Q)"

IA

Fig. 3. Relation between the various Markov approximatidrie arrows
indicate the direction of increasing accuracy. The darkdsiaindicates
Markov models, the light shading indicates HMMs.

O
The following conjecture relates processes with the same
output space, but different hidden states. V. APPLICATION TOREACTION NETWORKS
Conjecture 3. Given a stationary stochastic process, In t.h'S secthn we introduce a modgl for non-yvell-m|xed
a hierarchy of partitions (2), and the associated MarkovChem'Cal reactions and propose a refinement hierarchy that
. . ’ captures repeat reactions. We then use this hierarchy toedefi
approximations we have . .
A R an extended state spaci®r chemical reaction networks.
Dy, (P||Pp) < Dp,, (P||Px) (12) Finally, we apply the extended state space approach to the
. robotic system introduced in Fig. I.
with0 <n <k<m.
Both the left and right hand side of (12) correspond to thé- Microstate Model
divergence of the original macrostate procéss,, and an In the microstate model for chemical reactions particles of
HMM approximation. The difference between the left andlifferent type$ S move randomly in aeaction domain If
right hand expressions is that the HMM on the left has aisvo particles encounter one another they may react acaprdin
its hidden states a finer Markov approximation than the righio a set of possible reactiond,. The positions, velocities,
hand side. orientations, and internal states of the particles defire th
The reason we believe this conjecture to be true is thaticrostates of the system. Denote the set of all possible
the trajectories of hidden states on the left hand side of (12
contain more information about the original process than th In thde context of ChemLca' rea‘;]“c_’”s the types are 9dhe;“icaji‘~“‘$‘.e'“
. . . our moae: partlc es can change their type, so we avoid the NPREES,
hidden states on the I‘Ight hand side. By Theorem 1, t ce it implies some fundamental description of the partich tloes not

Markov approximation of the hidden states is optimal fokhange spontaneously.



positions, orientations, and velocities for each partinld’.  of possible repeat reactions that can change the macrostate
The state space for a microstate process Witlparticles is  should capture this behavior.
N N In order to facilitate the construction of thextended
X =57 xV7. state spacewe first augment the microstates such that each
The particles move in the reaction domain according tgarticle has a history of the types of previous interaction
the microstate proces&. When two particles are in close Partners. This does not change the stochastic behavior of
proximity, they can react according and change their type. the system. To preserve the finite nature of the state space,
The details of the interaction depend on the physical syste@SSume that each particle has a history lengtiL ajf the
but reactions generally require proximity. For the dethiletypes of particles it has encountered on the reaction damain
reaction mechanism between the robots from Figure | see [§fiven a set ofN particles the state spack for the new
The set of reaction® considered for the remainder of the Microstate process’ describing this system of interacting

paper is particles is
24 — 2B X =SV x (ML x vV
v=¢ 2B — 2C .
20 — 24 The first(1+ N) x L components are extended types, and the

last N components are positions of particles in the reaction
Reaction networkl is cyclic in the sense that reactions occurdomain.
even when the system is in equilibrium. This is important Let ~, be the equivalence relation thatz’ € X are
since the theoretical development in Section 1V is appleab equivalent iff they have the same copy number of each
only to stationary systems. species, which induces macrostates of the CME. Letthe

be defined as follows. Two states are similax,, 2’ iff
B. Macrostate Model n ¥

In this section we describe the macrostates used in th&k € {0,n} ey kr1yn (%) = oIy, (kr1)n (27)).
CME in terms of an equivalence relation on the mlcrostateﬁ.he sameo has to work for all the history states in order

Th's. .W'” form the qoarsest partition in a h|era_rchy OffO{ two states to be similar. An immediate consequence of
partitions used to define the extended macrostate in the NeXLe definition is that

section.

In the CME the macrostates of the system are the copy T 2 = x e~y (13)
number of each particle type. When the system is well-mixed
the next reaction only depends on the current macrostaf@foperty (13) implies that this set of equivalence relation
since the positions, velocities, and orientations of aftipees ~ induces a hierarchy of partitions as described in section IV
at the time of the last reaction are rapidly mixed to theiB- Now we can construct a new reaction netwoik’
steady state values and do not influence the next macrostitat correspond to the admissible state changes,in For

transition [4]. example, inH;

Let II; v : X — SV be the projection ofX onto the 244, — 2Bp
components 1 throughy , and Sy the group of permutations 94 — 2Bp
of the NV indices. The equivalence relation defining the CME 24 — 2Bp
macrostates is, As+Ap — 2Bjp

x~yx & o €Sy st I n(x) =0l n()), Aa+Ac — 2Bp

0 N 1,N( ) ( 1,N( ) gl — Ap+Ae — 2Bp

for any z,z’ € X. The expression on the right hand side A, +B, — Ap+ By
highlights two essential features of the macrostate. The A+ C. — Ac+Cy
projectionlI indicates that only the particle types matter and B,+C, — Bc+Cp
the permutation of indices indicates that the macrostaés do B.+B, — 20C¢
not keep track of particle identities. Ci+C. — 24, |
C. Extended Macrostates where « € {A4,B,C} is a wild card that describes all

In this section we construct a hierarchy of equivalencBOSSIDIe species types. The letters indicate the parygie t
relations that is tailored to capturing repeat reactiortse T @nd the subscripts indicates the history of types. For el@mp
motivation for this particular hierarchy of refinements isis denotes a particle of typd whose last interaction was
that even when repeat interactions between individual pafith @ particle of typeB. Similarly, higher order extensions
ticles are likely, they can only affect the macrostate ifytheOf ¥ are written by having more history states, for example
are between appropriate types. Instead of keeping track of
individual pairs that are likely to re-react, we only keep
track of thetype of previous reaction partners. In a givenis a reaction froml on Hs. Each extended reaction network
reaction network only repeat reactions between certaiesyp¥” can be thought of as an HMM approximation of the
can change the macrostate. Keeping track of the numberacrostate process, by considerirjgas the output function.

Aapc +Appc — Bpap + BpeB



The reaction networkl! has the important feature that 0.07.
244 — 2Bp [

0% Dy, (PIIBy)

[ Markov Chain Approx.

is considered a different reaction than, for example,

o
a

AA +AB — 2Bpg.

KL-Divergence onH,®
2 R

This allows the two reactions to have different rates of e
. . . .. Dy, (P||Py)
curring when repeat reactions are likely. This is not pdes i HMM Approx
in the CME model ofW. o2t ® ®
) |- ~ ~
T Dy (P P2) Do (PII1P3)
D. Numerical Example L. HMMApprox. HMM Approx.
1.0 1.5 2.0 2.5 3.0 3.5 4.0

The Programmable Parts Testbe@] consists of trian-
gular robots. Every robot has a magnetic latch and an IR
transceiver on each side. We refer tq these robots as tHS- 4. This figure shows an estimate Bty (P Bo)), Dz (PIIP1)),
programmable partsThey float on an air-hockey table andp; (p||B,)), and Dy, (P||Ps)) of the system described in Section V-
are randomly mixed by air jets that are mounted alon@. Each estimate has a label indicating the type of approxanatie KL-

; ; ; ivergence is computed with respect to. The estimate is forméabtking at
the perimeter of the table. The following experiments Werﬁnite trajectoriesv € {1, ...,8} — H. The error bars result from different

conducted using a high-fidelity mechanics-based Simu_ﬂati_%ets of Monte Carlo simulations for estimating the probabiiteasures of
of the system [3]. In all experiments the average kinetithe approximations.

energy per robot, is kept &t 10~%.J by adjusting the mixing
strength. This is analogous to performing experiments at a
constant temperature. VI. DiscussioN
We implemented the reaction network with the pro- The contributions of this paper are (1) to introduce general
grammable parts, where the type is represented by an iapproach of state space refinements to construct a series of
ternal state of the parts. The state can only change upeiMMs, (2) to use HMM tools to analyze reaction networks,
temporarily latching with another part of appropriate typeand (3) to construct the extended state space, which can
We then ran simulations until the system reached steadwpture repeat reactions in reaction networks. The extende
state and collected trajectories and estimated rates &.in [state space is able to capture spatial aspects of the particl
Additionally, we took into account interactions that didt no interactions without explicitly modeling space itself.
change the macrostate to estimate the probability of self The theory developed in Section IV only requires a series
loops. We used this data to extract the embedded Markef refinements. The hierarchy chosen in Section V is phys-
chain of the system. ically motivated, but by no means the only possible choice.
The trajectories started from a small number of part®ne avenue for future research is to compare different
(initial macrostate =(2,1,1)’). As a result there are only refinements. In addition to trying different physically mo-
a few reachable macrostates. This restriction allowed us twated refinements schemes, we would also like to address
gather enough data to estimate the measufer fixed length  the problem of automatically generating optimal refinement
trajectories and compute the KL-divergence. Fig. | suggesthemes from data. This is different from the question of
that after four interactions the system is roughly well-etix finding optimal HMM approximations as in [13], since we
We considered trajectories of length 8, making the problemequire the states of the HMM to be equivalence classes of
computationally feasible yet sufficiently long to mix awaysome microstate model. Such analysis could not only yield
spatial aspects. reduced order models, but also give physical insight in& th
Specifically, there are only 3 macrostates resultingfin=  dynamics of the system.
6561 different trajectories of length 8. However, not all of The utility in expressing the hidden states of an HMM as
these trajectories are feasible due the restrictions iegosa reaction network, is that one can apply linear ODE and
by . We used simulations to estimafeon this space and systems engineering tools to the hidden sates of the HMM,
compared it to the probability measures induced by differemwhile the output function allows the model to capture some
approximations. The results of this comparison are shown of the non-well-mixed aspects of a system.
Fig. 4. The optimality of the Markov approximation depends on
This example shows the extended state space approdbk measure used to asses the distance between stochas-
producing models with less KL-divergence from the originatic processes. The KL-divergence rate used here captures
process than a Markov approximation. Also, the data suggestymptotic differences corresponding to the steady state.
that the mixing in the system is such that keeping the typdsing a similar approach with a different distance measure
of more than two previous reaction partners in the stateould allow the development of approximate models that
provides little improvement. This observation is congiste are geared toward reproducing the transient behavior of a
with the data displayed in Fig. | and justifies only usingarbitrary stochastic processes.
short trajectories for estimating the KL-divergence. We intend to formally prove the claims of Conjecture 3.



We would also like to extend the work to include the continudo find the critical point, differentiates with respect teeth
ous time case since this would allow reasoning about rates iy; and obtain

reaction networks. We would like to find out how thasic
rates used in chemical reaction networks are connected to
the analysis presented here, which focuses on the Markovian
aspect only.

APPENDIX
A. Proof of Theorem 1

Here we show that the transition probabilities and state%hoosmg/\i =P

as defined in Section IV-A define the Markov process mini-
mizing the KL-divergence rate between the original process

OL i
—_— = — I,)\] + X =0
So that the optimal value is given by
Pji -~

(Xo = 1) gives that,

~

P(X; =j|Xo=1i) = P(X1 = j|Xo =1),

and its approximation. The approach is to minimize thdhe one step transition probabilities m_us_t match to mim'miz_
expression for KL-divergence rate over all possible Marko{® divergence rate between the original process and its

transition probabilities via Lagrange multipliers. It ibe
useful to only look at short sections of a trajectories. Let
X" denote the set of of trajectories that are only specifiec{l]
from time {n,n + 1,...,m — 1,m} C T. Equation (3) can
be rewritten as

PN 1 P(xpt
Dx(P||P) = lim —Eplog A(iol) :
n—oo n P(XSL_ )
where Ep is the expectation with respect to the probability [4]
measureP.

(2]

(3]

(5]
Dx(P|[P) = o
o1 n— 1 Y
Jim - Bplog (POXG™) = lim - Eelog (POXG™).

The first term on the RHS is finite since the original process
is stationary, and does not depend on the choices of transiti [g]
probabilities so it can be replaced by a constant ]
~ 1 ~
Dx(P|P)=C - lim —Eplog (P(ngl)) .
n—oo N

: " [10
Next note that due to the stationary Markov transition struc
ture of P the expression simplifies according to arguments
in [13] resulting in

5 5 [11]
Dx(P|P) = C — Eplog (P(X1|X0)) .
[12]
We want to optimize this expression over all non-negative
P(X; = j|Xo = i) with the constraints that (13]
~ N ~
gi(P(X1]X0)) =Y P(Xy =n|Xo=i)=1 VieX.

n=1

For notational convenience let

pji = P(X1 = j,Xo =1)
and note that

A\ij = JS(Xl = j|Xo =1)

The Lagrangian then is

L(A\y )\17 B8] )‘n) =
N . N R
C — Z pji 1Og(AZj) + )\z Z Aij -1
i=1,5=1 i=1,5=1

] N. Napp and E. Klavins,

Markov approximation.
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