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Abstract— The behavior of systems of stochastically interact-
ing particles, be they molecules comprising a chemical reaction
network or multi-robot systems in a stochastic environment,
can be described using the Chemical Master Equation (CME).
In this paper we extend the applicability of the CME to the case
when the underlying system of particles is not well-mixed, by
constructing an extended state space. The proposed approach
fits into the general framework of approximating stochastic
processes by Hidden Markov Models (HMMs). We consider
HMMs where the hidden states are equivalence classes of states
of some underlying process. The sets of equivalence classes we
consider are refinements of macrostates used in the CME. We
construct a series of HMMs that use the CME to describe
their hidden states. We demonstrate the approach by building
a series of increasingly accurate models for a system of robots
that interact in a non-well-mixed manner.

I. I NTRODUCTION

Modeling stochastically interacting particles is key to
many problems in science and engineering. Chemical re-
actions [1], gene regulatory networks [2], and stochastic
multi-robot systems [3] are examples of systems described
in this fashion. Models of these systems typically consist
of a set of heterogeneous particles stochastically moving
in a reaction volume. The positions, velocities, and internal
states of all particles together make up themicrostateof the
system. The stochastic behavior of the microstate captures
all system properties, but microstate models are generally
difficult to analyze due to the enormous size of their state
spaces. However, many system properties of interest do not
require detailed knowledge of the microstates. For example,
the steady state distribution of particle types or the fluctuation
characteristics in the number of particle types do not require
detailed knowledge of the microstate positions and velocities.
As a result, we attempt to build models with a coarser system
description. This is the case in the chemical master equation
(CME) [4] where the state describes the copy number of each
particle type, but not each particle’s position and velocity. In
this paper, we call these coarser statesmacrostates. Under
the assumption that the particles are well-mixed, that is, they
are uniformly distributed on the reaction volume and diffuse
quickly, the stochastic process describing the development
of the macrostates is a Markov process whose dynamics are
described by the CME [5].

The CME is amenable to many mathematical tools because
the probability mass function of the system states is governed
by linear ordinary differential equations. Further, thereexist

efficient exact and approximate algorithms for generating
sample paths [6] and systems engineering tools for creating
and analyzing reduced order models have been applied in [7].
These modeling and analysis tools have been successfully
applied to many of the aforementioned systems of interacting
particles.
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Fig. 1. Histogram of distances between interaction partners. The histograms
show the distribution of distances to the next four interaction partners from
a distinguished part on theProgrammable Parts Testbed[8]. The arrows
indicate the hight of the peak near zero when it is out of range. The data
is from simulation of the system described in Section V-D with24 parts at
a density ofρ = 10 parts

m2
.

However, many interesting real systems are not well-
mixed, so the theoretical underpinning of the CME does
not apply. One approach for dealing with such systems is
to model the whole microstate process. When the stochastic
motion of the particles is described by Brownian motion,
this is the Smoluchowski model and tools for efficiently
simulating sample paths in this model exist [9]. However, this
approach introduces a continuum of states for representing
each particle’s position, which makes tools for the discrete
state CME inapplicable. Instead, we propose to augment the
macrostatesof the system using theextended state space
approach, in which each particle keeps track of the types
of previous interaction partners. In this paper we formalize
ideas introduced in [10]. The extended extended state space
formulation is a compromise between explicitly accounting



for the position, velocity, and identity of each particle,
and only using the copy number of particle types as the
system state. This formulation approximates the dynamics
of the macrostate as a Hidden Markov Model with a CME
description for the hidden states.

In this paper we propose a new approach for producing
tractable models of non-well-mixed processes. An example
system of stochastically interacting robots with this property
is described in [8]. TheProgrammable Parts Testbedconsists
of randomly stirred robots floating on an air table. Specifi-
cally, this paper focuses on the case when the well-mixed as-
sumption underlying the CME does not hold because repeat
interactions between particles are likely. The robots interact
stochastically, but the parts are not well-mixed as Fig. I
indicates. Each histogram shows the distribution of distances
to future interaction partners at the time of an interaction. The
peak close to 0 corresponds to the probability of interacting
again with the same part. The last histogram represent a
uniform distribution of reaction partners over the reaction
domain. The peak is roughly123 high, which is the probability
of picking the same partner from the 24-1=23 options. The
differing shape between the first two histograms in Fig. I
highlights the increased likelihood of reacting with close
neighbors. In Section V we construct a model that captures
this behavior.

The paper is organized as follows. Section II introduces
necessary notation and mathematical background. Section III
discusses properties of the Kullback-Leibler divergence rate,
which we used to quantify the difference between processes.
Section IV introduces a method for approximating arbitrary,
stationary, discrete state, discrete time stochastic processes
by Markov chains and details the construction of Hidden
Markov Models from equivalence classes of the microstate
space. In Section V we define a particular set of equivalence
classes that are designed to capture repeat reactions and
apply this approach to the non-well-mixed Programmable
Parts Testbed.

II. M ATHEMATICAL FORMALISM

A. Markov Processes

A discrete timestochastic processX is a collection of
random variables,{Xn}n∈N, parameterized by the natural
numbersN. A stochastic process generatestrajectories, i.e.
functions from the index setN to the state spaceX. A
particular trajectoryω ∈ N → X is an assignment of each
random variableXn to a particular valuex ∈ X. We view a
stochastic process as aprobability spaceon trajectories, i.e.
(N → X, F , P ), whereF is generated by cylinder sets [11,
Sec. 2].

A discrete state process with the property that

P{Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, ...,X0 = x0}

= P{Xn+1 = xn+1|Xn = xn}, (1)

wherexi ∈ X is called aMarkov chain. Probability measures
with property (1) are calledMarkov probability measuresand
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Fig. 2. Representation of an HMM. The state space of the Markov chain
is X = {0, 1, 2, 3} and represented circles. The numbers on the edges
represent transition probabilities. By adding an output functionf : X → Y
this Markov chain can be turned into an HMM, the boxes represent states
that map to the same output.

are memoryless. Theone-step transition probabilities,

Aij(n) = P{Xn+1 = j|Xn = i} for i, j ∈ X,

specify the transition dynamics of a Markov chain. In a
stationary process matrixA is independent ofn. The initial
distribution of a stochastic process is described by the vector
αi ≡ P{X0 = i}, for i ∈ X. The pair(α,A), completely
describes the probability measure over trajectories of a
Markov chain [11, Thm. 8.1].

A Hidden Markov Model(HMM) is a stochastic process
with state spaceY whose probability measure on trajectories
can be described the by a Markov chainX and anoutput
function f : X → Y , whereY is called theoutput space.
Since the functionf can be many-to-one, the resulting
processY can be non-Markov although the processX is.
HMMs are a rich class of models and in general can have
random output functions, however, the simpler deterministic
output description suffices for this paper. Like the transition
probabilities, which can be represented as a matrix,f can
be written as a|Y | × |X| matrix B,

Bij =

{
1 if f(j) = i
0 otherwise .

Example 1. Fig. 2 is a schematic representation of an HMM,
with state spaceX = {0, 1, 2, 3} and output spaceY =
{a, b}. The nodes represent states of the Markov chain, the
arrows represent transitions, and the two grey boxes represent
the two output states. The functionf is given by

f =






0 7→ a
1 7→ a
2 7→ b
3 7→ b

.

When the Markov chain is stationary andA is irreducible, the
initial distributionα is determined by the relationAT α = α.
The parameters for the HMM in Fig. 2 are

A =





1
2

1
2 0 0

0 0 0 1
1
4 0 0 3

4
1
3 0 2

3 0



 ,



B =

(
1 1 0 0
0 0 1 1

)
,

and
α = (

6

19

3

19

4

19

6

19
)T .

The Markov chainX is specified byA andα and together
with output functionB define an HMM.

B. Equivalence Relations

The remainder of this section is about notation related
to equivalence classes, partitions, and quotient spaces. An
equivalence relation∼ on a given spaceX, dividesX into
a set of disjoint subsets calledequivalence classes. The set of
equivalence classes is called thequotient spaceand denoted
by X/∼. The mapπ : X → X/∼ that maps each element of
X to its equivalence class is called thequotient map. Every
equivalence relation onX produces equivalence classes that
form a partition of X, a set of disjoint subsets ofX whose
union isX. Similarly, every partition induces an equivalence
relation.

By defining an equivalence relation∼ on the state space
of a stochastic processX , we can form a new stochastic
processX/∼ by composingXn with π:

X/∼ = {(X/∼)n}n∈N where (X/∼)n = π ◦ Xn.

In particular, if X is Markov thenX/∼ is an HMM with
output spaceX/∼. If the original processX is stationary,
then so isX/∼.

Example 2. We can create the same process as in Example 1
by defining an equivalence relation onX = {0, 1, 2, 3} such
that

0 ∼ 1 and 2 ∼ 3.

This induces the two equivalence classes{0, 1} and{2, 3}.
If one identifiesa ∈ Y from Example 1 with{0, 1} and
b ∈ Y with {2, 3} then the HMM given in Example 1 can
be expressed asX/∼, the output functionf is represented by
equivalence classes. States with the same output are in the
same equivalence class.

The notion ofrefinementgives apartial order on the space
of all partitions. Given two partitionsH andH ′ of a space
X, H ′ is a refinement ofH, written asH ′ ⊑ H , iff

∀h′ ∈ H ′ ∃h ∈ H s.t. h′ ⊂ h.

The top element⊤ of this partial order is induced by the
equivalence relation in which all elements are equivalent.
Thebottomelement⊥ is induced by the equivalence relation
where every element is equivalent only to itself.

Given a particular partitionH of X we construct series
of refinements to build increasingly better HMM approxima-
tions ofX . For the remainder of this paper assume that we
have a processX with state spaceX, a partitionH of X,
and a series of successive refinementsHn such that

⊥ ⊑ ... ⊑ H2 ⊑ H1 ⊑ H0 = H ⊑ ⊤. (2)

The partitionH is given by the aspect of the system we want
to model. It should be chosen so that all elements in ah ∈ H

are equivalent with respect to the quantity of interested. For
example, in Section V the partitionH is generated by putting
all states with the same copy number of each species in the
same seth ∈ H. Any coarser partition would not capture
this system feature we are trying to model. Associated with
each partitionHn is an equivalence relation∼n. Given two
partitions in this hierarchyHn and Hm with n > m, the
coarserHm naturally defines an equivalence relation on the
finer Hn,

hn ∼m h′
n ⇔ ∃hm ∈ Hm s.t. hn ⊆ hm ∧ h′

n ⊆ hm.

Since this equivalence relation onHn is induced by the same
equivalence relation that inducesHm on X, we will use
the same symbol to denote both. Further, we identify each
element inHn/∼m

with the element inHm that creates it.
With this identification we can view the quotient mapπ :
Hn → Hn/∼m

as a mapping toHm instead ofHn/∼m
. For

precision, sub- and super-scripts will be added to the quotient
map π to indicate the involved spaces. For example, with
n > m πn

m : Hn → Hm is given by

πn
m(hn) = hm where hn ⊆ hm.

III. T HE KULLBACK -LEIBLER DIVERGENCERATE

To compare probability measures,P andQ, for a random
processX we use the Kullback-Leibler (KL) divergence rate
or relative entropy rate [12], defined as,

DX(P‖Q) = lim
N→∞

1

N

∑

ω∈XN

P (ω) log

(
P (ω)

Q(ω)

)
. (3)

When this limit exists it is called the divergence rate between
the processes defined under the probability measuresP and
Q. For stationary, ergodic processes this limit always exists,
save the absolute continuity requirement,P ≪ Q [13, THM
4.2]. This requirement is satisfied by the approximations
introduced in the next section.

The KL-divergence rate measures how different the prob-
ability measureQ is from a true measureP . Since the
problem considered in this paper is the approximation of
a given process, we let the true measure on trajectories
be the one generated by the original process. The other
distribution,Q in (3), is the measure on trajectories generated
by the various approximations. Since the remaining sections
compare processes on different output spaces, derived from
probability measures on trajectories in the hidden states,the
output space will be added toD as a subscript to avoid
confusion. For example, the expressionDX(P‖Q) denotes
the divergence rate whereω ∈ N → X, under two different
probability measuresP andQ, while DX/∼(P‖Q) denotes
the divergence whenω ∈ N → X/∼.

Since the KL-divergence rate is an asymptotic property of
two stochastic processes it is suitable to measure differences
in their steady state behavior. The theorems in the next
section all require stationarity, which can be interpretedas a
system starting in its steady state. For transient characteristics
this approach does not capture the differences in probability
measures on trajectories. One possible alternative approach



is to use the KL-divergence on finite length trajectories.
The immediate difficulty then is computing with probability
measures on the potentially very large discrete space of
possible trajectories. We use this approach to estimate the
KL-divergence rate for a small example in Section V, but do
not explore the theory of creating approximate models that
capture transient behavior. Instead, we leave this interesting
question as future work.

IV. A PPROXIMATION

In this section we construct Markov processes that use
equivalence classes ofX/∼ as their states. Each such process
is an approximation of the processX/∼ and does not take
into account the larger state spaceX. We think of the
equivalence classes as macrostates and the state spaceX
as the microstates. Both the approximation and the original
process define probability measures onN → X/∼ and thus
the KL-divergence rate can be used to compareX/∼ and its
approximation.

A. Markov Approximations

In this section we construct a Markov chain approxi-
mations of an arbitrary stationary processX . We give the
optimal choice for the transition probabilities, in the sense
that this choice minimizes the KL-divergence rate between
the original process and its Markov approximation.

Definition 1. Given an arbitrary stationary stochastic pro-
cessX , a Markov approximationX̂ is a Markov chain that
has the same state space asX .

Any choice of(α,A) will define a Markov process with
state spaceX. For X̂ we pick the initial distributionα as

α̂i = P̂{X̂0 = i} ≡ P{X0 = i}. (4)

In addition, we choose matching one step transition proba-
bilities. For i, j ∈ X,

Âij = P̂{X̂1 = j | X̂0 = i} ≡ P{X1 = j | X0 = i}. (5)

Assignments (4)-(5) define a probability measurêP on
trajectories ofX̂ as described in Section II-A. When the
original processX is Markov, thenP and P̂ will be the
same for all trajectories. However, when the original process
is not Markov, then the Markov approximation̂X will match
only the one step transitions ofX , but will define a different
probability measure on trajectories.

Example 3. Let Y the the output processX/∼. The Markov
approximationŶ is given by the initial conditions

α̂ =

(
α0 + α1

α2 + α3

)
=

(
9
19
10
19

)

and one step transition probabilities

Â =

(
2
3

1
3

3
10

7
10

)
.

The entries ofÂ can be computed from the underlying
processX . For example, the (1,1) entry orA is given by

P{X1 ∈ {0, 1} | X0 ∈ {0, 1}} =∑

i,j∈{0,1}

P{X1 = j | X0 = i}P{X0 = i | X0 ∈ {0, 1}}

= 1
2

6
9 + 1

2
6
9 + 0 3

9 + 0 3
9 = 2

3

Theorem 1. [13, Remark 4.7]Choosing the parameterŝα
and Â for the Markov approximation as in (4)-(5) minimizes
the KL-divergence rate,DX(P‖P̂ ), between a stationaryX
and the Markov procesŝX .

The remark in [13] sets up a minimization problem for
the KL-divergence rate. The resulting optimization problem
can be explicitly solved via Lagrange multipliers, see Ap-
pendix A.

Given a partitionHn of the state spaceX in the hi-
erarchy (2) we use the following notation. The Markov
approximationX̂/∼n

of X/∼n
is a Markov chain with state

space Hn. Once again, we specifyX̂/∼n
by an initial

distribution and transition probabilities according ton (4)-
(5). Denote the resulting probability measure on trajectories
N → Hn by P̂n.

B. HMM Approximations

Recall that for processX with state spaceX, we have
a partition H that is determined by some quantity we are
interested in modeling, and a fixed series of successive
refinementsHn (2). Our goal is to build a hierarchy of
HMMs that can serve as approximations for a macrostate
processX/∼0

. For each partition,Hn, in the refinement (2),
we construct a Markov chain approximation̂X/∼n

If m < n,
we can construct an HMM(X̂/∼n

)/ ∼m by usingπn
m as the

output map.
For example,(X̂∼3

)/ ∼1 is the HMM that has the Markov
approximation ofX/∼3

as its hidden states andπ3
1 : H3 →

H1 as its output function. The KL-divergence rate between
this process andX/∼1

is denoted by

DH1
(P‖P̂3). (6)

Theorem 2 and Conjecture 3 relate the divergence rates
of the different HMMs that can be formed within the hierar-
chy (2). First, we relate processes with the same probability
measure on its hidden state states, but with different output
spaces.

Theorem 2. Given a stationary stochastic processX with
state spaceX, a probability measureP and two partitions
Hm ⊑ Hn of X in the hierarchy (2) the following relation
holds,

DHm
(P‖P̂k) ≥ DHn

(P‖P̂k)

with n ≤ m ≤ k.

Proof: We prove the statement for two arbitrary
probability measuresP and Q. The proof uses Jensen’s
inequality to show that this relation holds for each term
in the limit for (3). FixingN , a term fromDHm

has the form



∑

ω∈HN
m

P (ω) log

(
P (ω)

Q(ω)

)
=
∑

ρ∈HN
n

∑

π(ω)=ρ

P (ω) log

(
P (ω)

Q(ω)

)

(8)
For a fixedρ ∈ HN

n , looking only at the inner sum gives

−
∑

π(ω)=ρ

P (ω) log

(
P (ω)

Q(ω)

)
=

∑

π(ω)=ρ

P (ω) log

(
Q(ω)

P (ω)

)
.

(9)
Becauselog is a concave function, applying Jensen’s in-
equality to (9) gives

1∑
ω P (ω)

∑

ω

P (ω) log

(
Q(ω)

P (ω)

)
≤ log

(∑
ω Q(ω)∑
ω P (ω)

)
,

(10)
where

∑
ω stands for

∑
π(ω)=ρ. Using expression (10)

in (9) yields

∑

ω

P (ω) log

(
P (ω)

Q(ω)

)
≥
∑

ω

P (ω) log

(∑
ω P (ω)∑
ω Q(ω)

)
,

(11)
where the right hand side is equal toP (ρ) log

(
P (ρ)
Q(ρ)

)
.

Finally, establish that

1

N

∑

ω∈HN
m

P (ω) log

(
P (ω)

Q(ω)

)

=
1

N

∑

ρ∈HN
n

∑

π(ω)=ρ

P (ω) log

(
P (ω)

Q(ω)

)

≥
1

N

∑

ρ∈HN
n

P (ρ) log

(
P (ρ)

Q(ρ)

)
.

It follows that DHm
(P‖Q) ≥ DHn

(P‖Q) since the rela-
tion is true for each term in the limit (3). By inspecting
relation (11), we note that equality holds when probabilities
have a constant ratio on each equivalence class inHm,
P

ω
P (ω)

P

ω
Q(ω) = P (ω)

Q(ω) .

The following conjecture relates processes with the same
output space, but different hidden states.

Conjecture 3. Given a stationary stochastic processX ,
a hierarchy of partitions (2), and the associated Markov
approximations we have

DHn
(P‖P̂m) ≤ DHn

(P‖P̂k) (12)

with 0 ≤ n ≤ k ≤ m.

Both the left and right hand side of (12) correspond to the
divergence of the original macrostate processX/∼n

and an
HMM approximation. The difference between the left and
right hand expressions is that the HMM on the left has as
its hidden states a finer Markov approximation than the right
hand side.

The reason we believe this conjecture to be true is that
the trajectories of hidden states on the left hand side of (12)
contain more information about the original process than the
hidden states on the right hand side. By Theorem 1, the
Markov approximation of the hidden states is optimal for

the trajectories in the hidden states, so it should also leadto
a good HMM approximation as well.

Theorem 2 suggests that in order to make a more accurate
model of a process one could simply decrease the size of
the output space by going up the hierarchy of refinements
to a coarser partition. In fact, if the output space is⊤, then
the divergence rate is zero no matter what the underlying
state space is. However, as indicated in (2),H0 corresponds
to some given partitionH that is determined by the process
we want to model.H specifies the least amount of detail
the output space must have. For example, in the next section
the coarsest equivalence relation is the one resulting in the
macrostates used by the CME.

Fig. 3 illustrates the results of Theorem 2 and Conjec-
ture 3. In order to decrease the KL-divergence rate between
the original process and an approximation, one can either
increase the size of the hidden state space, or decrease
the size of the output space. The approach taken when
constructing theextended state spacefor stochastic reaction
networks in the next section, is to increase the size of the
state space for constructing more accurate models.
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Fig. 3. Relation between the various Markov approximations.The arrows
indicate the direction of increasing accuracy. The dark shading indicates
Markov models, the light shading indicates HMMs.

V. A PPLICATION TO REACTION NETWORKS

In this section we introduce a model for non-well-mixed
chemical reactions and propose a refinement hierarchy that
captures repeat reactions. We then use this hierarchy to define
an extended state spacefor chemical reaction networks.
Finally, we apply the extended state space approach to the
robotic system introduced in Fig. I.

A. Microstate Model

In the microstate model for chemical reactions particles of
different types1 S move randomly in areaction domain. If
two particles encounter one another they may react according
to a set of possible reactions,Ψ. The positions, velocities,
orientations, and internal states of the particles define the
microstates of the system. Denote the set of all possible

1In the context of chemical reactions the types are chemical species. In
our model particles can change their type, so we avoid the name species,
since it implies some fundamental description of the particle that does not
change spontaneously.



positions, orientations, and velocities for each particleby V .
The state space for a microstate process withN particles is

X = SN × V N .

The particles move in the reaction domain according to
the microstate processX . When two particles are in close
proximity, they can react accordingΨ and change their type.
The details of the interaction depend on the physical system,
but reactions generally require proximity. For the detailed
reaction mechanism between the robots from Figure I see [3].
The set of reactionsΨ considered for the remainder of the
paper is

Ψ =






2A ⇀ 2B
2B ⇀ 2C
2C ⇀ 2A .

Reaction networkΨ is cyclic in the sense that reactions occur
even when the system is in equilibrium. This is important
since the theoretical development in Section IV is applicable
only to stationary systems.

B. Macrostate Model

In this section we describe the macrostates used in the
CME in terms of an equivalence relation on the microstates.
This will form the coarsest partition in a hierarchy of
partitions used to define the extended macrostate in the next
section.

In the CME the macrostates of the system are the copy
number of each particle type. When the system is well-mixed
the next reaction only depends on the current macrostate,
since the positions, velocities, and orientations of all particles
at the time of the last reaction are rapidly mixed to their
steady state values and do not influence the next macrostate
transition [4].

Let Π1,N : X → SN be the projection ofX onto the
components 1 throughN , and SN the group of permutations
of theN indices. The equivalence relation defining the CME
macrostates is,

x ∼0 x′ ⇔ ∃σ ∈ SN s.t. Π1,N (x) = σ (Π1,N (x′)) ,

for any x, x′ ∈ X. The expression on the right hand side
highlights two essential features of the macrostate. The
projectionΠ indicates that only the particle types matter and
the permutation of indices indicates that the macrostate does
not keep track of particle identities.

C. Extended Macrostates

In this section we construct a hierarchy of equivalence
relations that is tailored to capturing repeat reactions. The
motivation for this particular hierarchy of refinements is
that even when repeat interactions between individual par-
ticles are likely, they can only affect the macrostate if they
are between appropriate types. Instead of keeping track of
individual pairs that are likely to re-react, we only keep
track of the type of previous reaction partners. In a given
reaction network only repeat reactions between certain types
can change the macrostate. Keeping track of the number

of possible repeat reactions that can change the macrostate
should capture this behavior.

In order to facilitate the construction of theextended
state space, we first augment the microstates such that each
particle has a history of the types of previous interaction
partners. This does not change the stochastic behavior of
the system. To preserve the finite nature of the state space,
assume that each particle has a history length ofL of the
types of particles it has encountered on the reaction domain.
Given a set ofN particles the state spaceX for the new
microstate processX describing this system of interacting
particles is

X = SN × (SN )L × V N .

The first(1+N)×L components are extended types, and the
last N components are positions of particles in the reaction
domain.

Let ∼0 be the equivalence relation thatx, x′ ∈ X are
equivalent iff they have the same copy number of each
species, which induces macrostates of the CME. Let the∼n

be defined as follows. Two states are similarx ∼n x′ iff

∀k ∈ {0, n} Π1+kN,(k+1)N (x) = σ(Π1+kN,(k+1)N (x′)).

The sameσ has to work for all the history states in order
for two states to be similar. An immediate consequence of
this definition is that

x ∼n+1 x′ ⇒ x ∼n x′. (13)

Property (13) implies that this set of equivalence relations
induces a hierarchy of partitions as described in section IV-
B. Now we can construct a new reaction networkΨn

that correspond to the admissible state changes inHn. For
example, inH1

Ψ1 =






2AA ⇀ 2BB

2AB ⇀ 2BB

2AC ⇀ 2BB

AA + AB ⇀ 2BB

AA + AC ⇀ 2BB

AB + AC ⇀ 2BB

A∗ + B∗ ⇀ AB + BA

A∗ + C∗ ⇀ AC + CA

B∗ + C∗ ⇀ BC + CB

B∗ + B∗ ⇀ 2CC

C∗ + C∗ ⇀ 2AA ,

where ∗ ∈ {A,B,C} is a wild card that describes all
possible species types. The letters indicate the particle type
and the subscripts indicates the history of types. For example,
AB denotes a particle of typeA whose last interaction was
with a particle of typeB. Similarly, higher order extensions
of Ψ are written by having more history states, for example

AABC + ABBC ⇀ BBAB + BBBB

is a reaction fromΨ3 onH3. Each extended reaction network
Ψn can be thought of as an HMM approximation of the
macrostate process, by consideringπn

0 as the output function.



The reaction networkΨ1 has the important feature that

2AA ⇀ 2BB

is considered a different reaction than, for example,

AA + AB ⇀ 2BB .

This allows the two reactions to have different rates of oc-
curring when repeat reactions are likely. This is not possible
in the CME model ofΨ.

D. Numerical Example

The Programmable Parts Testbed[8] consists of trian-
gular robots. Every robot has a magnetic latch and an IR
transceiver on each side. We refer to these robots as the
programmable parts. They float on an air-hockey table and
are randomly mixed by air jets that are mounted along
the perimeter of the table. The following experiments were
conducted using a high-fidelity mechanics-based simulation
of the system [3]. In all experiments the average kinetic
energy per robot, is kept at5×10−4J by adjusting the mixing
strength. This is analogous to performing experiments at a
constant temperature.

We implemented the reaction networkΨ with the pro-
grammable parts, where the type is represented by an in-
ternal state of the parts. The state can only change upon
temporarily latching with another part of appropriate type.
We then ran simulations until the system reached steady
state and collected trajectories and estimated rates as in [3].
Additionally, we took into account interactions that did not
change the macrostate to estimate the probability of self
loops. We used this data to extract the embedded Markov
chain of the system.

The trajectories started from a small number of parts
(initial macrostate =(2, 1, 1)′). As a result there are only
a few reachable macrostates. This restriction allowed us to
gather enough data to estimate the measureP for fixed length
trajectories and compute the KL-divergence. Fig. I suggest
that after four interactions the system is roughly well-mixed.
We considered trajectories of length 8, making the problem
computationally feasible yet sufficiently long to mix away
spatial aspects.

Specifically, there are only 3 macrostates resulting in38 =
6561 different trajectories of length 8. However, not all of
these trajectories are feasible due the restrictions imposed
by Ψ. We used simulations to estimateP on this space and
compared it to the probability measures induced by different
approximations. The results of this comparison are shown in
Fig. 4.

This example shows the extended state space approach
producing models with less KL-divergence from the original
process than a Markov approximation. Also, the data suggest
that the mixing in the system is such that keeping the type
of more than two previous reaction partners in the state
provides little improvement. This observation is consistent
with the data displayed in Fig. I and justifies only using
short trajectories for estimating the KL-divergence.
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Fig. 4. This figure shows an estimate ofDH0
(P‖ bP0)), DH0

(P‖ bP1)),
DH0

(P‖ bP2)), and DH0
(P‖ bP3)) of the system described in Section V-

D. Each estimate has a label indicating the type of approximation the KL-
divergence is computed with respect to. The estimate is formed by looking at
finite trajectoriesω ∈ {1, ..., 8} → H. The error bars result from different
sets of Monte Carlo simulations for estimating the probability measures of
the approximations.

VI. D ISCUSSION

The contributions of this paper are (1) to introduce general
approach of state space refinements to construct a series of
HMMs, (2) to use HMM tools to analyze reaction networks,
and (3) to construct the extended state space, which can
capture repeat reactions in reaction networks. The extended
state space is able to capture spatial aspects of the particle
interactions without explicitly modeling space itself.

The theory developed in Section IV only requires a series
of refinements. The hierarchy chosen in Section V is phys-
ically motivated, but by no means the only possible choice.
One avenue for future research is to compare different
refinements. In addition to trying different physically mo-
tivated refinements schemes, we would also like to address
the problem of automatically generating optimal refinement
schemes from data. This is different from the question of
finding optimal HMM approximations as in [13], since we
require the states of the HMM to be equivalence classes of
some microstate model. Such analysis could not only yield
reduced order models, but also give physical insight into the
dynamics of the system.

The utility in expressing the hidden states of an HMM as
a reaction network, is that one can apply linear ODE and
systems engineering tools to the hidden sates of the HMM,
while the output function allows the model to capture some
of the non-well-mixed aspects of a system.

The optimality of the Markov approximation depends on
the measure used to asses the distance between stochas-
tic processes. The KL-divergence rate used here captures
asymptotic differences corresponding to the steady state.
Using a similar approach with a different distance measure
could allow the development of approximate models that
are geared toward reproducing the transient behavior of a
arbitrary stochastic processes.

We intend to formally prove the claims of Conjecture 3.



We would also like to extend the work to include the continu-
ous time case since this would allow reasoning about rates in
reaction networks. We would like to find out how thebasic
rates used in chemical reaction networks are connected to
the analysis presented here, which focuses on the Markovian
aspect only.

APPENDIX

A. Proof of Theorem 1

Here we show that the transition probabilities and states
as defined in Section IV-A define the Markov process mini-
mizing the KL-divergence rate between the original process
and its approximation. The approach is to minimize the
expression for KL-divergence rate over all possible Markov
transition probabilities via Lagrange multipliers. It will be
useful to only look at short sections of a trajectories. Let
Xm

n denote the set of of trajectories that are only specified
from time {n, n + 1, ...,m − 1,m} ⊂ T . Equation (3) can
be rewritten as

DX(P‖P̂ ) = lim
n→∞

1

n
EP log

(
P (Xn−1

0 )

P̂ (Xn−1
0 )

)
,

whereEP is the expectation with respect to the probability
measureP .

DX(P‖P̂ ) =

lim
n→∞

1

n
EP log

(
P (Xn−1

0 )
)
− lim

n→∞

1

n
EP log

(
P̂ (Xn−1

0 )
)

.

The first term on the RHS is finite since the original process
is stationary, and does not depend on the choices of transition
probabilities so it can be replaced by a constantC.

DX(P‖P̂ ) = C − lim
n→∞

1

n
EP log

(
P̂ (Xn−1

0 )
)

.

Next note that due to the stationary Markov transition struc-
ture of P̂ the expression simplifies according to arguments
in [13] resulting in

DX(P‖P̂ ) = C − EP log
(
P̂ (X1|X0)

)
.

We want to optimize this expression over all non-negative
P̂ (X1 = j|X0 = i) with the constraints that

gi(P̂ (X1|X0)) =

N∑

n=1

P̂ (X1 = n|X0 = i) = 1 ∀i ∈ X.

For notational convenience let

pji = P (X1 = j,X0 = i)

and note that

Âij ≡ P̂ (X1 = j|X0 = i)

The Lagrangian then is

L(Â, λ1, ..., λn) =

C −

N∑

i=1,j=1

pji log(Âij) + λi




N∑

i=1,j=1

Âij − 1



 .

To find the critical point, differentiates with respect to the
Âij and obtain

∂L

∂Âji

= −
pji

Âij

+ λi = 0 .

So that the optimal value is given by
pji

λi
= Âij .

Choosingλi = P (X0 = i) gives that,

P (X1 = j|X0 = i) = P̂ (X1 = j|X0 = i),

the one step transition probabilities must match to minimize
the divergence rate between the original process and its
Markov approximation.
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