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Abstract We present a model of construction using iterative amorphous
depositions and give a distributed algorithm to reliably build ramps in un-
structured environments. The relatively simple local strategy for interacting
with irregularly shaped, partially built structures gives rise robust adaptive
global properties. We illustrate the algorithm in both the single robot and
multi-robot case via simulation and describe how to solve key technical chal-
lenges to implementing this abstract algorithm via a robotic prototype.

1 Introduction

Robots are best suited for dirty, dull, and dangerous tasks. This paper focuses
on algorithms for the dirty and dangerous task of construction in unstruc-
tured terrain. Applications range from rapid disaster response, like building
levees and support structures, to remote construction in mines or space. The
requirement of working in unstructured terrain frequently coincides with a
lack of sensing and computing infrastructure that enables coordination of
multiple robots and deliberative planing, such as reliable global positioning
and a consistent shared global state. Distributed algorithms that use limited
local information and coordinate through stigmergy solve this problem as
well as providing scalability. Robustness to poor sensing and irregular ter-
rain can further be improved by using amorphous construction materials that
comply to irregular obstacles. Such construction is locally reactive, both on
the algorithmic level, i.e. where robots deposit based on local cues, and a
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Fig. 1 Examples of amorphous construction. (a) Amorphous construction in biology. A
termite preparing an amorphous dollop of mud for deposition. Inset shows a mound built
around a tree. (b) Prototype of a construction robot. The robot was remote controlled to
build a ramp using amorphous foam depositions. Inset shows a cone-shaped deposition.

physical level, i.e. amorphous construction materials react by changing shape
to conform to their environment.

Our approach is inspired by biological systems, such as mound building
termites [16], that are adept at reliably building in unstructured terrain,
Fig. 1(a). Their skill combines robust scalable coordination through stigmergy
and the use of amorphous building materials that interface with an irregular
environment. We would like to endow scalable robot teams with similar skill,
however an algorithmic foundation for doing so is lacking. Current models for
autonomous robotic construction focus on assembling pre-fabricated build-
ing materials and cannot accommodate the continuous nature of amorphous
building materials. The contribution of this paper is twofold:(A) A mathe-
matical framework for describing and reasoning about robots that construct
with amorphous materials, and (B) a distributed, locally reactive algorithm
for adaptive ramp building in unstructured environments. This work is a step
away from robots assembling discrete pre-fabricated components and instead
embracing the messy continuous world, Fig. 1(b).

Section 2 presents mathematical models for amorphous construction and
adaptive ramp building. Section 3 gives a local strategy for creating struc-
tures that robots can climb; Sec. 4 extends those results to include physical
constraints for single and multiple robots. Section 5 discusses future work.

1.1 Related Work

Currently, there is much interest in the topic of robotic construction with
mobile robots [3, 5, 4, 9, 13], as well as decentralized algorithms by which
multiple robots can coordinate construction [1, 8, 11, 18, 15]. These sys-
tems are mainly focused on building pre-specified structures using lattice-
based building materials. Lattice-based building blocks have good structural
properties—being strong, stiff, and light—but place assumptions on the ini-
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tial environment being well structured and devoid of obstacles. These meth-
ods are difficult to extend to unstructured environments with irregularly
shaped obstacles. Furthermore, alignment and attachment restrictions af-
fect all other aspects of design, for example adding complex assembly order
constraints.

In contrast, amorphous building materials—e.g. foam, mud, sandbags or
compliant blocks—sidestep these limitations. They can help compensate for
uncertainty and measurement errors without requiring complex sensing or
reasoning. For example, compliant and amorphous materials are used for
rapidly building flood protection in disaster zones [6, 17] or pouring foun-
dations over irregular terrain. Similarly, the requirement of fixed attachment
orientations can be relaxed by using adhesive in the autonomous robotic con-
struction of curved walls [2, 3]. The closely related work in [14] uses amor-
phous foam to rapidly adapt robot parts to a unknown tasks instead of adapt-
ing structures to unknown terrain. Digital manufacturing via CAD/CAM,
and some large-scale robotic construction systems, such as [7], also use amor-
phous materials to build continuous shapes. While these systems are not
specifically focused on construction in unstructured environments, we can
exploit the materials and design principles to design robots that utilize amor-
phous materials.

2 Problem Formulation and Questions

We present a solution to the adaptive ramp building problem as a particu-
lar example of a distributed construction task in unstructured terrain. The
problem is to design a deposition and motion strategy that allows robots
starting from an arbitrary position to reach a goal, despite irregularly shaped
obstacles. Robots can sense the goal direction, move on partially built struc-
tures, and deposit amorphous materials to make non-climbable structures
climbable. The adaptive ramp building example shows how amorphous, noisy
(see Sec. 4.1) construction materials can be used to create robust behavior
and also provides a useful primitive behavior for solving more complex tasks.
The remainder of this section presents a mathematical model for continuous
structures, amorphous depositions, and climbable structures.

2.1 Mathematical Model for Continuous Structures

We model construction in two or three dimensions. The main theorems
(Thm. 4–Thm. 6) and Alg. 1 work in both cases. Gravity constrains robots to
move on one or two dimensional surfaces on which they can incrementally de-
posit construction material. Formally, we assume that the construction area
Q is a connected, compact, and finite subset of R1 (or R

2) and the domain
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Fig. 2 Parameter Geometry. (a) Robot making an amorphous deposition. (b,c) Relation
of K to the maximal steepness a robot can climb and descend, (solid) without discontinuity
(dashed) with discontinuity. (d) Relation of steepness K to the required ground clearance
to drive over the apex of a cone. (e) A height function on h ∈ Q+ and its projections onto
Lipschitz functions with different parameters K3 > K2 > K1.

of a bounded, non-negative height function h : Q → R
+. The graph of h,

(x, h(x)) x ∈ Q, describes a structure. Robots move on structures and mod-
ify them.

If structures are modeled as functions, depositions are operators on func-
tions. To distinguish the two, function spaces are denoted by scripted letters.
For example, let Q be the space of real-valued, bounded functions on Q, and
Q+ ⊂ Q the subset of non-negative ones. Function application to points is
denoted by parentheses (·) and operator application to functions by brackets
[·]. For example, applying function h ∈ Q+ to a point x ∈ Q is written as
h(x), and applying an operator D : Q+ → Q+ to h is denoted by D[h]. In
the case of functions, all relational symbols should be interpreted pointwise,
e.g. given h, g ∈ Q+, h ≤ g ≡ h(x) ≤ g(x) ∀x ∈ Q.

One limitation of modeling both structures and deposition as functions
is that many physical structures are not functions, i.e. they have overhangs.
However, the benefit of this restrictive model is that it comes with analysis
tools, such as continuity and integration, that are used to prove correctness
of construction algorithms.

2.2 Model for Amorphous Deposition

We assume that robots can deposit amorphous construction material and
control the volume and position, Fig. 1(b). The free surface of an amorphous
deposition is modeled as a parameterized shape function f ∈ Q. The bottom
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of each deposition conforms to the structure, Fig. 2(a). As a simple, yet
sufficiently general, model each deposition is treated as a cone with its apex
located at position (φ, σ) and steepness KD, where φ ∈ Q and KD, σ ∈ R

+,

f(φ,σ)(x) = σ −KD|φ− x|. (1)

The deposition operator D models interactions of depositions with the envi-
ronment, here simply covering it. Given a structure h ∈ Q+ with h(φ) < σ,
the new structure after deposition f(φ,σ) is given by D : Q × Q+ → Q+,
defined pointwise as

D[f(φ,σ), h](x) = max
x∈Q

(f(x), h(x)). (2)

Given an initial structure h0 ∈ Q+ a structure is built by a sequence of de-
positions characterized by their shape parameters (φ1, σ1), (φ2, σ2), (φ3, σ3), ....
The height function hn after n depositions is defined recursively by

hn(x) = D[f(φn,σn), hn−1](x). (3)

After the n-th deposition, the local reactive rules of an individual robot di-
rect it to move on hn and to possibly make a deposition resulting in a new
structure hn+1.

This deposition model preserves continuity, independent of the particular
parameter choices (φn, σn). In this and the following proofs, let Bǫ(x) denote
the open ball of radius ǫ around x, i.e. y ∈ Bǫ(x) if and only if |y − x| < ǫ.

Lemma 1 Given a continuous h0 ∈ Q+, hn created according to (3), and
ǫ ∈ R

+ then ∃δ s.t. ∀x ∈ Q and ∀y ∈ Bδ(x) ⊂ Q, hn(y) ∈ Bǫ(hn(x))) ⊂ R.

Proof. By continuity of h0 and compactness of Q, for any given ǫ ∈ R ∃δ′

s.t. ∀y ∈ Bδ(x), h0(y) ∈ Bǫ(h(x)). By construction of hn, δ = min{δ′, ǫ/KD}
has the above property.

Our proposed solution to the ramp building problem can accommodate
uncertainty in both the deposition location and size, see Sec. 4.1. However,
to streamline the presentation we assume this exact deposition model in the
following proofs.

2.3 Navigable Structures

Building a ramp means turning a structure that robots cannot climb into one
they can climb. As such, any algorithm to adaptively build ramps needs a
tractable description of climbable structures. This section defines the notion
of navigable functions on Q, which represent climbable physical structures.

We use three parameters to describe robot specific motion constraints:
K ∈ R

+, which models the maximum steepness that a robot can drive up
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or down, ǫ ∈ R
+, which models the largest discontinuity (i.e. step up/down)

a robot can freely move past, and d ∈ R
+, which limits the concentration

of discontinuities in a small area (i.e. robot length), Fig. 2(b)–2(d). For-
mally, navigable structures are locally (parameter d) close (parameter ǫ) to
K−Lipschitz continuous [12, p. 594], i.e

|h(x) − h(y)| ≤ K|x− y| ∀x, y ∈ Q, (4)

with a constant K ∈ R
+. Specifically, a function h ∈ Q is called navigable if

and only if

|h(x)− h(y)| ≤ ǫ+K|x− y| ∀x, y ∈ Q and |x− y| ≤ d. (5)

To reason about global guarantees of our local algorithms, we construct
the operator PK , defined by (7). It maps any structure to the closest K-
Lipschitz function that can be built by only adding material, Fig. 2(e). At
a given point x ∈ Q, PK takes the maximum value of any cones that need
to be added so all other points fulfill condition (4). There are two important
properties of PK . Firstly, by construction

PK [h](x) ≥ h(x) ∀h ∈ Q. (6)

Since we model depositions as additive, it is important PK [h] can be reached
by only adding to h. Secondly, PK [h] returns the smallest function in LK ,
the space of K-Lipschitz functions on Q, in the following sense.

Theorem 2 Given any two functions h ∈ Q and g ∈ LK with g ≥ h, the
operator

PK [h](x) = max
y∈Q

{h(y)−K|y − x|} (7)

with K ∈ R
+, has the following properties:

1. PK [h] is K-Lipschitz,
2. g ≥ PK [h].

The proof is given in Sec. 6.
The following theorem shows that if steeper features are allowed, less ma-

terial needs to be added, Fig. 2(d).

Theorem 3 Given an arbitrary function h ∈ Q and K1,K2 ∈ R
+ with

K1 ≤ K2 the projections onto LK1
and LK2

follow PK2
[h] ≤ PK1

[h].

Proof. For a given point y ∈ Q in (7), h(y) −K2|y − x| ≤ h(y) −K1|y − x|
since the |y − x| is non-negative. ⊓⊔

Given an initial function h0, the next section gives a locally reactive de-
position strategy such that after N depositions hN fulfills (5), i.e. is naviga-
ble, and bounded above by the closest dominating K-Lipschitz function, i.e.
hn ≤ PK [h0].
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Algorithm 1 Local Deposition Strategy. Pick point pairs that imply a local
non-navigable feature and deposit on the lower one.

1: Given h ∈ Q+.
2: h0 ← h

3: while ∃ x, y ∈ Q s.t. |x− y| ≤ d, K|y − x|+ ǫ < |hn(y) − hn(x)| do

4: if hn(x) < hn(y) then

5: x′ ← x

6: y′ ← y

7: else

8: x′ ← y

9: y′ ← x

10: end if

11: Pick any ω ∈ [ǫ, hn(y′)− hn(x′)−K|x′ − y′|]
12: Deposit at x′ with height ω, i.e. hn+1 = D[f(x′,ω+hn(x′)), hn]
13: end while

3 Local Reactive Deposition Algorithm

In a local deposition strategy, robots with limited sensing range r ∈ R
+

(with r > d) move on top of the structure and react to features in their
sensing range. The following algorithm relates local checks and depositions
to global properties. The approach in Alg. 1 is to check for points that imply
a non-navigable structure and deposit in such as way as to decrease the
distance from the current structure to closest K-Lipschitz function PK [h0].
Specifically, Alg.1 searches for points |y − x| ≤ d s.t.

|y − x|K + ǫ < |h(y)− h(x)|. (8)

3.1 Correctness of Local Deposition Strategy

The correct behavior of Alg. 1 is that after a finite number of depositions
the resulting structure hN is navigable. The proof proceeds in two steps. (A)
Thm. 4 shows progress, i.e. every deposition has a strictly positive volume.
(B) Thm. 5 shows depositions obey the invariant upper bound PK [h0]. By
combining them, Thm. 6 shows correct behavior, i.e. depositions according
to Alg. 1 will stop once the structure is sufficiently close to PK [h0]. Note
that since PK [h0] is the smallest dominating K-Lipschitz function, Alg. 1 is
efficient in the sense that it avoids unnecessary depositions, i.e. unnecessary
to construct the conservatively navigable function PK [h0].

The volume of a the difference between two structures g, h ∈ Q+ is given
by

V (g, h) = ||g − h||1 ≡

∫

Q

|g(x)− h(x)| dx. (9)
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Fig. 3 Simulation of Alg. 2. Algorithm 2 is a special case of Alg. 1 that picks deposition
sizes and positions. The initial structure h0 is solid black. The upper bound PK [h0] is
shown as a dashed black line. The simulation parameters are: Q = [0, 2], K = 0.5, KD =
1.5, ǫ = 0.05, and d = 0.2. Depositions progressively change color, see color-bar. The
layered structure results from a robot starting at x0 = 0.2 and trying to reach the goal
position x∗ = 1.9. It encounters the cliff on the right and during construction information
is propagated backward through stigmergy, i.e. robot backing up to make new necessary
depositions. As discussed in Sec. 4.1, the simulation also incorporates additive noise to the
deposition shape function.

Similarly, for the given family of deposition functions the volume of a depo-
sition is given by V (D[f(φ,σ), h], h).

Theorem 4 (Progress) Given a pair of points x, y ∈ Q s.t. hn(x) < hn(y)
and the property that

|x− y|K + ǫ < |hn(x) − hn(y)|,

depositing on x with a deposition of height

ω ∈ [ǫ,
hn(y)− hn(x)

K|x− y|
]

results in a volume V (D[f(x,ω), hn], hn) > ε that is bounded below by a strictly
positive number ε.

Proof. Note that the deposition height is at least ǫ. By Lem. 1 there ex-
ists some δ s.t. hn maps every Bδ(x) ⊂ Q into Bǫ/3(hn(x)). As a result,

∀p ∈ Bδ(x), h(p) < h(x) + ǫ
3 and h(x) + 2ǫ

3 < D[f(x,ω), hn](p). Therefore,
V (D[f(x,ω), hn], hn) >

∫
Bδ(x)

ǫ
3 = ε > 0. ⊓⊔

Theorem 5 (Invariant) Assuming that KD > K, depositions made with
Alg. 1 leave the mapping onto LKinvariant, i.e. PK [hn] = PK [h0].

See Sec. 6 for proof.
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Theorem 6 Given an initial structure h0 ∈ Q+, following Alg. 1 terminates
after a finite number of steps, N ; and for no points in Q does hN fulfill
condition (8), i.e. ∀z ∈ Q and x, y ∈ B d

2

(z),

|x− y|K + ǫ ≥ |hN (x) − hN(y)|.

Proof. The expression for the remaining volume V (P [h0], hn) = ||P [h0]− hn||1 =∫
Q |P [h0](x)− hn(x)|dx can be rewritten as

∫

Q

|P [h0](x) − hn+1(x) + hn+1(x)− hn(x)|dx.

By Thm. 5 and (6), P [h0](x) − hn+1(x) ≥ 0 and hn+1(x) − hn(x) ≥ 0,
therefore

V (P [h0], hn) =

∫

Q

|P [h0](x) − hn+1(x)|dx +

∫

Q

|hn+1(x)− hn(x)|dx

= V (P [h0], hn+1) + V (hn+1, hn).

By Thm. 4 the second term is bounded below by a positive number ε, thus

V (P [h0], hn+1) < V (P [h0], hn)− ε.

Since volume is always non-negative, condition (8) for making depositions
must be violated after a finite number of steps N . ⊓⊔

4 Adaptive Ramp Building

The local deposition algorithm Alg. 1 does not specify which points to pick
if the non-navigable condition (8) is true for multiple pairs, neither does
it consider the physical extent of the robot or whether robots could reach
deposition locations. The benefit of this vagueness is generality. Algorithm 1
works in arbitrary dimensions and an arbitrary number of robots making
depositions in any order. It forms the theoretical underpinning for Alg. 2,
Fig. 3, which takes such physical considerations into account, i.e. a local
deposition and motion strategy that allows robot from an arbitrary starting
position x0 ∈ Q to reach a goal x∗ ∈ Q.

4.1 Adaptive Ramp Building with a Single Robot

To solve the adaptive ramp building problem, robots need to identify point
pairs that imply a non-navigable feature and make depositions. Yet some
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Fig. 4 Physical parameters. (a) Relevant robot dimension based on the prototype shown
in Fig. 1(b). (b) Parameters for bounds of an arbitrary deposition shape function.

Algorithm 2 Adaptive ramp building. Given a structure h0, an initial po-
sition x0, and a goal position x∗, the following algorithm builds a ramp over
irregular structures based on local sensing. Assume, w.l.o.g. that x0 < x∗.
1: while x 6= x∗ do

2: Move toward goal until ∃y ∈ [x, x + r] that the pair y and x + d violate condition
(8) , or x = x∗

3: if x 6= x∗ then

4: Move to the lower the point. (Possible because all points in [x0, x + r) are
climbable).

5: Pick height according to Alg.1 and condition (12).
6: x← x− 2d
7: end if

8: end while

features are too large to be made navigable by a single deposition. In prac-
tice, robots might need to temporarily back away from the goal x∗ to make
previous depositions navigable.

Since deposition and motion constraints depend on the robot’s physical
dimensions, Fig. 4(a), additional parameter constraints are necessary to prove
correctness of Alg. 2. First, to guarantee that robots have enough room to
back up we assume they start at a point x0 ∈ Q on the initial structure h0

and can move freely within a radius r0 ∈ R
+ without making any depositions,

PK [h](x) = h(x), ∀y ∈ Br0(x) ⊂ Q. (10)

Second, key dimensions of the robot as well as the deposition parameter KD

need to obey the following constraints, Fig. 4(a):

KD ≥ K +
ǫ + lheight

d
(11)

lheight > ǫ (12)

r0 > 2d+ lrobot. (13)
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Condition (11) limits how far backward new depositions can extend into pre-
viously navigable terrain. It ensures that the motion and deposition strategy
will not direct robots to deposit directly underneath themselves. Condition
(12) ensures that the deposition mechanism has enough clearance to make
depositions that conform with the assumptions in Alg.1. Condition (13), con-
servatively, ensures that a physical robot has enough space to back up.

The strategy in Alg. 2 is for a robot to move toward the goal location x∗

unless it encounters a feature that impedes its progress, i.e. a point pair that
violates the navigability condition (5). In that case, the robot deposits on the
lower point and backs up to check that the new deposition does not in itself
preset a non-navigable feature.

Theorem 7 Given a robot that fulfills parameter conditions (11)-(13) with
starting position x0 that fulfills (10) following Alg. 2 will reach a goal point
x∗ after a finite number of steps.

Proof. Denote the interval [x0 − r0, x + d] in which no point pairs fulfill (8)
by A (accessible region). Robots stay inside the accessible region at all times
while finding points to deposit on. First, condition (12) guarantees a robot
can make a deposition of height ǫ, as required by Alg. 1. Second, condition
(11) guarantees that depositions with a maximum height of lheight made
in the interval [x, x + d] will not extend into [x0 − r0, x − d]. As a result,
moving to x− 2d after a deposition guarantees that no points in A fulfill (8).
By (10) and the deposition strategy there are always accessible points, i.e.
[x0 − r0, x0] ⊂ A. By Alg. 1 this algorithm terminates after a finite number
of depositions with x = x∗. ⊓⊔

Figure 3 shows a series of depositions made via Alg. 2. This strategy also
guarantees that robots can always reach x0 without requiring additional de-
positions, which could allow robots to replenish supplies. Conversely, the ac-
cessible region provides cooperating robots access the deposition site, Sec. 4.2.

Physical depositions are not perfect cones, Fig. 1(b). Algorithm 2 explicitly
allows for uncertainty in the target structure (via ǫ), but not for deposition
uncertainty. In fact, the upper bound for target structures requires that no
depositions accidentally make intermediate structures larger than PK [h0].
Following is a short description on how to address this problem and allow
depositions with arbitrary continuous shape functions f (and bounded deriva-
tive f ′

max), as long as f can be sandwiched between two cones, Fig. 4(b). As
long as ldep < ǫ. Alg. 1 (and as a result Alg. 2) still work with the following
substitutions: In Lem. 1 f ′

max takes the place of KD. In Thm. 4 the minimum
height is ǫ − ldep instead of ǫ. In Thm. 5 and condition (11)KD is replaced
with Ka. In addition to uncertainty in shape, this approach of bounding cones
also allows for uncertainty in the exact deposition location and volume.



12 Nils Napp and Radhika Nagpal

 

0 20 40 60 80 100 120 140 160 180 200

(a)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
 

0 20 40 60 80 100 120 140 160 180

(b)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 5 Simulations of adaptive ramp building, in both simulations the parameters are
x0 = 0.2, x∗ = 1.9, d = 0.1 and otherwise the same as in Fig. 3. (a) Example of cooperative,
distribute ramp building. Each robot is limited to making 25 depositions each (indicated
by a different continuous color gradient), after which time the active robot signals that it
is out of material and a new robot begins. (b) Multiple robots all start simultaneously. If
they become stuck, they stop moving and are treated as obstacles by other robots.

4.2 Adaptive Ramp Building with Multiple Robots

The locally reactive nature of Alg. 2 makes extension to multiple robots
easy. For example, imagine that multiple robots—each with limited deposi-
tion capacity—cooperatively build a ramp. Robots avoid collisions and can
communicate locally. One robot starts executing Alg. 2 while the others fol-
low. Once a robot runs out of building material, it signals for another robot
to execute Alg. 2, and returns to a base station at x0, or it can simply stop
and be treated as an obstacle by other robots, Fig. 5(a). This coordination
strategy works due to the distributed nature of Alg. 2. Between robots, in-
formation about deposition locations is communicated through stigmergy.

Alternatively, multiple robots can start at different locations and execute
Alg. 2 concurrently. For example, to build a large ramp toward a beacon mul-
tiple robots could be dropped along the construction path. Each robot starts
building a ramp. However, without initially fulfilling starting condition (10)
robots might become stuck, i.e. cannot move to an appropriate place to make
a deposition, Fig. 5(b) right. Further, without coordination one robot might
deposit on another, Fig. 5(b) middle. Despite these failures, if one robot ini-
tially fulfills (10) the process with successfully complete. Other robots can
provide speed up through parallelism by partially building ramps until they
become stuck.

4.3 Physical Implementation and Experimental Results

We built a remote controlled prototype robot, Fig. 1(b), and a scanning foam
deposition mechanism, Fig. 6(a), for testing solutions to the key technical
challenges presented by Alg. 2. The prototype shows that robots can, in
principle, build and navigate relatively large foam structures. The scanning
deposition mechanism demonstrates autonomous leveling behavior that can
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(a) (b) (c)

Fig. 6 Scanning foam deposition mechanism. (a) A scanning carriage holds a downward
facing IR-distance sensor and mixing nozzle. Pressurized foam precursors are delivered to
the nozzle by flexible tubing. (b) Top, Initial obstacle before leveling deposition. Bottom,
final structure after deposition episode. (c) Cross sections of final structure. Each leveling
deposition episode represents one cone-like deposition in Alg. 2.

be used to turn the physical three dimensional construction problem into the
simplified two dimensional problem solved by Alg. 2.

One major challenge is designing a deposition mechanism and select-
ing an appropriate material [10]. The prototype robot and scanning depo-
sition mechanism both use two compartment syringes with mixing nozzles
(McMaster-Carr PN: 74695A11 with 74695A63, 7451A22 with 7816A32) and
high expansion poly-urethane casting foam (US-Composites 2 lb foam) to
make amorphous depositions.

The scanning deposition mechanism consists of a fixed structural frame
and a moving carriage, Fig 6(a). By running a Alg. 1 along the direction of
carriage travel (with K = 0, ǫ = 2 cm and d equalling the entire range) this
mechanism autonomously creates a level structure from amorphous deposi-
tions. Mounting this mechanism on the front of a robot and treating each
leveling deposition episode as a single deposition in Alg. 2, turns the physical
construction problem into the simplified model. Viewed from the side, each
leveled line under the carriage represents the apex of a conical deposition.
Algorithm 2 simply picks the next point to level.

5 Conclusion

We developed a continuous model for amorphous depositions, and used it to
prove correctness of a distributed algorithm that solves the adaptive ramp
building problem. This example application illustrates how locally reactive
behavior and amorphous building material together can create reliable build-
ing behavior in unstructured terrain.

Adaptive ramp building can also serve as a base behavior for other, more
complicated, behaviors. For example, it could be used to guarantee accessibil-
ity to locations where support structures need to be built. With the ability to
consistently encode virtual points in a group of robots, adaptive ramp build-
ing could also be used directly to build arbitrary (K-Lipschitz) structures by
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building ramps to a carefully chosen set of virtual points: an approach we
plan to explore in more detail.

There are a number of ways the presented algorithms could be improved.
Our presentation focused on correctness, not optimality. Robots could be
much smarter about picking deposition points and try to maximize the vol-
ume of each deposition, especially if their sensing radius was larger than d.

6 Proofs

Proof (Thm. 2). 2.1) Assume to the contrary that ∃x, y ∈ Q s.t.

|PK [h](x)− P [h](y)| > K|x− y|. (14)

Assume w.l.o.g. that PK [h](y) ≤ PK [h](x) and since PK [h] is a positive scalar
function |PK [h](x)−P [h]K(y)| = PK [h](x)−PK [h](y). Rearranging the terms
in (14) leads to the contradiction PK [h](x) − K|x − y| > PK [h](y), since
the max in PK [h](y), see (7), is taken over the entire domain, including x.
Therefore points violating the Lipschitz condition cannot exist in P [h]. ⊓⊔

2.2) Assume to the contrary that there exists a point x ∈ Q s.t. PK [h](x) >
g(x) ≥ h(x). Since there cannot be equality between PK [h](x) and g(x) the
maximization in (7) must take its maximum value at some other point y ∈ Q.
Rearranging PK [h](x) = h(y)−k|x−y| > g(x) results in h(y)−g(x) > k|x−y|,
and since g > h g(y)− g(x) > k|x − y| which is a contradiction, as it would
violate the Lipschitz continuity of g. ⊓⊔

Proof (Thm. 5). First, note that P can be applied to non-continuous func-
tions, specifically continuous structures with a single discontinuous point. Let

h̃n,(φ,σ)(x) = hn(x) + (σ − hn(φ))δφx where δ denotes the Kronecker delta.
Next, since φ is in the search set of max for point PK [hn](x) in (7) hn(φ) ≤

σ = hn(φ) + ω ≤ PK [hn](φ), consequently

h̃n,(φ,σ) ≤ PK [hn]. (15)

Finally, since restricting y ∈ {x, φ} ⊂ Q in (7) results in the same expression

as (2) D[f(φ,σ), hn] = hn+1 ≤ PKD
[h̃n,(φ,σ)]. Thus, hn+1 ≤ PKD

[h̃n,(φ,σ)].

By Thm. 3 and assuming that KD > K, PKD
[h̃n,(φ,σ)] ≤ PK [h̃n,(φ,σ)].

Together Thm. 2.2 and (15) imply that PK [h̃n,(φ,σ)] ≤ PK [hn], which results

in the series of relations hn+1 ≤ PK [h̃n,(φ,σ)] ≤ PK ≤ PK [hn]. And again,
by Thm. 2.2 PK [hn+1] ≤ PK [hn]. However, hn+1 ≥ hn implies PK [hn+1] ≥
PK [hn], thus PK [hn+1] = PK [hn]. By induction, PK [hn] = PK [h0]. ⊓⊔



Distributed Amorphous Ramp Construction in Unstructured Environments 15

References

1. S. Berman, A. Halasz, M. A. Hsieh, and V. Kumar. Optimized stochastic policies for
task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4):927–937,
2009.

2. T. Bonwetsch, F. Gramazio, and M. Kohler. Digitally fabricating non-standardised
brick walls. In ManuBuild, pages 191–196, Rotterdam, Netherlands, 2007.

3. R. D’Andrea. Flying machine enabled construction:
http://www.idsc.ethz.ch/Research DAndrea/fmec, ongoing.

4. K. C. Galloway, R. Jois, and M. Yim. Factory floor: A robotically reconfigurable
construction platform. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2467–2472, may 2010.

5. D. Hjelle and H. Lipson. A robotically reconfigurable truss. In Proceedings
of ASME/IFToMM International Conference on Reconfigurable Mechanisms and
Robots, June 2009.

6. N. Khalili. Emergency Sandbag Shelter: How to Build Your Own. CalEarth Press,
2008.

7. B. Khoshnevis. Automated construction by contour crafting related robotics and
information technologies. Journal of Automation in Construction Special Issue: The
best of ISARC 2002, 13:5–19, 2004.

8. D. Ladley and S. Bullock. Logistic constraints on 3d termite construction. In Fourth
International Workshop on Ant Colony Optimization and Swarm Intelligence, pages
178–189, 2004.

9. Q. Lindsey, D. Mellinger, and V. Kumar. Construction of cubic structures with quadro-
tor teams. In Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA,
June 2011.

10. N. Napp and E. Klavins. A compositional framework for programming stochastically
interacting robots. The International Journal of Robotics Research, 30(6):713–729,
2011.

11. N. Napp, O. Rappoli, J. Wu, and R. Nagpal. Materials and mechanisms for amor-
phous robotic construction. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012.

12. A. W. Naylor and G. R. Sell. Linear Opearator Theory in Engineering and Science.
Applied Mathematical Sicences. Springer, 1982.

13. K. Petersen, R. Nagpal, and J. Werfel. Termes: An autonomous robotic system for
three-dimensional collective construction. In Proceedings of Robotics: Science and
Systems, Los Angeles, CA, USA, June 2011.

14. S. Revzen, M. Bhoite, A. Macasieb, and M. Yim. Structure synthesis on-the-fly in a
modular robot. In Proceedings of IEEE/RSJ Conference on Intelligent Robots and
Systems (IROS), 2011.

15. G. Theraulaz and E. Bonabeau. Coordination in distributed building. Science, 269,
1995.

16. J. S. Turner. The Externded Organism. The Physiology of Animal-Built Structures.
Harvard University Press, 2004.

17. Northwestern Division US Army Corps of Engineers. Sandbagging Techniques, 2004.
18. J. Werfel and R. Nagpal. Three-dimensional construction with mobile robots and

modular blocks. Int. J. Rob. Res., 27:463–479, March 2008.


