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I. INTRODUCTION

Abstract—This paper describes how to specify the local
reactive behavior of robots via guarded command programs
with rates. These programs express concurrency and can be
composed easily. Rates allow programs to be interpreted as
Markov processes, which we use to define an appropriate
notion of robustness and performance. We use composition
to ”robustify” programs with good performance, i.e. create a
robust program with good performance from a program that
has good performance but is not robust. We demonstrate this
approach on a sub process of a reconfiguration program in a
multi-robot system.

A. Multi-robot Systems

Loosely coupled multi-robot systems are concurrent: The

independent actions of different robots can modify the global

state simultaneously. Concurrency is a result of the very

features that make multi-robot systems attractive from an

engineering perspective: modularity and autonomy of mod-

ules. Robots can be maintained, programmed, or replaced

individually. As a result, tools for designing and reasoning

about concurrent algorithms are of central importance when

building and programming multi-robot systems. Especially,

since such tools have been studied mostly in the context of

software systems.

Here, we introduce abstract models of concurrent systems

and use them to reason about programs for multi-robot sys-

tems. In addition to performance, we are primarily interested

in the idea of robustness of such programs, for two reasons.

First, algorithms that operate on physical systems need to

be robust to some types of uncertainty in order to operate

reliability. Second, multi-robot systems in particular have the

potential for reliability through redundancy, but programs

need to take advantage of this feature.

A robust multi-robot system should behave correctly and

reject disturbances, such as the failure of an individual robot.

While designing robust controllers is well understood in

the context of other systems, such as linear time invariant

ones [1], writing robust programs for multi-robot systems

is an active area of research. In large part the difficulty in

designing robust algorithms stems from the concurrency in

such systems, due to the combinatorial explosion of possible

combinations of local disturbances.

The main contribution of this paper is a way to ”robustify”

programs for a class of concurrent multi-robot systems by

taking advantage of the natural program composition that

concurrent systems provide – multiple programs can run at
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Fig. 1. Schematic representation of a very simple multi-robot system.
The system consists of two robots and three rooms. Robots can only move
between adjacent rooms. Each room change has an associate rate, ki (see
Sec. II-D).

the same time. By interpreting programs as Markov processes

the notion of robustness to module failure is preserved

during composition. We exploit this feature and show how to

compose a high performance program with a robust program

to create a new program that is both robust and has good

performance.

B. Related Work

Some examples of loosely coupled multi-robot systems

and their associated applications are: Formation control and

estimation [2], self-assembly [3], [4], [5], and reconfigu-

ration [6], [7]. This paper uses a model roughly similar

to [5] where the system behaves according to stochastically

applied local actions. However, we use a much more general

framework called guarded command programming borrowed

from the computer science literature [8].

Programs for the robotic system presented in Sec. IV are

written in the Computation and Control Language (CCL), a

particular implementation of a guarded command language

that can easily interface to robotic hardware [9]. After adding

probabilistic rates to the guards the result is similar to the

specification language for the probabilistic model checker

PRISM [10].

Framing the problem of programming multi-robot systems

as a question of finding transition rates of Markov processes

that result from local interactions is similar to [11][12].

We have addressed other control related questions about

multi-robot systems such as performance optimization [3],

and set-point regulation [13] in the context of such models.

In [14] we give a more detailed description of the guarded

command framework, with an emphasis on composition and



other operations on programs. Here we turn our attention to

the idea of robustness for multi-robot systems that are well

modeled as Markov processes.

C. Outline

The next section describes the connection between

guarded command programs and Markov processes. Sec. II-

A describes the syntax of guarded command programs with

rates, Sec. II-D collects some results about Markov processes

needed to define the semantics of guarded command pro-

grams with rates in Sec. II-E.

In Sec. III, III-A and III-B lay the groundwork for defining

robustness and performance in the context of the concurrent

multi-robot systems under discussion and III-C develops two

theorems about program composition.

Sec. IV is an extended example about a distributed multi-

robot reconfiguration testbed. Thm. 5 is applied to a subpro-

gram in a reconfiguration task to show how one can create

robust programs with good performance by composing a high

performance program with a robust one.

II. INTERPRETING PROGRAMS AS MARKOV PROCESSES

This section describes the connection between program-

ming and modeling concurrent multi-robot systems using

guarded command programs with rates and Markov pro-

cesses. Sec. IV uses the guarded command programing

language CCL, but the concepts behind guarded command

programming are abstract and by keeping the discussion

general and using Markov processes to formulate Thm. 4

and 5 our approach is not tied to a particular testbed or

language.

A. Syntax of Guarded Command Programs with Rates

Let S denote the state space of a concurrent system. For

example, the positions, orientations, and internal states of the

robots. A guarded command program with rates Ψ is a set

of rules

r = (g, a, k),

each composed of a guard g, an action a , and a rate k.

A guard is a predicate on the state space g ⊆ S, an action

is a relation on the state space a ⊆ S × S, and a rate is a

positive real number, the significance of which is described

in Sec. II-E. For a given rule r ∈ Ψ its action ar is subset of

all the physically possible actions, denoted by A ⊂ S × S.

The guards are used to program a system and restrict the

set of all possible actions from a given state to a smaller set

of desirable actions. This interpretation is similar to the way

guarded commands work in [8], [9].

Example 1. In the system described in Fig. 1 the state space

of the system is S = {1, 2, 3} × {1, 2, 3} where the first

coordinate corresponds to the position of robot 1 and the

second to the position of robot 2. For a given state s ∈ S

let s1 denote first coordinate and s2 the second. The set of

physically possible action is given by

A = {(s, s′) ∈ S × S | |s1 − s′1| + |s2 − s′2| = 1}.

Robots can only move one field at a time. The rule for robot

1 moving right is given by r1 = (g1, a1, k1) where

g1 = {s ∈ S | s1 6= 3}

a1 = {(s, s′) ∈ S × S | s2 = s′2, s1 + 1 = s′1 }

and k1 is some positive real number. The rule corresponding

to the left moves r2 = (g2, a2, k2) is given by

g2 = {s ∈ S | s1 6= 1}

a2 = {(s, s′) ∈ S × S | s2 = s′2, s1 = s′1 + 1}

and k2 is the a positive real number. The program for robot 1

is Ψ1 = {r1, r2}. Let Ψ2 denote the program for the second

robot, which is the same except the indices are reversed.

B. Local Guards and Actions

Distributed programs take advantage of the concurrent

nature of multi-robot systems. Individual robots should not

have to know about the global state, but instead sense and

interact with only their local environment. In the context

of guarded command programs this means that A and the

guards are restricted to actions and predicates that correspond

to local interactions and locally checkable guards [15]. The

precise definition of what local means depend intimately on

the particular system and capability of the robots. In general,

distributed programs are scalable since adding more robots

does not change the computational load of each one.

When guards and actions are local it is often possible

to write rules in a way that makes their local nature more

transparent by borrowing notation from chemical reactions.

Expressions to the left of a reaction arrow (reactants) cor-

respond to the guard of a rule. Expressions to the right

(products) correspond to the outcome of an action applied

to the state on the left hand side. Parts of the state space that

do not appear as products right remain unmodified.

Example 2. The right and left moves of robots in Ex. 1

could be written as

(s1 < 3)
k1

⇀ (s1 + 1) (1)

(s1 > 1)
k2

⇀ (s1 − 1). (2)

These reactions are interpreted as follows: When si < 3 at

a rate of k1, si is replaced with si +1, which is the same as

the first rule in Ψ1. Similarly, (2) corresponds to the second

rule of Ψ1.

This notation highlights the local aspect of rules. If the left

and right sides are checks and physical actions an individual

robot can perform, then the resulting program is distributed

by construction and takes advantage of concurrency. The

reconfiguration program in Sec. IV is represented this way.

C. Composition of Programs

A convenient feature of guarded command programs is

that two programs with the same state space S can easily be

composed. The composition of two programs Ψ1 and Ψ2 is

a new program

Ψ3 = Ψ1 ∪ Ψ2 (3)



that contains all the rules of its component programs. For a

guarded command program with rates Ψ a scaled version of

Ψ is defined as

γΨ =
⋃

r∈Ψ

{(gr, ar, γkr)} (4)

for γ ∈ R
+, where gr,ar, and kr denote the guard, action,

and rate associated with rule r respectively. This corresponds

to speeding up or slowing down a program, depending on

whether γ is greater or less than one.

Example 3. If Ψ2 is the program that describes how robot

2 moves, Ψ3 = 2Ψ1 ∪Ψ2 describes the concurrent behavior

of both robots moving, with robot 1 transitioning twice as

frequently as robot 2.

D. Markov Processes

The randomness in a stochastic process can model a

number of different aspects of a multi-robot system. For

example, by considering distributions instead of individual

states, stochastic dynamics can be used to reason about whole

sets of paths instead of individual trajectories. As a result,

stochastic models capture the different possible interleavings

of actions in concurrent systems. Stochastic models can also

incorporate failure statistics gathered from physical systems.

By explicitly incorporating empirical knowledge of compo-

nent failure rates one can reason about the likelihood of

global system failures. Stochastic models are also frequently

used to express uncertainty or to abstract away the details of

poorly understood dynamics. This paper focuses on modeling

concurrency and failures. Also, the discussion is restricted

to Markov processes for computational reasons. They have

a rich set of tools for analyzing and simulating them [16].

1) Definitions: Programmed multi-robot system can be

considered as a finite state, continuous time Markov process

Xt with state space S. This paper uses the following notation.

To aid expression in terms of linear algebra, fix some

arbitrary enumeration of states and let i ∈ S denote the

ith element of S. Given two states i, j ∈ S the transition

rate from i to j is denoted by ki,j ∈ R+. When there is no

transition between states, the transition rate between them

is defined as zero. This way all pairs have a transition rate

associated with them. Denote probability distributions on S

by a vector p(t) with pi(t) = P (Xt = i) and let Q be the

matrix given by

• Qji = ki,j for i 6= j

• Qii = −
∑

j 6=i Qji.

The differential equation

ṗ = Qp (5)

is called the master equation [17]. The Q-matrix in (5) gov-

erns the evolution of probability distributions. By analyzing

its structure one can infer properties of the stochastic process,

for example, the steady state distribution(s), the convergence

rate, or the hitting times (see next section).

2) Properties of Markov Processes: This section collects

some of the key results about finite state Markov processes.

For a more complete treatment see, for example [16], [17].

The hitting time for some set h ⊆ S is defined as

ζh = inf{t | Xt ∈ h},

and the return time as

σh = inf{t ≥ ζhC |Xt ∈ h},

where hC denotes the complement of h. When the process

starts outside of h, ζh and σh are the same, but when X0 ∈ h

then ζh = 0 while σh is the first time that the process returns

to h after leaving it. A state i ∈ S is called recurrent if

P (σ{i} < ∞|X0 = i) = 1 and transient if it is not recurrent.

These probabilistic quantities are closely related to the

structure of possible transitions. Considering a Markov pro-

cess as a graph G(Q) with directed, labeled edges highlights

this connection. Define G(Q) as the triple G(Q) ≡ (V, E, L)
where the vertex set V = S is the state space of X , the

edge set E is given by E = {(i, j) ∈ S × S | ki,j > 0},
and the labeling function for edges L : E → R+ is given by

L(i, j) = ki,j . A state j ∈ S is said to be reachable from

state i ∈ S if there exists a path from i to j in G(Q). Two
states i, j are said to communicate, denoted by i ↔ j, when i

is reachable from j and j is reachable from i. The relation↔
is an equivalence relation that partitions S into equivalence

classes. If an equivalence class h has the property that there

are no states outside h that are reachable from states in h,

then all states in h are recurrent.

Example 4. In Fig. 2a each state is an equivalence class. In

Fig. 2b has equivalence classes {1, 2, 4} and {3}. State 3 is

recurrent in all the Markov processes, in Fig. 2c state 1 is

also recurrent.

For finite state process with a given Q-matrix and initial

distribution p(0) the limit

πQ ≡ lim
t→∞

p(t)

always exists. When a process has only a single recurrent

communicating class, this limit is unique and πQ is called the

steady state distribution. Only recurrent states have positive

probability in πQ. The second largest eigenvalue λ2(Q)
is the worst case convergence rate to πQ from any initial

distribution.

The remainder of this section looks at the connectivity

of graphs and its consequences for Markov processes. For

a more thorough treatment see, for example [18, III.2]. A

graph G is said to be connected if any two vertices have a

path between them. Here, paths are considered to be directed.

A connected graph G is said to be separated by a set of

vertices h ⊂ V if the graph induced by removing h is no

longer connected. A graph is said to be k−connected if there

is no set of k − 1 vertices that separates it. The largest

value of k for which a graph G is k−connected is called

the connectivity, denoted κ(G). For two sets h, h′ ⊂ V we

define the restricted connectivity κ(h, h′) to be the largest k
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Fig. 2. Schematic representation of Markov processes as graphs. a) Markov
process with a unique sink state and low connectivity, denote its Q-matrix
by A. b) Markov process with same sink state and high connectivity, denote
its Q-matrix by B. c) Markov process induced by removing state 2 from
A. (d) Markov process formed by the composition (1 − ε)A + εB.

such that no set of k−1 vertices from h disconnects vertices

in h from h′, i.e. there is a path from every s ∈ h to some

vertex in h′. When comparing the connectivity for different

graphs, a subscript to κ denotes the corresponding Q-matrix.

The restricted connectivity κ(h, h′) measures the mini-

mum number if independent paths to h′ from states in h.

Its utility in the context of multi-robot systems is that it can

be used to quantify redundancy.

Example 5. In Fig. 2bd have κ({1, 2, 4}, {4}) = 2, while
Fig. 2c shows the κ({1, 2, 4}, {3}) is smaller for a. The

restricted connectivity from transient states to recurrent of

these two processes obey the following relation

κB({1, 2, 4}, {3}) = 2 > κA({1, 2, 4}, {3}) = 1.

E. Semantics of Guarded Command Programs with Rates

The Q-matrix and an initial probability distribution on S

suffice to define a Markov process on S. Defining these

two quantities for guarded command programs with rates

thus allows us to treat them as Markov processes. For a

guarded commands with rates Ψ the probability distributions

are defined in the same way as for (5). To construct Q(Ψ)
first define

Ri,j = {r ∈ Ψ | si ∈ gr, (si, sj) ∈ ar}, (6)

to be the set of rules make a transitions from state si ∈ S

to state sj ∈ S. The entries of Q(Ψ) are defined as

• Q(Ψ)ji =
∑

r∈Ri,j
kr for i 6= j

• Q(Ψ)ii = −
∑

j 6=i Q(Ψ)ji.

The dynamics of the system with program Ψ are given by

the master equation (5).

Example 6. Continuing Ex. 1, with the enumeration

index(s) = (s1) + 3(s2 − 1) the associated Q-matrix is the

9-by-9 matrix given by

Q(Ψ1) =





Q′ 0 0

0 Q′ 0

0 0 Q′





where

Q′ =





−k1 k2 0
k1 −(k1 + k2) k2

0 k1 −k2



 .

Since Ψ1 only contains actions affecting robot 1, there are

three recurrence classes one for each position of robot 2,

which is reflected in the block diagonal structure of Q.

F. Composition of Markov Processes

Composition (3) and scaling (4) operations on guarded

command programs with rates correspond directly to opera-

tions on their associated Q-matrices.

Lemma 1. Given any two guarded command programs with

rates Ψ and Φ on the same state space, and two positive

scalers α, β ∈ R
+, the following equation holds

Q(αΨ ∪ βΦ) = αQ(Ψ) + βQ(Φ). (7)

Proof: Define the Ri,j as in (6) for Ψ and R′
i,j for Φ.

For the off diagonal elements i 6= j we have

αQ(Ψ)ji + βQ(Φ)ji

=
∑

r∈Ri,j

αkr +
∑

r′∈R′

i,j

βkr′

= Q(αΨ ∪ βΦ).

Since the diagonal elements are computed the off diagonal

entries in each column (7) follows.

This mapping of programs to Q-matrices allows us to rea-

son about new, composed programs by examining properties

of the corresponding matrices.

After defining the syntax and semantics of guarded com-

mand programs with rates in this section, the next section

gives some reasons for why this is a useful approach.

III. ROBUSTNESS BY COMPOSITION

Discussing robustness requires both a notion of correct

behavior and a description of the disturbances a system is

supposed to be robust to. If the system behaves correctly in

the face of these disturbances it is said to be robust.

The idea of robustness pursued here is similar to the idea

of fault tolerance in other engineered systems and provides

a way to eliminate the probability of incorrect program

executions. The idea is the make sure that even in the

presence of disturbances actions that take the system to a

desirable state are always enabled.

A. Correctness and Performance

The goal of our programs is to put a multi-robot system

into a subset h ⊂ S of the state space, called the target. A

program Ψ is correct if all recurrent states of Q(Ψ) are in

h and Q(Ψ) has only one recurrent equivalence class. To

construct correct programs it is sufficient to make sure there

are no transitions out of the target h that there exists some

state in h that is reachable from every state s ∈ S.

The task of constructing correct program in this way is in

general not trivial, since the state space of programs grows



exponentially with robots, also the set h can be difficult to

express with local guards. We assume for the rest of this

paper that we are able to create correct programs by some

means.

Since correct behavior corresponds to the steady state πQ,

performance can be interpreted as the rate of convergence to

the steady state. From an arbitrary initial condition the rate

of convergence is bounded by λ2(Q). All eigenvalues of a
Q-matrix are non-positive and when there is only a single

recurrence class λ = 0 has multiplicity 1. In this case λ2 is

negative and the more negative it is the faster the process

converges.

B. Disturbances

Two common types of disturbances considered in robust

design are various types of noise and parameter uncertainty.

In the context of guarded command programs with rates

parameter uncertainty corresponds to uncertainty in the rate

parameters associated with rules. However, as long as they

are positive, changes in these parameters do not affect the

structure of the equivalence classes of Q(Ψ). Uncertainty or

noise in the rates therefore cannot break a correct program

and are not a useful class of disturbances to consider in this

context.

Instead, the disturbances considered in this paper are

failures of individual robots. These failures can be modeled

as removing states from S as well as transitions to and

from from the states. A given fault is assumed to affect a

subset of the states h ⊂ S. When a fault occurs the resulting

Markov process with faults has a graph corresponding to the

transition graph induced by removing the vertices h, i.e. all

the edges to and from states in h as well as the vertices

are removed. Removing vertices in this manner can change

the recurrence structure, even if h does not intersect the

target. The problem is that parts of the graph can become

disconnected, and each of the resulting components can have

one or more recurrence classes.

For a more thorough discussion of modeling errors and

uncertainty with guarded command programs see [14].

C. Properties of Composition

This section gives two theorems about the composition

of programs. Both are about the continuity of composition.

Adding a small amount of an arbitrary program Ψ2 to a

nominal program Ψ1 means that the composition will have

a similar steady state and convergence rate as Ψ1. The

theorems are stated in terms of the Q-matrices for generality.

In Sec. IV we demonstrate how these theorems can be

applied to programs for a particular multi-robot system.

Lemma 2. Given two Q-matrices A and B with the same

dimension then ∀δ > 0 ∃ ε > 0 such that

|λ2(A) − λ2(A + εB)| < δ.

Proof: The eigenvalues of A + εB are the solutions

of the characteristic polynomial, det (λI − (A + εB)) = 0.

The roots of a polynomial are continuous functions of the

coefficients, which in turn are continuous functions of ε.

By composition on continuous function the eigenvalues of

A + εB depend continuously on ε.

Lemma 3. Given two Q-matrices A and B with the same

target h ⊂ S, then for C = A + B

κC(hC , h) ≥ max{κA(hC , h), κB(hC , h)}.

Proof: Adding two Q-matrices can only increase the

number of (vertex) independent paths from hC to h ,

therefore κC(hC , h) is at least as large as κA(hC , h) and

κB(hC , h).

Theorem 4. Given a Q-matrix A with a single recurrent

communicating class and some other Q-matrix B, then C =
(1− ε)A+ εB, ε ∈ [0, 1) has a single recurrence class and

the entries of π∗
C depend continuously on ε.

Proof: In steady state the flux balance equations (Qp =
0) and the probability vector constraint (1Tp = 1) can be

written as a system of equations. We can multiply them and

note that one of the roots of the resulting polynomial is

the steady state probability distribution, the entries of which

vary continuously with ε. Because of the assumptions A and

C each have exactly one steady state distribution, so that

varying ε cannot produce a bifurcation.

Note that in general when dim(Null(A)) > 1 adding

εB can make steady state solutions disappear, for example a

transition in B could connect two different recurrent equiv-

alence classes. In this case, the steady state from an given

initial condition might not be continuous in ε. Including he

condition on the number of recurrent classes in Thm. 4 is

necessary.

Theorem 5. Given two Q-matrices A and B with the same,

unique recurrent state s∗, then for any δ > 0 ∃ ε > 0 such

that for C = A + εB

1) |λ2(A) − λ2(C)| < δ,

2) κC({s∗}C , s∗) ≥ κB({s∗}C , s∗),
3) πC = πA.

Theorem 5 follows directly from applying Lem. 2 and 3.

Both Thm. 4 and 5 are about composing a nominal

program Ψ with other programs. By Lem. 2 if Ψ is composed

with some small about of an arbitrary program Φ then the

convergence rate of Ψ + εΦ is close to the convergence rate

of Ψ. By Thm. 4 the steady state of Ψ and Ψ + εΦ are also

close element wise.

Thm. 5 is about composing programs that are correct (with

respect to the same target), but have different performance

and robustness. It states that one can add a robust (high

relative connectivity) with a high performance (|λ2| large)
program and obtain a new program that has both good

performance and is robust.

IV. THE FACTORY FLOOR TESTBED

This section describes an extended example demonstrating

how to apply Thm. 5 to the Factory Floor testbed, a multi-

robot systems that can assemble, disassemble, and recon-

figure structures [7]. The goal of this testbed is develop-

ing robust algorithms and hardware to autonomously build
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Fig. 3. Images of Factory Floor Module. a) Photo of Factory Floor module
prototype. b) Rendering of digital prototype with labeled features. Rendering
of both types of raw material, nodes c) and trusses (d).

a)
b)

c)
d)

e) f)

Fig. 4. Sequence of snap shots from a reconfiguration simulation. The
sequence a)-e) shows the program at various stages of progress a) is the
initial configuration and e) is the final goal configuration. Image f) shows
the loading and target area of the routing program, see Fig. 5. To the left of
the loading area a disassembly program takes a apart a structure and feeds
to raw materials to the routing program.

a)

b) c)

Fig. 5. Schematic representations of routing programs. The loading area
L is denoted by hashed modules, the routing area R by white modules, and
the target area T by grey modules.a) Layout of the factory floor testbed.
The numbers in each module position identify the module when writing
programs. b) Deterministic path program, only transitions that provide
progress are enabled. c) Random Program, in each location all possible
transitions are enabled. This program is slow since many of the transitions
do not provide progress toward the target area.

structures in uncertain environments. For clarity, the program

discussed in this section is comparatively simple. However,

the the theorems and definitions carry over directly to more

complicated programs such as the the one shown in Fig. 7.

A. Description of Testbed

The testbed consists of an array of identical robotic

modules that build structures made from two different types

raw material called trusses and nodes, see Fig. 3. Each

module has a manipulator with an end effector that can grab

and release nodes and trusses, a temporary storage place for

nodes and trusses, and a lifting mechanism. Assembly and

disassembly proceeds layer by layer. Modules manipulate

raw materials into place and then coordinate lifting with other

modules. The sequence of pictures in Fig. 4 shows a typical

reconfiguration task. A tower is disassembled on one side of

the testbed, the raw materials are routed across the testbed,

and then a tower is assembled on the opposite side. Fig. 4 f)

shows which modules in the testbed run the three different

tasks.

B. Routing Programs

The remainder of this section describes programs for the

routing portion of the reconfiguration task in more detail.

This sub-task is both the task performed by the most modules

and (partially because of it) the task that has the most

redundancy, which is important to the idea of robustness to

module failure. Programs can only be robust to individual

robot failures if there are redundant robots that can take

over the tasks of the failed robots. Fig. 5a gives the layout

of the factory floor testbed for a configuration task. The

hashed modules {1, 2, 3, 4} corresponds to the loading area

and grey modules to the target area {18, 19, 22, 23}. Each
module either has a node or not, so the state of each module

is in {true, false}. The state of a module is true when

the module has a node and false when it does not. In the

routing portion of a reconfiguration program what happens

in the target area is not important. During routing they act

as a sink, nodes disappear as soon as they reach the target.
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Fig. 6. Program performance with various failure scenarios. The plots how the probability of a node arriving at the target (given it was at the loading area
at t = 0) as a function of time. The blue line corresponds to the program shown in Ψflow in Fig. 5b , the green line to the program Ψrandom shown in
Fig. 5c, and the red line to the composed program Ψε = 0.9Ψflow + 0.1Ψrandom. a) Programs with no module failures, Ψflow and Ψ have similar
good performance and Ψε has poor performance, all programs are correct. b) c) Programs with one and two module failures respectively. Only Ψepsilon

and Ψrandom are correct, they are robust to module failure.

Since there are 24 modules, the state space S for this

example is {true, false}24, the 24-fold cross product of

the module state. In a state s ∈ S, the occupancy state

of module i is denoted by si if the module is occupied

and si if module i is empty. Fig. 5bc shows two different

pictorial representations of routing programs. Each arrow

corresponds to a guarded command, and each module runs

a program containing all the rules corresponding to arrows

in that location. Using a similar approach as in Sec. II-B

programs for these reactive modules can be written like,

s3, s7

kpass

⇀ s3, s7

s3

kload
⇀ s3

in the case of module 3 in program in Fig. 5b, for example.

The associated rates are such, the rates of all rules corre-

sponding to actions performed by the same modules sum to a

constant kpass. This rate models the speed at which modules

perform tasks, in this case how long it takes to pass raw

materials. The average time to pass raw materials is 1

kpass
. If

there are multiple arrows, then each of the associated guarded

commands has the same fraction of the total rate kpass. Also,

nodes appear randomly in the target area denoted by hashed

modules, at a rate kload. In this way the diagram Fig. 5bc

can be turned into guarded command program.

To analyze the performance and robustness of programs

we look at how well they route a single node. The reason for

doing so is that this assumption drastically reduces the size of

the state space, yet the connectivity properties that govern the

robustness in the single node case carry over to the general

case with multiple nodes. With this restriction the state space

of the system is simply the position of the single node. When

a module fails and stops routing nodes only a single state (but

multiple transitions) become unavailable. The same approach

also works when the state space is more complicated, but

the relationship between the number of failures and the

connectivity of the program is not as straight forward because

a single failure might remove multiple states.

In this simplified problem a node randomly appears in the

loading area, either from an external source or, as in this

example, from a disassembly program. The target area is

modeled as a single state that only accepts nodes. When all

modules operate correctly it is easy to see that nodes will

be routed to the single accepting sink state, the target area.

The rate of convergence (λ2) of the two programs Ψflow and

Ψrandom shown in Fig. 5 is −1.0 and −0.029 respectively.

The program Ψrandom has better performance, but when

any of routing modules fail the resulting Q-matrix has

multiple recurrent equivalence classes with some recurrent

states outside the target. In contrast program Ψflow has

the opposite problem, it has low performance, due to the

backward passes that do not provide progress, but it performs

correctly when up to three modules fail. This is as well was

one can hope to do since removing four modules can separate

the routing area into two parts. Then there are no possible

paths from the loading area to the target area.

By Thm. 5 we can combine both programs and obtain one

that is both robust and has good performance. For example,

choosing ε = 0.1 the program Ψε = (1 − ε)Ψflow +
εΨrandom has λ2 = −0.66 and the same robustness as

Ψrandom.

Exactly how these programs fair under the failure scenar-

ios is shown in Fig. 6. The top of each subfigure shows

which modules have failed. The plot on the bottom shows

the probability of arriving as a function of time, given that

a node showed up in the loading area at time 0. With

no failures Fig. 6a the three different programs behave as

described above, all programs are correct and the Ψflow

and Ψε have good performance while the Ψrandom has bad

performance. Failure scenarios where one and two modules

fail are shown in Fig. 6bc. With failures only Ψrandom

and Ψflow behave correctly. They are robust to failure.

Program Ψε also has good performance. By this process

one can combine the desirable properties of robust and high

performance programs via composition and scaling.

V. CONCLUSION

We describe how to use guarded command programs

with rates to program and model multi-robot systems. These

programs can be easily composed, represent the inherent
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Fig. 7. Chair at various stages of completion. a) The back rest is emerging from the Factory Floor testbed. b) The seat has just finished. c) The program
is done. There are no more applicable actions. The various components of the chair have their own subprograms, which run concurrently via composition.
A simple broadcast protocol is used to communicate the current level.

concurrency of such system, and be interpreted as Markov

processes. The Markov process description allows us to

define notions of robustness and performance. Robustness

is converging to the right state, even when some robots

fail and performance is how fast the system converges. The

contribution of this paper is showing how to create robust

programs with good performance for a class concurrent

multi-robots systems, namely those that are well modeled

as Markov Processes.

In the future we would like to investigate alternative

ways of writing programs for ”robustification”. The program

Ψrandom applies all possible actions to provide high connec-

tivity, however many of these actions move the node away

from the target, which unnecessarily degrades performance.

One question is how to construct programs that have high

connectivity and good performance to begin with. Such

programs should yield better results during robustification.

Also, the naive approach of completely random exploration

is likely to seriously degrade performance when the state

space is very large.

Eventually, we want to apply robustification to more

complicated programs such as the one shown in Fig. 7. While

the theorems presented here certainly hold, applying them in

effectively is no straight forward. For example, in Fig 7 there

is little redundancy because almost all modules need to work

to complete the seat of the chair. But in the routing for the

back rest and legs the robustification we presented should

work well. What are the implications of only robustifying

subprograms? When is it a good idea?

We plan to implement these algorithms on the Factory

Floor testbed. When more modules become available for

experimentation we would like to measure and incorporate

actual failure statistics into the robustification scheme.
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