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Abstract

Large collections of simple, interacting robots can be dif-
�cult to program due to issues of concurrency and inter-
mittent, probabilistic failures. Here, we presentGuarded
Command Programming with Rates, a formal framework
for programming such multi-robot systems. Within this
framework, we model robot behavior as a stochastic pro-
cess and express concurrency and program composition
using simple operations. In particular, we show how
composition and other operations on programs can be
used to specify increasingly complex behaviors of multi-
robot systems and how stochasticity can be used to cre-
ate programs that are robust to module failure. Finally,
we demonstrate our approach by encoding algorithms for
routing parts in an abstract model of the Stochastic Fac-
tory Floor testbed [10].

1 Introduction

Modeling and programming multi-robot systems is chal-
lenging primarily due to the inherentconcurrencyof such
systems. Multiple robots can modify the system state
simultaneously , and communication and, hence, coordi-
nation is necessarily local. Consequently, problems such

� This work is supported by NSF Grant 0735953: EFRIControl-
ling the Autonomously Recon�guring Factoryand AFOSR via the 2006
MURI Award Speci�cation Design and Verifcation of Distributed Em-
bedded Systems.

as con�ict-avoidance, the resolution of non-commutative
robot operations, and the maintenance of a consistent in-
formation state arise.

Programming techniques to address these problems
span a spectrum of different approaches. On one end are
various approaches based on centralized control, in which
sensing and actuation are performed directly in a high di-
mensional global state space. For example, chain type
modular robotic systems ( [35]) are generally treated as
a control problem of a high degree of freedom manipula-
tor. These approaches essentially remove concurrency via
sequential programming on the (global) state space forc-
ing all robots in a system to move in lock-step regardless
wheter such coordination is necessary for the task at hand
or not.

On the other end of the spectrum, are behavior-based
programming techniques that specify thelocal reactive
behavior of individual robots [3, 15, 29, 33]. Here, the
control actions by robots are taken in response to spe-
ci�c environmental conditions and only affect well de-
�ned subset of the state space. Local reactive behav-
ior means that the robots have limited direct access to
global information. In general, specifying reactive behav-
ior places no restrictions on what type of environmental
conditions can trigger actions. This restriction is meant to
explicitly model the limited sensing and communication
capacities of robots. We argue that all multi-robot systems
are essentially concurrent and present a way to exploit the
situation with a speci�c programming framework.
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The main challenge with programming local reactive
behavior is understanding the map from local robot be-
haviors to global behavior. Although special cases have
been described, writing programs that control individual
behaviors so as to achieve some speci�c global behavior
along with a rigorous proof of correctness is dif�cult. For
a speci�c task it is often possible to writead hocbe-
haviors in a low-level programming language such as C
and tune parameters until the system performs well. How-
ever, accidentally adding spurious errors or reaching un-
desirable global states due to unforeseen interactions is a
serious risk.

In this paper, we describe a formalism calledGuarded
Command Programming with Rates(GCPR) for pro-
graming and modeling concurrent systems. This frame-
work is an extension ofGuarded Command Programming
borrowed from the theoretical computer science litera-
ture [9, 17].

The main feature of GCPR used in this paper is the
notion of composition. Composed programs execute si-
multaneously, just as the behaviors of multiple robots
are composed by running the robots concurrently. In
this manner, composition can be used to build large and
complex programs from smaller subprograms (Sec. 2.5).
While composition itself does not solve the dif�cult prob-
lem of mapping local to global behavior, it allows break-
ing down the global behavior into more manageable
chucks. For example, recon�guration can be broken down
into disassembly, routing, and assembly (Sec. 4). For an
algorithmic approach of mapping local to complex global
behavior, see, for example [15]

Although composition can be expressed in the tradi-
tional formalism of guarded command programming, we
extend the idea to a guarded command programming with
stochastic rates . The result has the desirable properties
that: it allows thescaling(Sec. 2.2) of programs by ex-
pressing the relative rate at which two programs can exe-
cute ; it allows modeling stochastic failures of subsystems
as composed guarded command programs (Sec. 2.5) ; it is
a natural means for modeling of uncertainty (Sec. 2.3.3).
Scaling in this context refers to algebraic operation of
scaler multiplication (as opposed to the scaling of pro-
gram size or input size). And it is precisely the algebraic
interpretation of operations on programs that make GCPR
an attractive tool.

Using GCPR to describe a multi-robot system allows

it to be interpreted by a set ofstochastically interact-
ing robots. Randomness either arises from a speci�ca-
tion choice where robots “�ip coins” to decide what to
do [2, 4, 7], or from the stochastic behavior of the under-
lying physics of the system [14, 32, 34].

We are particularly interested in situations wherein
each robot may communicate only with a small number of
other robots in itslocal neighborhood in order to perform
tasks. A robot in this setting does not need to wait for
instructions from a central scheduler or information pro-
cessing unit. For a formal de�nition of local interactions
for multi-robot system see, for example [25, 29]. Here we
use an approach similar to [6, 24] based on chemical re-
actions to describe the local reactive behavior of individ-
ual robots. The result is a convenient way to write down
guarded command programs(GCPs) (Sec. 2.2).

A considerable amount of work has been done to apply
formal veri�cation methods to robotic systems [13, 19–
22, 31]. The goal is to coordinate a set of given low-
level controllers as to generate trajectories conforming
to a high-level speci�cation of desired global behavior.
Here, we take a slightly different approach. We similarly
assume that a set of low-level controllers implementing
the basic ingredients of a GCP can be written, but are
not as concerned with veri�cationper se. Instead, we fo-
cus on the compositional nature of a GCP and how it re-
lates to writing high-level programs for concurrent multi-
robot systems. This approach is more like traditional pro-
gramming – with an application speci�c programming
language – than it is like approaches in which programs
are automatically generated from compact speci�cations,
such as �nite state machines (FSM) or linear temporal
logic (LTL) formulas [8, Ch 3]. The most similar ap-
proaches are formal modeling languages such as [1] and
the compositional approach of [16]. In contrast, we use
stochastic instead of non-deterministic semantics, which
simpli�es scalable composition and allows for a richer set
of behaviors s to be represented.

In particular, the contribution of this paper is to present
a formal way to exploit the inherent concurrency in multi-
robot systems from a programming perspective. Concur-
rency provides a natural, physically grounded way to in-
terpret the composition of programs, which we formal-
ize in GCPR. This approach gives a stochastic interpreta-
tion to the traditional non-determinism of concurrent sys-
tems. Together, concurrency and stochasticity enable us
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to pose control problems as GCPs. As an example of uti-
lizing GCPR, we describe a method torobustifyprograms.
The example highlights how our approach can be used to
rigorously address interesting control problems for multi-
robot systems.

In Sec. 2, we describe GCPR for programming dis-
tributed stochastically interacting multi-robot systemsand
show how GCPR can be used to address the idea of ro-
bustness and other control problems. In Sec. 3, we focus
on robustness and describe a way to create robust pro-
grams by carefully adding stochastic choices in appropri-
ate places. Finally, in Sec. 4 we demonstrate our ap-
proach on a particular robotic platform [10], theStochas-
tic Factory Floortestbed.

2 Guarded Command Program-
ming with Rates

GCPR is a formal way to specify the local reactive be-
havior of robots. Deferring a detailed description until
Section 2.1, the idea is as follows.Guardsare conditions
on the environment of a robot. When these conditions
arise, a robot can execute commands calledactionsthat
modify its local environment at a speci�edrate. Because
multiple guards can be true on multiple robots, multiple
commands can be executed simultaneously. In concur-
rency, this situation is modeled by allowing commands to
be executed one at a time, but with arbitrary ordering [15].
We are obliged to reason about every possible ordering of
such executions.

In the GCPR programing framework, an individual pro-
gram is called aGuarded Command Program(GCP).
Each robot is represented by a GCP. Multiple programs
running in parallel can result in interesting and complex
behavior due to the way they interact, representing the in-
teresting interactions of multi-robot systems.

From the programmer perspective GCPR can also pro-
vide a layer of abstraction between low-level controllers
and high-level behavioral programming. By carefully
choosing the level of detail of the guards and commands,
GCPR can be a high-level programming language. Low-
level embedded code only needs to implement the guards
and commands, such as recognizing and rewriting small
parts of a graph in [14]. In the GCPR framework, com-
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Figure 1: Example multi-robot system. Four identical
robotic modules that can each independently hold a brick
shown at two different times. a) State in which robotic
module 1 holds a brick. b) State in which robotic module
2 holds a brick.

mands areatomic; they are instantaneous and cannot be
interrupted by other commands. In contrast, commands
in physical systems are never truly atomic as they take
time to execute. However, by appropriately designing
low-level controllers to arbitrate con�icts this assumption
is reasonable for abstract representations.

Another bene�t of GCPR that this speci�cation is sim-
ilar to models used in formal veri�cation. For example,
the modeling language of the model checker PRISM
can be thought of as a GCP [23]. For mission critical
programs such a formal description is important because
proofs about the reliability and/or correctness of such pro-
grams is highly desirable. Typically, translating opera-
tional code into a formal language that can be veri�ed
is tricky because what is veri�ed is an abstract model of
the operational code. Correctness proofs are not actually
about the code itself. While not simplifying the veri�-
cation of the low-level code that implements sensing and
actions, using a high-level GCP for specifying behavior
paves the way for eliminating this translation step [1, 20].
New GCPs that use existing guards and actions can be
veri�ed without redoing the abstraction.

2.1 Notation

A multi-robot system evolves on a state spaceS, that in-
cludes all the relevant information. For example, the po-
sitions, orientations, and internal variables of all robots
would be inS. We are interested in programming the dy-
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namics of a multi-robot system so that when the system
starts from a set of possible initial states, it ends in a spe-
ci�c set of �nal states, thetarget. Using sets in this speci-
�cation allows a programmer to incorporate uncertainty.

Any physical system has limitations about which states
are immediately accessible from a given state. For exam-
ple, robots with limited speed cannot reach distant loca-
tions in short time, and robots cannot occupy the same
point in space. We model such restrictions by specifying
the set of possible transitionsA � S � S, where the �rst
coordinate indicates the state before a transition and the
second the state after a transition.

Example 1. The �rst step to modeling the robotic system
depicted in Fig. 1 is to decide the level of detail states
should contain. To keep things simple and to illustrate the
abstraction GCPR can provide, letS be the occupancy
state of the system. The state will indicate which robotic
modules are holding bricks. In this model each module
can only be in one of two states: It can be empty (denoted
by 0) or it can hold a brick (denoted by 1). As a result,
statess 2 S can be expressed as binary numbers. The
state in Fig. 1a corresponds to 1000. Given a states 2 S,
si = 1 means that thei th digit of s is 1, corresponding to
a state where thei th robot module is holding a brick.

Due to geometric constraints, robots can only pass
bricks to their immediate neighbors. These restrictions
can be captured by

A pass = f (s; s0) 2 S � S j

si = 1 ; sj = 0 ; s0
i = 0 ; s0

j = 1 ;

ji � j j = 1 ; sk = s0
k ; k 6= i; k 6= j g: (1)

Each element ofA passrepresents modulei passing a brick
to an adjacent modulej . Because the action is local, none
of the other modules (k 6= i; k 6= j ) change. Although
not illustrated in Fig. 1, we also allow robotic module 1
to exchange bricks with an external feeding mechanism.
The loading and unloading restrictions can be written as

A load = f (s; s0) 2 S � S j

s1 = 0 ; s0
1 = 1 ; sk = s0

k ; k 6= 1g (2)

and

A unload = f (s; s0) 2 S � S j

s1 = 1 ; s0
1 = 0 ; sk = s0

k ; k 6= 1g: (3)

Module 1 can transition between its two occupancy states
without affecting the other modules. The physical restric-
tions of the system are given by

A = A pass[ A load [ A unload:

A graphical representation ofA is shown in Fig. 2a. Each
arrow corresponds to an element(s; s0) 2 A , starting
from s and pointing tos0.

2.2 Syntax of Guarded Command Pro-
gramming with Rates

A GCP 	 is a setof rules f  i g. Each rule is a triple
(g; a; r) whereg � S is called theguardof  , a predicate
(true/false condition) on the state space,a � A is called
the action of  , andr 2 R+ (including 0) is called the
rateof  . For each rule, wheng is true, thena is applied
at a rate ofr , in a way that is made precise in Sec. 2.2.

Example 2. A program	 = f (g; a; r)g for the exam-
ple system from Fig. 1 that speci�es passing bricks to the
right is given by

g � f s j si = 1 ; si +1 = 0g (4)

a � f (s; s0) j si = 1 ; si +1 = 0 ; s0
i = 0 ; s0

i +1 = 1 ;

sj = s0
j ; j 6= i; j 6= i + 1g (5)

r � k: (6)

Figure 2b shows a graphical representation of	 .

Using set-builder notation is cumbersome even for
such a small example and does not highlight that the reac-
tive behavior of the robotic modules is local. To highlight
this fact, we borrow notation from chemistry and write
rules as chemical reactions [6]. Reactants represent the
guards, they need to be present for a reaction to occur.
In the chemical reaction notation, the action is to replace
states in the guard with the product. The rate associated
with a guarded command is written over the reaction ar-
row. Parts of the state that do not show up in the product
remain unchanged. This notation is both more compact
and emphasizes the local nature of guarded commands.

Example 3. Using chemical reaction notation the pro-
gram	 from Ex. 2 can be written as

si si +1
k* si si +1 ;
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Figure 2: Transition system from Fig. 1. a) Transitions represented by arrows show the physical limitations of the
system given byA . Any program can only induce a subset of these transitions, since they represent the physical
limitations of the system. b) Rates give rise to a Markov process description, programmed with	 . c) Markov process
when the reverse is added,	 [ a	 R .

wheresi = 1 is simply written assi while si = 0 is writ-
ten assi , similar to boolean algebra, note the signi�cant
simpli�cation compared to (4)–(6) in Ex. 2.

For the remainder of the paper we use chemical reac-
tion notation whenever possible. With the basic notation
in place , the reset of this section is dedicated to de�ning
operations on GCP.

De�nition 1. Compositionallows two programs to oper-
ate at the same time. The composition of two GCPs	 and
� is de�ned as

	 [ � ; (7)

the union of the two programs.

De�nition 2. Scalingspeeds up or slows down programs.
Given a program	 and a positive scaler�

� 	 �
[

(g;a;r ) 2 	

f (g; a; �r ) g; (8)

each rate in a program is scaled by the same number� .

De�nition 3. The reverseof a program	 , denoted	 R ,
is the program that includes all the backward transitions
of the transitions from	 . For a given rule(g; a; r) de�ne

gR � f s j 9s0 s.t.s0 2 g ^ (s0; s) 2 ag (9)

aR � f (s; s0) j 9s0 s.t.s0 2 g ^ (s0; s) 2 ag: (10)

The actions inaR correspond to physical transitions
wheneveraR � A .

Example 4. A program for the system in Fig. 1 that
passes bricks both left and right, but passes left at a slower
rate can be written as

	 [ a	 R ;

with a 2 (0; 1). A graphical representation of this new
program is shown in Fig. 2c.

A program 	 can have several different representa-
tions. It could consist of many rules that each contain
a singleton fromA as actions or contain a single rule that
has a large guardg and action seta. In order to com-
pare two programs, de�ne the function that maps GCPs
to GCPs on the same state spaceS.

De�nition 4. The function maps GCPs to representations
where each rule only contains a singleton action and a
trivial guard,

(	) �
�

(f sg; f (s; s0)g; r ) j (11)

(g; a; r) 2 	 ; s 2 g;(s; s0) 2 a
	

:

Two programs are said to beequivalentif maps them
to the same program. That is, they induce the same tran-
sitions with the same rates.
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2.3 Semantics of Guarded Command Pro-
gramming with Rates

The semantic meaning of a GCP is that of a Markov pro-
cess. This section gives a brief de�nition of Markov pro-
cess in Sec. 2.3.1 and collects some of the relevant results
and notation in Sec. 2.3.2. Readers familiar with the sub-
ject matter can safely skim these sections for notation or
skip ahead to Sec. 2.3.3 where the connection between
GCP and Markov processes is made.

2.3.1 Markov Processes

Consider a �nite-state, continuous-time Markov process
X t with state spaceS. To aid the exposition, assume some
arbitrary but �xed enumeration ofS, and leti 2 S denote
thei th element ofS. Given two statesi; j 2 S, thetran-
sition rate from i to j is denoted byki;j 2 R+ . When
there is no transition between states, the transition rate
between them is de�ned as zero. Thus all pairs have an
associated transition rate. Finally, one can conveniently
write a differential equation for the evolution of probabil-
ity distributions. Denote probability distributions onS by
a vectorp(t) with p i (t) � P(X t = i ), and letQ be the
matrix given by

� Q ji = ki;j for i 6= j

� Q ii = �
P

j 6= i Q ji .

The master equation[12]

_p = Qp (12)

describes the dynamics of a Markov process. By con-
struction, the columns of theQ-matrix in (12) sum to
zero, which has the following important implications for
the dynamics of a the probability vectorp. Firstly, any
row of a Q-matrix can be computed from all the other
rows resulting in an at least one dimensional nullspace.
Secondly, by left multiplying with with a vector of ones
it should be clear that

P
i p(t) =

P
i p(0), which should

be identically equal to 1 in order to represent probability
distributions over states. In general, by analyzing proper-
ties of this matrix one can infer properties of the stochas-
tic process, for example, the steady-state distribution(s),
the convergence rate, or the hitting times (Sec. 2.3.2).
Markov processes are convenient stochastic processes to

work with, and as a result there are many tools for simulat-
ing and analyzing them [11, 12, 26, 30]. Section 4 shows
how some of these tools apply to an example multi-robot
system.

2.3.2 Properties of Markov Processes

This section collects some of the key results about �nite-
state Markov processes. For a more complete treatment ,
see for example, [30].

Thehitting timefor some seth � S is de�ned as

� h � inf f t j X t 2 hg;

and thereturn timeas

� h � inf f t � � hC jX t 2 hg;

wherehC denotes the complement ofh. When the pro-
cess starts outside ofh, � h and � h are the same, but if
X 0 2 h , then� h = 0 and� h is the �rst time that the pro-
cess returns toh after leaving it. A statei 2 S is called
recurrent if P(� f i g < 1j X 0 = i ) = 1 and transient
otherwise.

These probabilistic quantities are closely related to the
structure of possible transitions. Considering a Markov
process as a graphG(Q) with directed, labeled edges
highlights this connection. De�neG(Q) as the triple
G(Q) � (V; E; L) where the vertex setV = S is the
state space ofX , the edge setE is given byE = f (i; j ) 2
S � S j ki;j > 0g, and the labeling function for edges
L : E ! R+ is given byL(i; j ) = ki;j .

A statej 2 S is said to bereachablefrom statei 2 S if
there exists a path fromi to j in G(Q). Two statesi; j are
said tocommunicate, written asi $ j , wheni is reach-
able fromj andj is reachable fromi . The relation$ is an
equivalence relationthat partitionsS into a set of equiv-
alence classes. If an equivalence classh has the property
that there are no states outsideh that are reachable from
states inh, then all states inh are recurrent.

Example 5. Figures 2b and 2c are graphical represen-
tations of Markov processes. In Fig. 2b, each state is
an equivalence class. Figure 2c has equivalence classes
f 0000g, f 1000; 0100; 0010; 0001g, f 1100; 1010; 1001;
0110; 0101; 0011g, f 1110; 1101; 1011; 0111g, and
f 1111g, all of which are recurrent.
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Figure 3: Transition system from Fig. 2c with loading
program added. The resulting Markov process has a sin-
gle recurrent equivalence class.

To create a program with a single recurrence class, a
loading and unloading program� needs to be added to
Ex. 4, otherwise the conservation of bricks restricts the
communicating states to contain states with the same
number of bricks. Let� be

s0
k* s0 s0

k* s 0:

The program given by

	 [ a	 R [ b�

has a single recurrence class because all states communi-
cate (Fig 3).

For a �nite-state process theQ-matrix is always sin-
gular and has non-positive eigenvalues. Hence, for any
initial distributionp(0), the limit

� Q � lim
t !1

p(t)

exists. When there is only a single recurrent communi-
cating class, this limit is unique , and� Q is called the
steady-statedistribution. Only recurrent states have pos-
itive probability in � Q . The largest negative eigenvalue
� 2(Q) is the worst-case convergence rate to� Q from any
initial condition.

In addition to the standard observations connecting
discrete-state Markov processes with their graphs, the
remainder of this section examines theconnectivityof

graphs and its consequences for Markov processes. For
a more thorough treatment, see, for example, [5, III.2]. A
graphG is said to beconnectedif any two vertices have
a path between them. A connected graphG is said to be
separatedby a set of verticesh � V if the graph induced
by removingh is no longer connected. A graph is said to
bek-connected when there is no set ofk � 1 vertices that
separates it. The largest value ofk for which a graphG is
k-connected is called theconnectivity, denoted� (G). For
two setsh; h0 � V , we de�ne therestricted connectiv-
ity � (h; h0) to be the largestk such that no set ofk � 1
vertices removed fromh disconnects vertices inh from
h0 (i.e., there is a path from everys 2 h to some ver-
tex in h0 ). When comparing the connectivity for graphs
induced by differentQ-matrices, a subscript to� denotes
the correspondingQ-matrix.

Example 6. In Fig. 2b and 2c the graph associated with
the Markov process is not connected. The connectivity�
for the graph in Fig. 3 is one (for example, 1000 sepa-
rates the graph), while the restricted connectivity� (h; h0)
where

h = f 0100; 0010; 0001; 1100; 1010; 1001g

h0 = f 0110; 0101; 0011g;

is 2.

2.3.3 Turning Guarded Command Programs Into
Markov Processes

To de�ne a Markov process onS it suf�ces to specify a
Q-matrix and an initial probability distribution onS. To
constructQ(	) , de�ne the set of rules

Ri;j = f (g; a; r) 2 	 j i 2 g;(i; j ) 2 ag (13)

that make transitions from statei 2 S to statej 2 S. The
entries ofQ(	) are given by

� Q(	) ji =
P

 2 R i;j
r  for i 6= j

� Q(	) ii = �
P

j 6= i Q(	) ji ,

wherer  is the rate of rule . The dynamics of the system
with program	 are given by the master equation (12).
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Example 7. Take the GCP described in Ex. 2 and Ex. 3,
with the enumeration of states in Fig. 2 from the upper
left to lower right (i.e., the enumeration0000, 1000, 0100,
0010, 0001, 1100, 1010, 1001, 0110, 0101, 0011, 1110,
1101, 1011, 0111, 1111) the associatedQ-matrix is the
16-by-16 matrix

Q(	) =

0

B
B
B
B
@

0 0 0 0 0
0 Q1 0 0 0
0 0 Q2 0 0
0 0 0 Q1 0
0 0 0 0 0

1

C
C
C
C
A

with

Q1 =

0

B
B
@

� k 0 0 0
k � k 0 0
0 k � k 0
0 0 k 0

1

C
C
A

and

Q2 =

0

B
B
B
B
B
B
@

� k 0 0 0 0 0
k � 2k 0 0 0 0
0 k � k 0 0 0
0 k 0 � k 0 0
0 0 k k � k 0
0 0 0 0 k 0

1

C
C
C
C
C
C
A

;

where0 denotes a matrix of zeros of compatible dimen-
sion. The block diagonal structure ofQ(	) corresponds
to the fact that the number of bricks in the system is con-
served. Each block corresponds to a different number of
bricks. The 0 entries at the top and bottom correspond to
the state when there are no bricks and when all modules
are holding bricks respectively. In either case, no transi-
tions are possible with	 , which does not have loading or
unloading rules.

In a GCP , a programmer can only specify the aver-
age rate at which actions are applied conditioned on the
guard. Typically, the rate the inverse of the mean comple-
tion time of the assoicated action. The Markov process
semantics mean robots randomly choose when to execute
commands if their guards are true. This loose timing con-
straint is in stark contrast to other ways of programming
multi-robot systems where the timing of actions is care-
fully speci�ed. These semantics are a compromise be-
tween the ability to specify timing and the ease of operat-
ing on programs (i.e., the ease of composing and scaling

programs ). The inherent randomness of each program
makes the composition of two programs easy; how ac-
tions interleave is random. Although detailed timing in-
formation is dif�cult to express in this framework, it is
easy to adjust the relative in�uence of concurrent pro-
grams by scaling them up or down. Together scaling and
compositions, are suf�cient for expressing a number of
interesting control problems, Sec. 2.5. Additionally, we
gain the ability to incorporate statistical failure informa-
tion and uncertainty, as pointed out in Sec. 1.

2.4 Operations on Q-matrices

Composition, scaling, reverse, and operations on GCPs
(Def. 1–4) correspond directly to operations on their asso-
ciatedQ-matrices. Given any two GCPs	 and� on the
same state space, and two positive scalers 1;  2 2 R+ ,
the following equation holds

Q( 1	 [  2�) =  1Q(	) +  2Q(�) : (14)

Proof. De�ne Ri;j for 	 andR0
i;j for � as in (13). For

the off-diagonal elementsi 6= j we have

 1Q(	) ji +  2Q(�) ji

=
X

 2 R i;j

 1r  +
X

 2 R 0
i;j

 2r 0
 

= Q( 1	 [  2�) :

Because the diagonal elements are computed from the
off-diagonal entries in each column, (14) follows.

TheQ-matrix of the reverse of a program is the same
as the transpose of the generator for the forward program
except that the diagonal is different. To highlight this con-
nection, de�ne the matrixA with entries

A (	) ji =
� P

 2 R i;j
r  i 6= j

0 otherwise.

TheA -matrix is the same as theQ-matrix except that it
has zero entries on the diagonal. However, the diagonal
can be computed from the other entries. In particular,

Q(	) = A (	) � (A T (	) 1);

where1 denotes a vector of ones with compatible dimen-
sion, andT denotes the transpose of a matrix.
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Lemma 1. The reverse of a GCP	 is given by

Q(	 R ) = A T (	) � (A (	) 1):

Proof. By construction,Q(	 R ) ij = A (	 R ) ij for i 6=
j . By the same argument as in the proof in Lem. 2.4, it
suf�ces to consider off-diagonal elements and show that
A (	 R ) is equal toA (	) T . Looking at these two matrices
element wise yields

A (	 R ) ji =
X

 2 R i;j (	 R )

r  

=
X

 2 R j;i (	)

r  = A (	) ij

= A (	) T
ji :

Lemma 2. A program and its atomized version have the
sameQ-matrix

Q(	) = Q((	)) :

Proof. This lemma follows directly from the de�nition of
, which keeps all elements of each actiona from the orig-
inal program, but creates a new rule for each one.

The mapping of programs toQ-matrices allows us
to reason about new, composed programs by examining
properties of the corresponding matrices.

2.5 Control Problems Expressed with
Guarded Command Programs

The ability to scale and compose programs allows us to
frame questions about programming and control of multi-
robot systems with GCPs. In the following discussion
programs are assumed to have similar rates, so a program
multiplied by a small scaler has lower rates than a pro-
gram that is not scaled. This assumption corresponds to
the fact that physical robots can only execute actions at a
�xed maximal rate and that programs that express behav-
iors execute these behaviors as quickly as possible.
Modularity : By composing subprograms which can
be separately written and analyzed allows us to create

reusable code. For example, if	 is a program that disas-
sembles a structure and� transports raw materials, then

	 [ �

is a program that does both (Ex. 4). In general, com-
posing arbitrary concurrent programs, while well de�ned,
does not yield desirable new programs. A programmer
needs to be aware of how the actions of two GCP interact.
One way of ensuring sensible compositions is to construct
programs where the sink state of one is the input for an-
other.
Control Input : In a system that has both natural dynam-
ics 	 and some other dynamics� that we have direct
control over , the composition

	 [ u� ;

whereu 2 R+ describes a system with a control input.
For example, open-loop optimal control in Sec. 4.2.5 or
[18] and feedback control [27] can be implemented by
using a system description of this form. In the context of
multi-robot construction systems, the control input is par-
ticularly useful for balancing programs that correspond
to different subtasks, such as disassembly, routing, and
building sub-programs.
Disturbances: Similarly, consider a nominal system	
and a set of undesirable transitions denoted by� . The
composition

	 [ " � ;

where" 2 R+ describes uncertainty around a nominal
model	 . The program� can either contain disturbances
or previously unmodeled transitions. In the latter case,
whenS contains failure states,� can be used to express
failure statistics (Sec. 4.3).
Inaccessible States:Different failure scenarios where ap-
plied actions might not cause transitions due to intermit-
tent malfunctions or states become inaccessible due to
broken subsystems can also be modeled with GCPs. A
given GCP	 can be decomposed into an equivalent pro-
gram

	 W [ 	 B ;

where	 B corresponds to the part of the program that is
malfunctioning and	 W the part of the program that is
working correctly (Sec. 3.2.1). Intermittent failures can
be expressed as	 W [ (1 � � )	 B , where� 2 (0; 1) is
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the strength of the intermittent fault. Larger values of
� correspond to a larger likelihood the faulty behavior.
Permanent failures of subsystem can be modeled by only
considering working transition	 W .

3 Robustifying Programs

This section presents an approach to combine a high per-
formance and a robust GCP to obtain a new program with
the best qualities of both. We refer to this process as “ro-
busti�cation” because it can turn a program that is not
robust into one that is, while preserving qualities of the
original program [28].

A robust program is one that behaves correctly in the
face of disturbances. Both correctness and the class of
disturbances need to be de�ned. We consider a program
to becorrectwhen it has probability one of ending up in
a pre-speci�ed region in the state space called thetarget,
T. In the language of stochastic processes, only processes
where the recurrent states are contained in the target have
correct behavior. This de�nition of is motivated by our
constructive approach to writing modular programs. By
choosing the target of one program as the input to the next
several programs can be strung together. A description of
the disturbances is given in Sec. 3.2.

3.1 Program Performance

The performanceof a program is the rate at which
arbitrary initial probability distributions converge to
the steady-state distribution. If distributions converge
quickly, a program is said to have good performance . If
distributions take a long time to converge , it has poor per-
formance. Numerically, the performance of a program	
is bound by the second largest eigenvalue ofQ(	) , de-
noted� 2(Q). It is a measure of convergence rate in the
master equation (12). The greater the magnitude (more
negative) the second eigenvalue the faster the conver-
gence rate. Multiple zero eigenvalues, correspond to the
case of multiple recurrent equivalence classes.

3.2 Types of Disturbances

3.2.1 Program Decomposition

As described in Sec. 2.5 , modeling inaccessible states
can be accomplished by decomposing a program	 into
two parts. Given a set of states that are brokenSB � S,
the set of states that are still accessible or working is
SW = S n SB . Given a program	 and a set of bro-
ken states , we describe how to construct an equivalent
program	 W [ 	 B where the program	 W only makes
transitions between states inSW .

De�nition 5. Each rule in 2 	 is either in	 W , 	 B , or
split into two parts as follows. Given a = ( g; a; r) 2 	
de�ne the a rule B � (gB ; aB ; rB ) by

rB � r (15)

aB � a \ (S � SB [ SB � S) (16)

gB � (g \ SB ) [ f s j (s; s0) 2 aB g: (17)

The working part of the rule is the complement W =
(gW ; aW ; rW ) = ( g n gB ; a n aB ; r ). Whether a rule
 2 	 belongs to	 B , 	 W , or is split according to (15)–
(17) is decided as follows:

� If aB = ; , then the 2 	 W .

� If aW = ; , then 2 	 B .

� If aB 6= ;^ aW 6= ; , then B 2 	 B and W 2 	 W .

A program can be split into two parts by applying the
above procedure to all its rules.

Theorem 3. Given a GCP	 and setSB , the construction
in Def. 5 results in two programs	 B and 	 W with the
property that	 B [ 	 W is equivalent to	 .

Proof. By construction, the elements ofa for each 2 	
appear in a rule of either	 B or 	 W with the original rate.
As a result

(	) = (	 W [ 	 B );

and so the decomposition produces an equivalent pro-
gram.
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3.2.2 Intermittent Failures

There are two different types of intermittent failures.
Firstly, imagine there are some transitions in a given GCP
	 that depend on faulty hardware. Maybe the gripper of a
robot has a loose screw and occasionally drops an object.
A low-level controller recovers from the error and puts
the system back into the state before the transitions. In
general, sometimes when a command corresponding to a
faulty transition executes, it does not work. Instead, the
system remains in the original state. As described in the
discussion of inaccessible states in Sec. 2.5, a program
with intermittent faults of this type can be written as

	 W [ (1 � � )	 B ;

where� 2 (0; 1) is the intensity.
Secondly, instead of returning to the original state after

an intermittent fault the system could end up in a state that
is neither the �rst nor the second coordinate of the action.
For example, a gripper could occasionally drop an object
that is not recovered by a low lever controller. This type
of intermittent failure can be expressed as a disturbance
(Sec. 2.5)

	 [ " � ;

where the disturbance program� contains intermittent
and unintended transitions occurring with intensity" .

3.2.3 Permanently Inaccessible States

Modeling a speci�c permanent failure where states be-
come inaccessible is simpler. Given a program	 and a
set of broken statesSB , by Thm. 3, 	 can be decom-
posed into an equivalent program	 W [ 	 B . The work-
ing part	 W only makes transitions inSW . Using it as a
new program onSW models the behavior of the system
where some of the states have become permanently in-
accessible. The permanent failure case is the limit of the
recoverable failure case when� ! 1.

By construction all the states inSB are recurrent and
do not communicate, when considering only the working
program	 W , because all transitions to and from states
in SB have been removed from	 W . One must take care
in any subsequent analysis to considering questions about
the connectivity of	 W only onSW .

3.3 The Performance and Robustness of
Composed Programs

This section gives two theorems about the composition
of programs. Both are about the continuity of composi-
tion. Adding a small amount of an arbitrary program�
to a nominal program	 means that the composition will
have a similar steady state and convergence rate as	 . The
theorems are stated in terms of theQ-matrices associated
with GCPs.

Lemma 4. Given twoQ-matricesA andB with the same
dimension, then8� > 0, 9" > 0 such that

j� 2(A) � � 2(A + "B )j < �:

Proof. The eigenvalues ofA + "B are the solutions of
the characteristic polynomial,det (�I � (A + "B )) = 0 :
The roots of a polynomial are continuous functions of the
coef�cients, which in turn are continuous functions of" .
By composition on continuous function the eigenvalues of
A + "B depend continuously on" .

Lemma 5. Given Q-matricesA and B of two correct
programs with the same targeth � S, then forC = A +
B ,

� C (hC ; h) � maxf � A (hC ; h); � B (hC ; h)g:

Proof. Adding two Q-matrices can only increase the
number of (vertex) independent paths fromhC toh; there-
fore, � C (hC ; h) is at least as large as� A (hC ; h) and
� B (hC ; h).

Theorem 6. Given aQ-matrix A with a single recurrent
communicating class and some otherQ-matrix B , then
C = A + "B where0 � " has a single recurrence class
, and the entries of� C depend continuously on" .

Proof. By assumption aboutA, C also has a single recur-
rence class and thus a unique steady-state distribution� c.
Furthermore,� c is the intersection of the one dimensional
subspace given by the �ux balance equationCp = 0 and
the hyper plane given by the probability vector constraint
1T p = 1 . Since these are linear constraints with coef�-
cients that vary continuously on" , the entries of� C also
depend continuously on" .
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Hence, varying" cannot produce a bifurcation in equi-
librium points when adding"B to theQ-matrixA . How-
ever, in general when A does not have a single recurrence
class (dim(( A)) > 1) adding"B to A can make steady-
state solutions disappear. In particular, a transition inB
may connect two different recurrent equivalence classes,
and the steady state from a given initial condition might
not be continuous in" . Including the condition on the
number of recurrent classes in Thm. 6 is necessary.

Theorem 7. Given twoQ-matricesA and B with the
same, unique recurrent states� , then for any� > 0; 9 " >
0 such that forC = A + "B ,

� j � 2(A) � � 2(C)j < �

� � C (f s� gC ; f s� g) � � B (f s� gC ; f s� g)

� � C = � A .

Theorem 7 follows directly from applying Lemmas 4
and 5. Both Thm. 6 and 7 are about composing a nominal
program	 (represented byA) with other programs. By
Lem. 4 , if 	 is composed with some suf�ciently small
amount of an arbitrary program� , then the the conver-
gence rate of	+ " � is close to the convergence rate of	 .
By Thm. 6 , the steady-state distribution of	 and	 + " �
are also close element wise.

Thm. 7 is about composing programs that are both cor-
rect (with respect to the same target states� ) but can have
different performance and robustness. It states that one
can add a robust (high relative connectivity) program with
a high performance program (j� 2j large) and obtain a pro-
gram that has both good performance and robustness.

4 The Factory Floor Testbed

This section describes an extended example demonstrat-
ing how to apply Thm. 7 to the Factory Floor testbed, a
multi-robot system that can assemble, disassemble, and
recon�gure structures [10]. The goal of this testbed is to
aid development of robust algorithms and hardware that
can autonomously build structures in uncertain environ-
ments.

a)

b)

c)

d) e)

Figure 4: The Factory Floor testbed [10]. a) Schematic
representation of a Factory Floor module. b) Picture of
truss type raw material. c) Picture of node type raw ma-
terial. d) Picture of four modules assembling a two layer
structure. e) Picture of same structure in simulation. For
clarity, module components are omitted, and only the raw
materials are shown.
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a) b)

c) d)

e) f)

Figure 5: Sequence of snap shots from a recon�gura-
tion simulation. The sequence a-e) shows the program
at various stages of progress a) Initial con�guration. e)
Final goal con�guration. f) Image sowing loading areaL
(hashed), routing areaR (white, right), and the target area
T (shaded) of the routing program (Fig. 6). To the left
of L a GCP running in the disassembly area (white, left)
takes a structure apart and feeds the raw materials to the
routing program.

4.1 Description

The testbed [10] consists of an array of identical robotic
modules that build structures made from two different
types ofraw material called trussesandnodes(Fig. 4).
Each module has a manipulator with an end effector that
can grab and release nodes and trusses, a temporary stor-
age place for nodes and trusses, and a lifting mechanism.
Assembly and disassembly proceed layer by layer. Mod-
ules manipulate raw materials into place and then coordi-
nate lifting with other modules. At the end of each truss
is a latching mechanism that can be activated by the end
effector and rigidly attach to one of the six node faces.
By this mechanism the Factory Floor testbed can build
arbitrary lattice structures from trusses and nodes. The
sequence of pictures in Fig. 5 shows a typical recon�gu-
ration task. A tower is disassembled on one side of the
testbed, the raw materials are routed, and then a tower is
assembled on the opposite side. Figure 5f shows which
modules in the testbed run the three different tasks.

4.2 Routing Programs

This section describes programs for theroutingportion of
the recon�guration task in Fig. 5 in more detail. This sub-
task is performed by the most modules and as a result has
the most redundancy, which is important to the robustness
to module failure. Programs can only be robust to individ-
ual robot failures if there are redundant robots.

Fig. 6a gives the layout of the factory �oor testbed for
the con�guration task. The hashed modulesf 1; 2; 3; 4g
and shaded modulesf 18; 19; 22; 23g correspond to the
loading area(L ) and thetarget area(T), respectively.
Each module either has a node or not, and so the state
of each module is binary, which is similar to Ex. 1. The
state of a module is 1 when the module contains a node
and 0 when it does not. In the routing portion of a recon-
�guration program, what happens in the target area is not
important. During routing, it acts as a sink, and nodes
disappear as soon as they get into the target area. As
a result, the four modules inT can be lumped together
resulting in the state spaceS = f 1; 0g21, that is, the 21-
fold cross product of the module state, a 21 digit binary
number as in Ex. 1.

Figure 6b and Fig. 6c show two different routing
programs. Each arrow represents a rule of a GCP, and
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Figure 6: Schematic representations of routing programs.
The loading areaL is denoted by hashed modules, the
routing areaR by white modules, and the target areaT
by shaded modules. a) Layout of the factory �oor testbed.
The numbers in each module position identify the module
when writing programs. b) Deterministic path program
	 . Only transitions that provide progress are enabled. c)
Random Program� . In each location all possible transi-
tions are enabled. This program is slow since many of the
transitions do not provide progress toward the target area.

each module runs a program containing all the rules cor-
responding to arrows in that location. Using chemical re-
action notation as in Ex. 3 programs for the Factory Floor
modules can be written as

s3; s7
kpass
* s3; s7

s3
k load* s 3

in the case of module 3 in Fig. 6b, for example.
The associated rates are such that the rates of all rules

corresponding to actions performed by the same module
sum to a constantkpass. This rate models the speed at
which modules perform tasks, in this case how long it
takes to pass raw materials. The average time to pass raw
materials is1=kpass. If there are multiple arrows, then each
of the associated guarded commands has the same frac-
tion of the total ratekpass. Also, nodes appear randomly
in the loading areaL at a ratekload. In this way , the
diagram Figs. 6b and 6c can be turned into guarded com-
mand programs with rates. We denote the program from
Figs. 6b and 6c by	 and� , respectively.

a) b) c)

Figure 7: Three different failure scenarios. a) All modules
are working. b) Module 10 is broken, c) Module 10 and
11 are both broken.

4.2.1 Performance Without Failures

To analyze the performance and robustness of these sys-
tems we look at how a program routes a single node. This
assumption drastically reduces the size of the state space ,
yet the connectivity properties governing the robustness in
the single-node case carry over to the general case with-
out this restriction. When only allowing one node at a
time, the state space of the system is simply the position
of that node. When a module fails and stops routing nodes
, only a single state (but multiple transitions) become un-
available.

In this simpli�ed problem , a node randomly appears
in the loading area either from an external source or, as
in this example, from a disassembly program. The un-
certainty in the loading is expressed as a probability dis-
tribution of where the node shows up. The target area is
modeled as a single state that only accepts nodes. When
all modules operate correctly , it is easy to see that nodes
will be routed to the single accepting sink state (T). With
kpass = kload = 1sec� 1 , the rate of convergence (j� 2j)
of the two programs	 and� shown in Fig. 6 is1:0 and
0:029, respectively. Both programs are correct, but	 has
much better performance.

4.2.2 Modeling Speci�c Failures

The �rst step is to consider failures of speci�c modules.
Similar to considering only a single node at a time , this
approach yields small, tractable Markov processes and al-
lows us to gain some intuition before tackling a more gen-
eral model that incorporates failure statistics. The three
speci�c scenarios we considered in this section , which
are shown in Figs. 7a–c, are the cases when there are: no
failures, a single-module failure, and multiple-module
failure.

We apply Thm. 3 to the two failure scenarios. In the
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case of a single failure (module 10 in Fig. 7b), the set of
broken states is

SB = f s 2 Sjs10 = 1g:

Applying Thm. 3 to	 (Fig. 6b) results in	 B ,

s6s10
kpass
* s6s10 s10s14

kpass
* s10s14:

This decomposition is simple because the rules in	 are
written in chemical reaction notation to begin with and
each rule belongs either to	 B or 	 W . The other rules of
	 are in	 W .

The chemical reaction notation is also applicable to the
broken part of� (Fig. 6c). The broken component� B is

s6s10
kpass
* s6s10 s10s6

kpass
* s10s6

s14s10
kpass
* s14s10 s10s14

kpass
* s10s14

s9s10
kpass
* s9s10 s10s9

kpass
* s10s9

s11s10
kpass
* s11s10 s10s11

kpass
* s10s11:

The broken components	 B and � B for the failure of
multiple modules (Fig. 7c) work exactly the same ex-
cept that they contain more reactions. Using these com-
positions , one can model both intermittent and permanent
failures.

4.2.3 Performance with Intermittent Faults

By combining the two parts of a decomposed program
(e.g. 	 W and	 B ), one can investigate the performance
of 	 with intermittent failures. The probability of an in-
termittent failure is given by� 2 (0; 1). Because we re-
strict the failure probability to be less than 1, all states that
communicate in	 also communicate in	 W [ (1� � )	 B .
As a result, programs with intermittent faults have the
same equivalence classes with the same recurrence struc-
ture. If the original program	 is correct, then the pro-
gram with intermittent faults is also correct. However, the
performance can degrade signi�cantly. Figure 8 shows
the second largest eigenvalue� 2 of 	 W [ (1 � � )	 B and
� W [ (1 � � )� B as a function of� for the two different
failure scenarios shown in Fig 7.
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Figure 8: Performance (� 2) as a function of fault inten-
sity � . a) Performance of	 (solid line), � (dashed line),
and� (dash-dotted line) with a single, intermittent fault
(Fig. 7b). c) Performance of	 , � , and� = 0 :9	 + 0 :1�
(see Sec. 4.2.4) with two intermittent faults (Fig. 7c).
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4.2.4 Performance with Permanent Failures

In contrast to intermittent failures, permanent failures can
change the recurrence structure of a program. These types
of failures can turn a correct program into one that is no
longer correct.

Section 4.2.1 shows that	 has better performance in
the absence of failures, but when any routing modules fail
permanently , the resultingQ-matrix has multiple recur-
rent equivalence classes with some recurrent states out-
side the target. In contrast,� has the opposite problem, it
has low performance due to the backward passes that do
not provide progress, but it performs correctly when up to
three modules fail because the relative connectivity to the
target is� (L [ R; T ) = 4 .

By Thm. 7 , we can combine both programs and obtain
one that is robust and has good performance. For exam-
ple, choosing" = 0 :1 , the program� = (1 � " )	 + " �
has � 2 = � 0:66 and the same robustness as� . This
means that� W = 	 W [ � W should be correct and have
good performance. The reason to choose a convex com-
binations of programs instead of other scaled composi-
tions is to conserve the total rate of passing raw materials
for each module, which is necessary for a sensible phys-
ical interpretation of the resulting program. Figure 8
compares the performance of these three programs in the
case of intermittent faults, and here too,� has most of the
desirable performance features from	 .

Exactly how these programs fair in the failure scenar-
ios is shown in Fig. 9. The top of each sub-�gure shows
which modules have failed. The plot on the bottom shows
the probability of arriving as a function of time given
that a node showed up in the loading area at time 0. With
no failures (Fig. 9a) , the three different programs behave
as described in Sec. 4.2.1 ; all programs are correct, and
	 and � have good performance while� has bad per-
formance. Failure scenarios where one and two modules
fail are shown in Figs. 9b and 9c. With failures, only
� W and � W behave correctly ; they are robust to fail-
ure. The program� W has good performance and is ro-
bust. This demonstrates how one can use composition to
combine the desirable properties of robust programs and
high-performance programs.
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Figure 9: Program performance with various failure sce-
narios. The plots show the probability of a node arriving
at the target (given it was at the loading area att = 0 )
as a function of time. The solid line corresponds to the
program	 shown in Fig. 6b , the dashed line to the pro-
gram� shown in Fig. 6c, and the dash-dotted line to the
composed program� = 0 :9	 + 0 :1� . a) Programs with
no module failures,	 and � have similar good perfor-
mance , and� has poor performance. All programs are
correct. b,c) Programs with one and two module failures
respectively. Only� and� are correct; they are robust to
module failure.
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Figure 10: Quality measures of(1 � " )	 [ " � . a) Time
of 90% arrival as a function of" with two different fail-
ure scenarios (Figs. 7b and 7c) . b) Performancej� 2j
as a function of two different failure scenarios (Figs. 7b
and 7c).

4.2.5 Optimizing Programs

The robusti�cation in the previous section shows that a
convex combination of programs can yield desirable re-
sults. Exactly how programs should be weighted depends
on the particular problem. In the context of the Factory
Floor testbed we look at two different measures of quality.
First, the time of 90% probability of arrival (Sec. 4.2.4).
Figure 10a shows the time it takes for the probability of
routing a node to the target with 0.9 probability of success,
given that it shows up randomly uniformly distributed in
the loading area att = 0 . Depending on the failure sce-
nario, the best choice of" is different. Second, the perfor-
mance� 2 of the convex combination (Fig. 10b), results
in a different optimal of" , which again depends on the
failure scenario.

Since the performance depends on the scaler parame-
ter of the convex combination, the problem of choosing it
can be turned into an optimization problem. For a more
detailed description of a particular problem and how to
solve the resulting optimization problem, see, for exam-
ple, [18]. Here, we simply want to point out that GCPR
can be used to pose questions of writing high quality pro-
grams as an optimization problem using convex combi-
nations of GCPs. While the parameter space is convex
these problems are not necessarily easy to solve because
the quality measure of programs can be numerically ex-
pensive to compute.

4.3 Incorporating Failure Statistics

The stochastic nature of GCPR can easily incorporate fail-
ure models based on empirical, statistical information. It
is particularly easy to incorporate failures that are expo-
nentially distributed. More complicated distributions can
be approximated by using a series of failure states with
exponential transitions between them.

This section is a slight departure from the previous sec-
tions because it requires expanding the underlying state
spaceS to capture failures. To do so in this particular ex-
ample, we extend the state of each module to include a
failure state, and soS = f 0; 1; 2g21 instead of just in-
cluding two states per module. If a module is in state 2 ,
it has failed and can no longer pass nodes or trusses.

We can still use the old programs,	 ; � ; and� , from
the previous sections embedded into this new higher di-
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mensional state space. The chemical reaction notation
makes this embedding easy because it only speci�es the
part of the state that changes, and the original states, 0 and
1, are still in the expanded state space.

To express failures of modules in chemical reaction no-
tation, denote the situation that thei th component (mod-
ule i ) of s 2 S is broken byesi (i.e.,esi = 2 ). If individual
modules fail at a rate ofkfail , a program� that models this
failure can be written as

si
k fail* esi si

k fail* esi :

This new state space is quite large (321 � 2:8 � 1011)
, so computing the probability distribution over states
or the eigenvalues of the transition matrix is dif�cult.
However, simulating trajectories and estimating statisti-
cal quantities can be done ef�ciently using the Stochastic
Simulation Algorithm (SSA) [11]. Table 1 shows SSA re-
sults to estimate the expected number of routed nodes in
the �rst 1000sec for	 , � , � , 	 [ � , � [ � , and� [ �
with a failure rate ofkfail = 0 :001sec� 1 , a loading rate
of kload = 0 :1sec� 1, and a passing ratekpass = 1sec� 1.
The simulation time is the average life-time of a mod-
ule 1=kfail . With this choice a signi�cant number (50%)
of the modules are expected to break by the end of sim-
ulation. Obviously, the number of routed parts is sig-
ni�cantly higher for the programs that do not contain the
failure program� , and� is almost as good as	 in the
absence of permanent failures, and behaves signi�cantly
better when failures are present. Given the simulation
time and failure rate of this example, the �nal state of each
trajectory is expected to have half of its modules broken.
With such a sever fraction of broken modules, it is likely
that there is no routing path from the from the loading
area to the target. The data re�ects this in two ways. First,
the signi�cantly lower mean of the programs that contain
� , and second, the much higher standard deviation of the
programs with failures even though the mean is lower.
The increased variance results from the fact that the ef-
fectiveness of the routing program is randomly decreased
by broken modules. This additional source of randomness
increases variance. We expect this source of noise to be
the least effective in the case of� , since purely random
exploration should effectively explore paths around bro-
ken modules, where as	 and� do not.

The GCP� created in the previous section to be more
robust to failures in the simpli�ed, single-node model

Program Mean (95%CI) STD
	 357.5� 1:1 16.7
� 197.7� 0:5 8.3

0:9	 [ 0:1� 353.7� 1:0 16.3
	 [ � 79.7� 2:6 41.0
� [ � 65.2� 1:7 27.2

0:9	 [ 0:1� [ � 96.6� 2:9 45.7

Table 1: Mean number of routed nodes. Trajecto-
ries were simulated for 1000sec with rate parameters
kpass= 1sec� 1, kload = 0 :1sec� 1, andkfail = 0 :001sec� 1

using SSA. The parameters are chosen such that trajec-
tories have the same length as the mean time to failure
of modules. The mean and the standard deviation were
computed from 1,000 trajectories.

also behaves much better than	 when incorporating sta-
tistical failure. This extended example shows how GCPR
can be used as a �exible tool in programing and reason-
ing about the behavior of stochastically interacting robots.
We created a manageable simpli�ed model (single node)
to design a routing program� via robusti�cation. These
simulation results suggest that this GCP also performs
well in the non-simpli�ed system.

5 Conclusion

Stochasticity can be used to model concurrency, failures,
and uncertainty. We use it to give semantic meaning to
GCPR and use the resulting framework to create robust
programs with good performance. The main contribution
of this paper is framing the problem of multi-robot pro-
gramming formally as GCPR. The operations of compo-
sition, scaling, reverse, and decomposition can express
a variety of control questions related to multi-robot sys-
tems. We show that these operations on programs are di-
rectly related to operations on the generators of Markov
processes, and so the analysis of composed and scaled
programs can be drastically simpli�ed

This approach differs fundamentally from other ap-
proaches in which robot behavior is deterministic. Al-
though these semantics are restrictive in some sense,
GCPR is suf�ciently expressive to pose interesting prob-
lems while facilitating composition of programs, some-
thing that is dif�cult to reason about with other ways of
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programming. We show how composition and scaling of
programs can be used to express a variety of control ques-
tions and focus on robustness in an extended example of a
routing program that is part of larger recon�guration task.
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