
Load Balancing for Multi-Robot Construction

Nils Napp, Eric Klavins
{nnapp,klavins}@uw.edu

University of Washington
Seattle, WA

Abstract— In distributed multi-robot construction it is im-
portant that different building sites receive building materials
at fixed, relative rates. Otherwise, subtasks finish at different
times introducing unnecessary delays. We present a feedback
algorithm to achieve robust load balancing in routing building
materials for stochastic, distributed, multi-robot construction
systems. We express global behavior in terms of local reactive
behavior via Guarded Command Programming with Rates and
prove correctness of the load-balancing controller for a wide
range of conditions. We adapt a proof from earlier work on
controlling Stochastic Chemical Kinetic systems and illustrate
the algorithm on the Factory-Floor robotic testbed [1].

I. I NTRODUCTION

In this paper we examine feedback control to balance
loads between subtasks in multi-robot systems. In particular,
we present a controller to balance the feed rate of building
materials between different construction sites in a larger
distributed construction task. Modular, reusable programs for
construction subtasks are important to managing complexity
and achieving scalability in writing new construction pro-
grams. In this context a simple, robust way to accomplish
load balancing between subtasks is important to composing
large construction programs from smaller ones without intro-
ducing unnecessary delays. The work presented in this paper
is another step toward the goal of building structures with
autonomous, scalable, and robust robotic systems. Potential
applications of such technology include building structures
for space exploration, hazardous/inaccessible environments,
or on a very small scale [2].

The load-balancing controller described here is robust to
robot failures and other system changes, such as additional
loads to the routing sub-task. We prove that the controller can
balance loads in systems that are well-modeled by Markov
processes and illustrate the approach on Factory Floor testbed
(Sec. II) in the context of a particular way of representing
behaviors (Sec. III).

In this paper, the behavior of robots is specified via
Guarded Command Programming with Rates(GCPR), which
specifies the local reactive behavior of robots and allows the
system as a whole to be interpreted as a Markov process.
Modeling the behavior of multi-robot system as a stochastic
process is similar to [3], [4], [5], [6]. Modeling multi-robot
system behavior as a Markov process restricts the type of

This work is supported by NSF Grant 0735953: EFRIControlling the Au-
tonomously Reconfiguring Factoryand AFOSR via the 2006 MURI Award
Specification Design and Verifcation of Distributed Embedded Systems.

Fig. 1. Simulation of a decentralized multi-robot system, building two
towers. Each square on the bottom layer represents a roboticmodule that
can manipulate the two types of building materials trusses (red) and nodes
(blue). Here, the construction area in the back receives building materials
at twice the rate as the one in front. As a result the back toweris higher.

timing behavior one can specify due to the inherent random-
ness. However, it allows the application of various analysis
tools as well as reasoning about reliability. For GCPR the
Markov process interpretation also enables reasoning about
relative speeds andconcurrency, the tendency of distributed
system to work with a common resource at the same time.

While using probabilistic models and behavior can seem
counterintuitive for engineering robust, reliable systems, con-
sider the exceedingly successful TCP/IP protocol. When an-
alyzing the performance and reliability this protocol is often
modeled as a Markov process [7]. That packets eventually
arrive with high probability is more important than detailed
behavior, such as a particular route being predictable or fixed.
Similarly, GCPR specifications are meant to guarantee that
behavior has a high probability of success [8]. In this paper
we build on these previous results and try to guarantee not
only that programs eventually succeed, but that several sub-
programs can be balanced, resulting in robust predictable
transient behavior.

The contribution of this paper is a load-balancing feedback
controller that works for stochastic programs in multi-robot
systems. We show how this approach can be used to balance
loads between multiple construction sub-programs, taking



full advantage of the compositional nature that local reactive
programs allow. The mathematical approach is to reformulate
load balancing into the equivalent problem of controlling the
average species number in a Stochastic Chemical Kinetics
(SCK) model [9] and to apply results we developed [10]
(Sec. IV).

Section II describes the Factory Floor robotic testbed.
Section III introduces mathematical notation used for pro-
gramming, SCK, and summarizes some key results about
Markov processes. Section IV describes a particular con-
struction program in more detail and describes the load-
balancing controller. It also gives some illustrative simulation
results to accompany the proof. Finally, Sec. V contains some
concluding thoughts and ideas for future research.

II. T HE FACTORY FLOOR TESTBED

The Factory Floor testbed is a multi-robot system for
developing scalable, robust, multi-robot construction algo-
rithms [1]. It consists of identical modules arranged in an
array, reminiscent of a factory floor with many workers.
Together, these modules assemble building materials into a
layer that is then lifted. By repeating this process, arbitrary
lattice structures can be extruded from the Factory Floor,
layer by layer. The structures are built from two different
types of building materials,nodesand trusses(Fig. 2c and
b). For the remainder of the paper, both types of building
material are refered to asraw mataerial. Nodes have six
faces, each of which can rigidly connect to the end of a truss.
Together, the two raw materials can be used to construct
arbitrary three dimensional lattices.

Each robotic module contains a manipulator, a lifting
mechanism, a cradle to store nodes, and various structures to
help with alignment (Fig. 2a). The end effector of the ma-
nipulator can pick up and release both trusses and nodes. In
addition, the end effector can actuate a latching mechanism
on the trusses, so that the ends become rigidly attached to
nodes (Fig. 2b).

Each robotic module can communicate with its four neigh-
bors and exchange information about the presence of raw
materials and the state of the lifter. In this paper we program
the system by describing processes that run each of the
modules. Robots only talk to their neighbors to check the
presence of building materials or exchange simple messages.
No robot has access to the global system state and no robot
tries to estimate it. In our opinion such restrictions about
using global information are important to achieving scalable
systems. The exception to this paradime is the integrator
state (Sec. IV-C), which all robots have access to. Since the
amount of information shared information is low we assume
that there is a low-level, distributed coummunication scheme
to share this information.

The programs for the example presented in Fig. 1 and
the rest of the paper are written in the Command and
Control Language (CCL) [11] (see Sec. III) combined with
an external simulation library. It keeps track of the simulated
physical state of the positions of lifting mechanism, nodes,

a)

b)

c)

d)
e)

Fig. 2. The Factory Floor testbed. a) Schematic representation of a Factory
Floor module. b) Picture of truss type raw material. c) Pictureof node type
raw material. d) Picture of four modules assembling a two layer structure.
e) Picture of same structure in simulator. Module components are omitted
for clarity.

and trusses. Figure 2de show the physical system and the
same state represented in the simulator.

In any case, we assume that the testbed has low level
drivers that can arbitrate local resource conflicts so that the
high level guarded command programs we write can treat
the actions of Factory Floor modules as atomic operations
between discrete states.

Example 1. For notational clarity consider only the lowest
level of the Factory Floor testbed, and one type of the raw
material, nodes for example. In this case, thestate space
S is the occupancy information of each module, which can
conveniently be represented as a binary number. Using this
binary notation a states ∈ S assigns a zero or one to each
module. If the i-th digit si = 1 then module numberi
contains a node, otherwise ifsi = 0 it does not. Figure 3
shows an example layout of module indices. Even in this
simplified model, the number of state is quite large,242 ≈
4.4 × 1012.

The same approach can be used for an arbitrary, finite
number of modules and occupancy states. For discussing
routing programs this simplified state space suffices, but the
following applies equally well to arbitrary, finite, discrete
state spaces.



III. N OTATION

A. Guarded Command Programming with Rates

GCPR is a way to program reactive, concurrent systems,
such as the Factory Floor testbed described in Sec. II. Pro-
gramming systems with GCPR has the advantage of simple
programcomposition. It is an extension of an approach to
reasoning about parallel processes from the computer sci-
ence literature [12]. Each robot works independently except
sharing common resources, here, physical building materials
and free space. GCPR and other concurrent languages are
designed to make these dependencies and resource conflicts
explicit, so that they can be formally reasoned about. The
examples in this paper are written using the Command and
Control Language (CCL) [11], a particular implementation
of a GCPR language.

The idea is that each robot is represented by aprogram, or
process that can make changes to a global state spaceS. In
particular, we are interested in programs where these actions
arelocal, which means that each robot only interacts with its
neighbors. For a more detailed discussions of local behavior
see, for example [13].

A programΨ is a multiset ofrules. A rule ψ is a triple
(g, a, r) whereg ⊂ S is a called theguard, a ⊂ S × S is a
called theaction, andr ∈ R

+ the rate.
Guards are conditions on the state spaceS; in the case

of robotic systems these conditions often corresponds to a
combination sensor information and internal variables. For
example, a guard might be whether or not a robot is holding
a raw material. An action corresponds to a change a robot
can perform on the state space, like moving a raw material.
For eacha ∈ S × S the first coordinate ofa corresponds to
the state before the action and the second coordinate to the
state after the action is performed. The rate associated with
each rule determines the average frequency the rule executes
when the guard is satisfied, in a way that is made precise in
Sec. III-B.

Example 2. The guarded command(g, a, k) of module i
passing a node to modulej at a ratek is given by the guard

g ≡ {s ∈ S | si = 1, sj = 0}

and the action

a ≡ {(s, s′) ∈ S × S | si = 1, sj = 0,

s′i = 0, s′j = 1,∀k 6= i, k 6= j sk = s′k}.

Only the occupancy of modulei and j change and all the
other digits ofs remain unchanged. The action is local.

The notation in the above example is cumbersome and we
borrow ideas from chemistry to simplify it. The chemical no-
tation also highlights the local nature of guarded commands
since parts of the state that remain unchanged do not appear.

Example 2 can be rewritten as

sisj
k
⇀ sisj , (1)

wheresi is used to denote the condition thatsi = 1 andsi
for si = 0 similar to boolean logic. In the chemical reaction

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

a)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

b)

Loading Routing Construction Broken

Fig. 3. Layout of construction program. The modules that run the loading
program also run the routing program. Construction area 1 consists of
modules 31, 32, 37, and 38, while construction area 2 consistsof 35, 36,
41, and 42. The routing program is the same as for all modules except for
the border modules of the two construction areas as shown in Fig. 5. a)
Programs during normal operations. b) Failure scenario. Broken modules
do not pass any raw materials.

notation the guard appears instead ofreactants, the result of
the action instead ofproducts, and the rate over the arrow.
Parts of the state that do not show up in the product remain
unchanged. With this notation a guarded command program
is essentially a reaction network with only unary reactions
in the SCK model [9]. Both of these descriptions specify
Markov processes on the state space as described in the next
section.

Programs can bescaled and composedto create new
programs. Together, these two operations are used in the re-
mainder of the paper to build increasingly complex programs
from simple sub-programs and to phrase desired program
behavior as a control problem. The compositionΨ of two
programsΨ1 andΨ2 is simply the union of their rules

Ψ ≡ Ψ1 ∪ Ψ2. (2)

A programΨ scaled by a positive numberα ∈ R
+ is a new

program with rules that have the same guards and actions,
but where each rate is scaled byα

αΨ ≡ {(g, a, αr) | (g, a, r) ∈ Ψ}. (3)

Note that in this construction the guard and action need
to be consistent in order for the rule to specify transitions
between states. Specifically, for guarded commands to in-
duce transitions the intersection of the guard and the first
component of the action has to be non-empty. Otherwise, the
rule does not change the behavior of the associated Markov
process.

B. The Connection Between GCPR And Markov Processes

Semantically, aGuarded Command Program(GCP) is
interpreted as a continuous timeMarkov process, [14], Xt

with state spaceS. Markov processes are characterized by



their generators, which for finite or countable state spaces
can be represented as agenerator matrix. We briefly describe
a mapping from GCPs to generator matrices and the corre-
spondence of scaling (3) and composition (2) operations on
programs to operations on the associated generator matrices.
For a more detailed description of these operations and
proofs see [8], [10].

To facilitate the description of the generator matrixQ we
choose an enumeration ofS. This enumeration is arbitrary
but assumed fixed for the remainder of this paper. For a given
program denote the set of rules in which the guard contains
i and the action includes a transition fromi to j, by Ri,j .

Given a guarded command programΨ define the associ-
ated generator matrixQ element-wise as

Qi,j = 0 if i 6= j andRi,j = ∅,
Qi,j =

∑

ψ∈Ri,j
rψ if i 6= j andRi,j 6= ∅,

Qi,i = −
∑

j Qj,i.

(4)

Probability distributions over states are denoted as row
vectorsp, where thei-th elementpi denotes the probability
of being in statei ∈ S. Functions of the sates are denoted
by column vectors. Ify : S → R theny is a vector who’s
i-th entry is y(i), the value assigned to statei by y. The
expected valueor meanEy of a functiony is given by the
inner product of the two vectors representing the function
and the probability distributionpy.

The dynamics of the Markov process are determined
by the generator matrixQ. The evolution of probability
distribution is given by

dp

dt
= pQ, (5)

which is called themaster equation[15, Ch. 5]. When
limt→∞ p(t) is unique it is known as thesteady state
distribution. A sufficient condition for a system to reach
steady state is thatS is finite and every state can be reached
from every other state. In general, we look at sub-programs
where these conditions are met, so that we assume the
existence of a steady state distribution.

Scaling and composition operations on programs are re-
lated to operations on the generators in the following way

Q(α1Ψ1 ∪ α2Ψ2) = α1Q(Ψ1) + α2Q(Ψ2). (6)

Due to the close relationship between programs and their
generator matrices, we identify the guarded command pro-
gram with the stochastic processes they induce. For example,
we say that a program has a steady state distribution and
use program to mean the discrete Markov process on the
discrete, often very large state spaceS. For a more detailed
description of the probabilistic interpretation of programs as
well as other operations on programs see [10].

IV. A ROBUST LOAD-BALANCING PROGRAM

There are three main tasks in construction, obtaining raw
materials, routing raw materials, and processing the raw
materials into structures. In the Factory Floor testbed the
modules perform all three. Figure 3 describes the different

l

m

ni
kbka

kc

Fig. 4. Schematic representation of the routing program on a node.
Each arrow represents a guarded command that passes raw materials in
the direction indicates. The symbol next to the arrow is the associated rate.
Tow of the rates are controlled by the inputu.

regions of the factory floor and the different tasks they
perform.

Obtaining raw materials in the following program is
represented by the programΨload. Modules that runΨload

randomly obtain raw materials at ratekload. In general, the
loading program could be replaced by a disassembly pro-
gram that obtains raw materials by taking apart an existing
structure of be the destination of a different routing program.
Considering a single type of raw material as discussed in the
Sec. II, the loading program can be written as

si
kload
⇀ si (7)

for each modulei that is runningΨload.
The routing portion of a construction program is similarly

simple. The spatial relation between different modules in
the routing sub-program is shown in Fig. 4. Passing a raw
material from one modulei to a neighboring modulem at a
ratekc, for example, can be written as

sism
kc
⇀ sism. (8)

There are subtle differences between the routing sub-program
and the loading sub-program. Firstly, because two different
modules are involved, the same source modules could be
involved in multiple passing operations so that the routing
module has a choice on which way to pass the raw material.
This choice is made probabilistically based on the relative
rates of the passing rules (8). Secondly, physically passing
raw materials between modules takes time, in the case when
a module can pass a raw material to other modules we make
sure that the rate out of each module is normalized to a
maximum kpass, corresponding to the maximum speed at
which modules are physically able to perform the passing
operation. Adjusting the rates for the different directions
changes the relative feed rates to the two building sites in
Fig. 3.

Building programs are more complicated to write due
to coupled dependencies of raw materials, geometric con-
straints, and limited sensing of upper layers. Conceptually,
these programs are just as simple though. In the programs
presented here, each layer in the building program starts by
placing a node in a specific location and then fills up the



remaining positions with raw materials received from the
routing sub-program until the layer is complete.

Building programs in the simulation use some simplifying
assumptions. For example, in the simulator an individual
module can lift a layer. In reality some coordination needs
to take place. For example, a the module that decides it is
time to lift a layer could send out a message with a time
to count down, until starting to lift. Based on the size and
inter module communication speed, the waiting time can be
chosen conservatively so that all modules that need to lift
together have received the message with high probability by
the time the count down elapses.

Similar to our earlier work [8] this paper is mostly
concerned with the routing portion of an overall construction
program, specifically with robustly routing raw materials to
different construction sites in a balanced way. The routing
sub-program itself is the composition of three different sub-
programsΨC , ΨA, and ΨB . The programΨC moves raw
materials up into the direction of the construction areas,kc
in Fig. 4, and the other two program move raw materials
sideways to the construction areas, programΨA toward
construction area 1 andΨB toward construction area 2. The
resulting routing program is given by

Ψroute = ΨC ∪ uΨA ∪ (1 − u)ΨB , (9)

where the rules of each program have a rate ofkpass

2
. The

rules for border modules are are modified from Fig. 4 as
shown in Fig. 5.

The overall program is given by

Ψ = Ψload ∪ Ψroute ∪ Ψtower1 ∪ Ψtower2, (10)

whereΨtower1 and Ψtower2 are the construction programs
in area 1 and area 2 respectively. The two construction
programs are the same except that they are instantiated on
different modules. Note, that this program has a tunable input
u that determines how much of the raw material is routed to
each construction site on average.

A. Disturbances

The two disturbances we consider here are failure of
individual robotic modules and changing loads. For a more
complete discussion of different disturbances and failures in
the context of GCPR and the Factory Floor testbed see [10].

Balancing loads between different construction areas in
the face of module failures, makes the overall construction
program robust. For example, in Fig. 3b, 9 out of 34
routing modules are broken. As a result, both feed rates
to the construction areas change because the routing and
loading programs are much less efficient at transporting
raw materials to the construction areas. However, the load-
balancing controller regulates the average difference between
the two feed rates to zero, see Fig. 6.

Rejecting the disturbance of new or changing loads is
important to utilizing the compositional nature of GCPR.
In the absence of a load-balancing mechanism routing sub-
programs need to be specifically tailored to the construction

37 38

31 32

u
kp

a
s
s

2

(1
−
u)
kp

a
s
s

2

kfeed

25

u
kp

a
s
s

2

(1
−
u)
kp

a
s
s

2

kfeed

26

k f
ee
d

(1
−
u)
kp

a
s
s

2

kpass

2

39

k f
ee
d

(1
−
u)
kp

a
s
s

2

kpass

2

33

Fig. 5. Border modules of construction area 1. The expected value of the
feed rate is a into the target area is a linear function of to the expected
occupancy time for the border modules. The modules 25,26,33, and 39
passes a raw material (node or truss) into the target area at rate kfeed. If
Esi denotes expected value of modulei possessing a raw material, then the
expected feed rate iskfeed Esi.

sub programs they are feeding, which stands in the way of
building up large programs form re-useable sub-programs.

Also, here we can consider robust behavior with multi-
ple construction sites, while our previous results concerned
creating robust open-loop routing programs that feed only a
single construction area. While conceptually minor, the proof
in [8] that the routing program is robust to a large class of
failures relied on assuming a single construciton area.

B. Computing The Expected Feed Rate

The occupancy of theborder modulesto a construction
area is directly related to thefeed rateof raw materials
into the area, see Fig. 5. Only the occupancy state of
border modules matters, since raw materials can only enter
a construction area through one of the border modules.

Let i be the location of a border modules that passes the
raw material into the construction area at a rate ofkfeed. For
a given states ∈ S, the i-th coordinatesi denotes whether
that particular module contains a raw material(si = 1) or
not (si = 0). The expected feed rate from modulei is given
by

Ekfeedsi = kfeedEsi.

Lemma 1. Given a construction site and a routing program
where each modulei ∈ B in the set of border modules
B passes raw materials into the construction site with rate
kfeed, the expected feed rate is given byEy wherey : S → R

by
yB(s) =

∑

i ∈B

kfeedsi.

Let y1 be a function defined as in Lem. 1 for the border
modules of construction area 1B = {25, 26, 33, 39}, and
similarly, let y2 be defined for construction area 2 withB =
{29, 30, 34, 40}. Due to linearity of the expected value, the



mean difference of the two feed rates is give by the expected
value of

y(s) = y2(s) − y1(s). (11)

Load balancing between the two construction areas can thus
be expressed as the set-pointEy = 0.

C. Feedback Control

The feedback controller is an integral controller, on the
error of an output functiony : S → R of the discrete states
compared to a set-point,y∗. The cumulative error is denoted
by z and its dynamics are given by

dz

dt
= γ(y(s) − y∗), (12)

whereγ is a integrator gain. The cumulative error is fed back
though the saturation function

h(z) =







0 z ≤ 0
z 0 < z ≤ 1
1 1 < z.

(13)

Denote the steady state distribution of the open-loop system
when u = 0 and u = 1 by pm and pM respectively.
The closed-loop system dynamics are given byu = h(z),
where the dynamics ofz depend onu because it changes
the transition rates between states inS. The resulting closed
loop system is a stochastic hybrid system with the following
property.

Theorem 2 (From [10]). Let Q(u) be the generator matrix
of a tunable reaction network andy the vector corresponding
to an output function. The feedback controller described
in (12)-(13) results in a closed loop system with a stationary
distribution that hasEy = y∗ wheny∗ is in thecontrollable
region, pMy < y∗ < pmy.

To apply Thm. 2 to the load balancing problem let

Q(u) = Q(Ψload∪ΨC∪uΨA∪(1−u)ΨB∪Ψtower1∪Ψtower2)

and the output function defined by (11). Choosingy∗ = 0
and using the controller presented above results in steady
state behavior where the mean feed rate to both construction
areas is the same.

The simulation results of the open-loop and closed loop
system are shown in Fig. 6. In both cases the system is
operating correctly according to Fig. 3a for the first 1000sec
at which time them modules marked broken in Fig. 3b stop
passing raw materials.

The input u is chosen such that the open-loop system
with all modules working correctly has a balanced feed rate,
Fig 6a t < 1000sec. However, when the failure scenario
shown in Fig. 3b occurs, more raw material arrives at
construction area 1 on average. The load-balancing controller
rejects this disturbance and even when modules break the
mean feed rate to both construction areas is the same.

The controllable region depends on the loading rate, the
detailed geometry of the routing program, and the location
of broken modules. In the absence of bottlenecks in the
routing area, the difference in loading rates is limited by the

a)
0 200 400 600 800 1000 1200 1400 1600 1800

−6

−4

−2

0

2

4

6

Time [sec]

E
rr

or
 [R

aw
 M

at
er

ia
ls

/1
0s

ec
]

γ=0 samples=200

 

 

0

0.2

0.4

0.6

0.8

1

b)
0 200 400 600 800 1000 1200 1400 1600 1800

−6

−4

−2

0

2

4

6

Time [sec]

E
rr

or
 [R

aw
 M

at
er

ia
ls

/1
0s

ec
]

γ=1e−06 samples=200

 

 

0

0.2

0.4

0.6

0.8

1

Fig. 6. Routing raw materials with the failure shown in Fig.3bat 1000sec.
a) Difference in routing rates in open-loop. The fraction oftrajectories at
a particular value and time is indicated by the grey shading, showing the
noise in the system. A sample trajectory highlighted in black and the thick
blue line is the empirical ensemble mean. b) Difference in routing rates for
the closed-loop controller withγ = 1e − 6.

total available flux of raw materials arriving at the loading
area. However, when bottlenecks are present as in the failure
scenario shown in Fig. 3b they limit the total available flux
difference, see Tab. I.

The controllable region for a given geometry is easy to
compute. All that is needed is an estimate for the steady
state occupancy distribution, which can be done analytically
for smaller problems or thorough sampling techniques like
the stochastic simulation algorithm [16] even for large state
spaces. Table I shows estimates of the controllable region
based on statistics gathered from sample trajectories to
computepmy andpMy. Note that when modules are broken
the region shrinks significantly.

u = 1 u = 0

Working −3.90 ± 0.24 3.56 ± 0.23
Broken −2.30 ± 0.18 0.71 ± 0.18

TABLE I

ESTIMATES OF THECONTROLLABLE REGION (CI 0.95)

By Thm. 2 the load-balancing controller will work as long
as the set-point (zero) is inside the controllable region. Using
different programs can change this region, but as long as the



new controllable region contains the set-point the balancing
controller will balance the feedrates. As a result, the load-
balancing controller is robust to a wide class of disturbances.
For example, if the program also passes raw materials to
additional construction sites.

V. CONCLUSION

The contribution of this paper is to adapt a feedback
mechanisms from earlier work [17] to balance loads between
different sub-programs in distributed, stochastic, multi-robot
systems. The key connection is given in Lem. 1. We demon-
strate the controller in a robust load balancing application
for routing raw materials to different construction sites at
the same feed rate.

The ability to robustly balance loads between different
sub-programs is important to a modular approach to writing
programs for multi-robot construction. This work is an
extension of [8] which focuses on robust routing algorithms
for a single construction site. Allocating the flow of raw ma-
terials to different sub-programs allows for building complex
behaviors from sub-programs that have predictable behavior.

In the current analysis the feedback controller requires a
global error and global feedback signal. However, the amount
of information that needs to be shared is minimal. As a result,
this controller can readily be implemented even in robots
with very limited communication ability. In the future we
plan to investigate distributed implementations as well. For
example, each module could run a local copy of the feedback
controller and only error signals need to be computed and
broadcast.

Creating robust, scalable construction sub-programs is
significantly more difficult than creating robust routing pro-
grams, but necessary to reach our goal of creating robust,
autonomous multi-robot construction platforms. We plan to
address this problem by carefully designing a set of robust
basic construction programs, which can then be scaled and
composed to build complex structures. However, to take full
advantage of such robust construction sub-programs robust
routing and load balancing are essential. As such, we believe
that the controller presented in this paper is a significant step
toward robust, distributed, multi-robot construction.

REFERENCES

[1] K. Galloway, R. Jois, and M. Yim, “Factory floor: A robotically recon-
figurable construction platform,” inIEEE International Conference on
Robotics and Automation (ICRA10), (Anchorage AK), pp. 2467–2472,
2010.

[2] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. Chirikjian, “Modular self-reconfigurable robot systems,” IEEE
Robotics Automation Magazine, vol. 14, pp. 43 –52, march 2007.

[3] I. Chattopadhyay and A. Ray, “Supervised self-organization of homo-
geneous swarms using ergodic projections of Markov chains,”IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 39, pp. 1505–1515, Dec. 2009.

[4] L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for
a swarm robotic assembly system,” inProc. IEEE International
Conference on Robotics and Automation ICRA ’09, pp. 1953–1958,
2009.

[5] S. Berman,Á. Hálász, and A. Hsieh, “Optimized stochastic policies for
task allocation in swarms of robots,”IEEE Transactions on Robotics,
vol. 25, pp. 927–937, Aug. 2009.

[6] E. Klavins, S. Burden, and N. Napp, “Optimal rules for pro-
grammed stochastic self-assembly,” inRobotics: Science and Systems
II , (Philadelphia, PA), pp. 9–16, 2006.

[7] J. P. Hespanha, “Stochastic hybrid modeling of on-off TCPflows,” in
Stochastic Hybrid Systems: Recent Developments and Research Trends
(C. G. Cassandras and J. Lygeros, eds.), no. 24 in Control Engineering
Series, pp. 191–219, Boca Raton: CRC Press, Nov. 2006.

[8] N. Napp and E. Klavins, “Robust by composition: Programs for multi
robot systems,” inICRA Proceedings, (Anchorage), pp. 2459–2466,
2010.

[9] D. A. McQuarrie, “Stochastic approach to chemical kinetics,” Journal
of Applied Probability, vol. 4, pp. 413–478, Dec 1967.

[10] N. Napp and E. Klavins, “A compositional framework for pro-
gramming stochastically interacting robots,”In Review, 2011.
http://soslab.ee.washington.edu/nnapp/ijrrRev.pdf.

[11] E. Klavins and R. M. Murray, “Distributed algorithms forcooperative
control,” Pervasive Computing, IEEE, vol. 3, no. 1, pp. 56–65, 2004.

[12] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,”Commun. ACM, vol. 18, no. 8, pp. 453–457,
1975.

[13] B. Smith, A. Howard, J. McNew, and M. Egerstedt, “Multi-robot
deployment and coordination with embedded graph grammars,”Au-
tonomous Robots, vol. 26, pp. 79–98, 2009.

[14] D. W. Stroock,An Introduction to Markov Processes. Graduate Texts
in mathematics, Springer, 1st ed., 2005.

[15] N. V. Kampen,Stochastic Processes in Physics and Chemistry. Else-
vier, 3rd ed., 2007.

[16] D. T. Gillespie, “Stochastic simulation of chemical kinetics,” Annual
Review of Physical Chemistry, vol. 58, no. 1, pp. 35–55, 2007.

[17] N. Napp, S. Burden, and E. Klavins, “Setpoint regulation for stochas-
tically interacting robots,” inRobotics: Science and Systems, 2009.
http://soslab.ee.washington.edu/nnapp/rss09.pdf.


