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About Me

• New to UB (super excited to be here)

• 4+ years working in databases

• And 3+ years in distributed systems before 
that

• Worked with analytics teams at Microsoft Azure
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Office Hours

• Davis Hall 338H

• Monday: 2:00-4:00 PM

• Thursday: 2:00-4:00 PM

• or by appointment
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Course Goals

• Familiarize you with systems for storing 
and analyzing really really big data

• Real world systems (if you want to go into industry)

• Interesting problems (if you want to go into academia)

• Past, present, and future systems

• Give (some of) you experience working 
with these systems.
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Course Requirements

• Submit paper overviews Each Week

• 1-2 paragraphs per paper

• What’s the message of the paper?

• What are the pros and cons of the 
paper’s approach?

• Everyone gets 2 weeks of missed overviews

(Everyone)

Monday, September 10, 12



Course Requirements

• Present 2 papers

• 30-40 minute presentation

• 20-30 minutes of discussion

• Arrange to go over your presentation 
with me by the prior Thursday.

(2+ Credits)
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Course Requirements

• A simple implementation project

• Hadoop-based Join Algorithms

• A Ring DHT

• Standalone Distributed Join Algorithms

• Or develop your own project!

(3+ Credits)
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Course Requirements

• Available Resources for Projects

• A 12 core development testbed

• $100 of Amazon Cloud Credit

• Be careful with this credit!  

• Avoid running out early!

(3+ Credits; Continued)
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Course Requirements

• Project Requirements

• A 1-page milestone report on Nov 1

• A short (~4 page) final report

• A short (10-15 minute) presentation

• Confirm your project with me by Oct. 1

(3+ Credits; Continued)
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Dryad
Map Reduce & HDFS

Hive & HadoopDB
Pig & Dremel

MonetDB & DataCyclotron
Cassandra & BigTable/HBase

Zookeeper & Percolator
Chord & Dynamo

PIQL
Lipstick

Data-Flow Computation
Map/Reduce
SQL on M/R
Other Languages on M/R
Column Stores
Semistructured Databases
Distributed Consistency
Distributed Hash Tables
Enforced Scalability
Workflow Provenance

Borealis & DBToaster Stream Processors
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Dryad
Map Reduce & HDFS

Hive & HadoopDB
Pig & Dremel

MonetDB & DataCyclotron
Cassandra & BigTable/HBase

Zookeeper & Percolator
Chord & Dynamo

PIQL
Lipstick

Data-Flow Computation
Map/Reduce
SQL on M/R
Other Languages on M/R
Column Stores
Semistructured Databases
Distributed Consistency
Distributed Hash Tables
Enforced Scalability
Workflow Provenance

Borealis & DBToaster Stream Processors

Very recent
(presented last month)
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Questions about
the Course?
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Dryad
Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, Dennis Fetterly

Microsoft Research: Silicon Valley

(presented by Oliver Kennedy)
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Parallel Programming
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Parallel Programming
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Parallel Programming

Hard Problem!
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Parallel Programming

Hard Problem!

Locks!

IPC!

Error Handling!

Deadlock!
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What Has Worked?
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What Has Worked?
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What Has Worked?

The programmer 
knows what’s 

data-parallel.

The computer 
understands the 

infrastructure.
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What Has Worked?

cat users.dat
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What Has Worked?

cat users.dat

| sed ‘s/\([^ ]*\).*/\1/’

| grep ‘buffalo’

| wc -l

Unix pipes allow programmers to 
compose ‘nuggets’ of computation
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Graph Programming

Use the same metaphor!

Join nuggets of code into a graph
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Graph Programming

How about an Example?
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Graph Programming

SELECT distinct p.objID
FROM   photoObjAll p
  JOIN neighbors n
    ON p.objID = n.objID
   AND n.objID < n.neighborObjID
  JOIN photoObjAll l
    ON l.objID = n.neighborObjID
   AND SimilarColor(l.rgb,n.rgb)
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Graph Programming

SELECT distinct p.objID
FROM   photoObjAll p
  JOIN neighbors n
    ON p.objID = n.objID
   AND n.objID < n.neighborObjID
  JOIN photoObjAll l
    ON l.objID = n.neighborObjID
   AND SimilarColor(l.rgb,n.rgb)

XJoin 
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Graph Programming

SELECT distinct p.objID
FROM   photoObjAll p
  JOIN neighbors n
    ON p.objID = n.objID
   AND n.objID < n.neighborObjID
  JOIN photoObjAll l
    ON l.objID = n.neighborObjID
   AND SimilarColor(l.rgb,n.rgb)

X

Y

Join 

Join 
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Graph Programming

X

Y
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Graph Programming

X

Y

p n

l
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Graph Programming

X

Y

Read p⋈n
Emit n.neighborID : p⋈n

p n

l
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Graph Programming

X

Y

π

p n

l
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Graph Programming

X

π

Y

p n

l
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Graph Programming

X

π

Y
Read n.neighborID : p⋈n 
Emit sorted p⋈n by n.neighborId

p n

l
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Graph Programming

X

π

Y

S

p n

l
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Graph Programming

X

π

Y

S

p n

l

Channel
TCP
In-Mem FIFO
File
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Graph Programming

X

π

Y

S

p n

l
Y

S

π

X
p n

l

Channel
TCP
In-Mem FIFO
File
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Graph Programming

X

π

Y

S

p n

l
Y

S

π

X
p n

l
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•Graph Programming

• Execution Model

• Evaluation
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Building a Graph

< V, E, I, O >
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Building a Graph

< V, E, I, O >
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Building a Graph

< V, E, I, O >
e
r
t
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Building a Graph

A

< {A}, {}, {A}, {A} >
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Building a Graph

A

< {A}, {}, {A}, {A} >

A^k

A
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Building a Graph

A

< {A1,A2,…}, {}, {A1,A2,…}, {A1,A2,…} >

A^k

A
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Building a Graph

A

< {A1,A2,…}, {}, {A1,A2,…}, {A1,A2,…} >

A^k

A

k-Times
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Building a Graph

A

< {A1,A2,…}, {}, {A1,A2,…}, {A1,A2,…} >

A^k

A

k-Times

Everything is Cloned
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Building a Graph

< VA⨁VB, EA ∪ EB ∪ Enew, IA, OB >

A^k >  B^k

A A

B B

=
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Building a Graph

< VA⨁VB, EA ∪ EB ∪ Enew, IA, OB >

A^k >  B^k

A A

B B

=

One-to-One

Monday, September 10, 12



Building a Graph

< VA⨁VB, EA ∪ EB ∪ Enew, IA, OB >

A^k >  B^k

A A

B B

=
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Building a Graph

< VA⨁VB, EA ∪ EB ∪ Enew, IA, OB >

A^k >  B^k

A A

B BAll-to-Any

>
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Building a Graph

< VA⨁VB, EA ∪ EB, IA ∪ IB, OA ∪ OB >

(A>=C>=D>=B) || (A>=E=>B)

A
C

B
D

A

B

E
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Building a Graph

(A>=C>=D>=B) || (A>=E=>B)

A
C

B
D

A

B

E

< VA⨁VB, EA ∪ EB, IA ∪ IB, OA ∪ OB >
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Building a Graph

(A>=C>=D>=B) || (A>=E=>B)

A
C

B
D

A

B

E

< VA⨁VB, EA ∪ EB, IA ∪ IB, OA ∪ OB >****

* = except merging duplicates
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Summary

A^k Parallelize A, with k replicas

A >= B
Connect A’s outputs to B’s inputs

(one-to-one)

A >> B
Connect A’s outputs to B’s inputs

(all-to-any)

A || B
Merge graphs A and B

(deduplicating nodes in both A and B)
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• Graph Programming

• Execution Model

• Evaluation
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Job Execution

A
C

B
D

E

A
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Job Execution

A
C

B
D

E

Job Manager

A

The Job Manager coordinates graph execution
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Job Execution

A
C

B
D

E
A

Edges can be implemented as...

Monday, September 10, 12



Job Execution

A
C

B
D

E
A

Edges can be implemented as...
Files,
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Job Execution

A
C

B
D

E
A

Edges can be implemented as...
TCP Streams,Files,
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Job Execution

A
C

B
D

E
A

Edges can be implemented as...
In-Memory FIFOs, ...etcTCP Streams,Files,
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Job Execution

A
C

B
D

E
A<Object>

Edges can be implemented as...
In-Memory FIFOs, ...etcTCP Streams,Files,
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Job Execution

A
C

B
D

E
C

E
A

<Object>

The programmer doesn’t need to 
worry about the channels
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Job Execution

A
C

B
D

E
C

E

A

<Object>

For In-Memory FIFOs, downstream 
nodes are spawned immediately.
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Job Execution

A
C

B
D

E
C

E

A

<Object>
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Job Execution

A
C

B
D

E
C

E

A
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Job Execution

A
C

B
D

E
C

E

A

Files are completed before spawning 
downstream nodes.
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Job Execution

A
C

B
D

E
C

E

A<Object>

Files are completed before spawning 
downstream nodes.
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Job Execution

A
C

B
D

E
C

E

A

<Object>

Files are completed before spawning 
downstream nodes.
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Job Execution

A
C

B
D

E
C

E

A

<Object>

<Object><Object><Object>

Files are completed before spawning 
downstream nodes.
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Job Execution

A
C

B
D

E
C

E

A

<Object><Object><Object><Object>

When the source node is 
finished, the file is closed.
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Job Execution

A
C

B
D

E
C

E

A

<Object><Object><Object><Object>

X

When the source node is 
finished, the file is closed.
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object><Object>

X

... and the downstream node is 
spawned.
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... and the downstream node is 
spawned.

Job Execution

A
C

B
D

E

C E

A

<Object>

<Object><Object><Object>

X
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... and the downstream node is 
spawned.

Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

X

If the downstream node fails...
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

X

If the downstream node fails...
... its connection to the Job Manager dies...
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

C

If the downstream node fails...

... and the Job Manager restarts it.
... its connection to the Job Manager dies...
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object><Object>

X

The node restarts its computation 
from the start of the file.
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Job Execution

A
C

B
D

E

C E

A

<Object>

<Object><Object><Object>

X

For a FIFO or Stream, the Job Manager recreates 
the data by also restarting the downstream node.
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

For a FIFO or Stream, the Job Manager recreates 
the data by also restarting the downstream node.
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

X

For a FIFO or Stream, the Job Manager recreates 
the data by also restarting the downstream node.
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

E

A

For a FIFO or Stream, the Job Manager recreates 
the data by also restarting the downstream node.
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Job Execution

A
C

B
D

E

C E

A

<Object><Object><Object>

X

E

A<Object>

For a FIFO or Stream, the Job Manager recreates 
the data by also restarting the downstream node.
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Job Execution

A
C

B
D

E

C

<Object><Object><Object>

X

E

A

<Object>

The downstream node is assumed to 
be deterministic (and side-effect free)
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Job Execution

A
C

B
D

E

C

<Object><Object><Object>

X

E

A

The downstream node is assumed to 
be deterministic (and side-effect free)
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Runtime Graph Refinement

What about aggregation?
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Runtime Graph Refinement

B

AA AA AA

B

A

Aggregation is Expensive!
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Runtime Graph Refinement

B

AA AA AA

B

A

(Lots of work)

(Lots of Network Traffic)

Aggregation is Expensive!
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Runtime Graph Refinement

B

AA AA AA

B

A

Server 1
Server 2

We can use runtime information to optimize!
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Runtime Graph Refinement

A1A1 A2A2 A1A2

B

A

BB

Once the Job Manager assigns nodes to machines...
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Runtime Graph Refinement

A1A1 A2A2A1 A2

B

A

BB

... we can apply a user-provided function to pre-aggregate.
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Runtime Graph Refinement

A1A1 A2A2A1 A2

B

A

BB

B1 B2

... we can apply a user-provided function to pre-aggregate.

In-Memory
FIFO

Network Stream
(Lower Bandwidth)

(Less Work)
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• Graph Programming

• Execution Model

• Evaluation
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Evaluation

SELECT distinct p.objID
FROM   photoObjAll p
  JOIN neighbors n
    ON p.objID = n.objID
   AND n.objID < n.neighborObjID
  JOIN photoObjAll l
    ON l.objID = n.neighborObjID
   AND SimilarColor(l.rgb,n.rgb)
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Evaluation

0.0
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Dryad Two-Pass

SQLServer 2005

Figure 8: The speedup of the SQL query computation is near-
linear in the number of computers used. The baseline is relative
to Dryad running on a single computer and times are given in Table 2.

n = 6 and up, again with close to linear speed-up, and
approximately twice as fast as the two-pass variant. The
SQLServer result matches our expectations: our special-
ized Dryad program runs significantly, but not outrageously,
faster than SQLServer’s general-purpose query engine. We
should note of course that Dryad simply provides an execu-
tion engine while the database provides much more function-
ality, including logging, transactions, and mutable relations.

6.3 Data mining
The data-mining experiment fits the pattern of map then

reduce. The purpose of running this experiment was to ver-
ify that Dryad works sufficiently well in these straightfor-
ward cases, and that it works at large scales.

The computation in this experiment reads query logs gath-
ered by the MSN Search service, extracts the query strings,
and builds a histogram of query frequency. The basic com-
munication graph is shown in Figure 9. The log files are
partitioned and replicated across the computers’ disks. The
P vertices each read their part of the log files using library
newline-delimited text items, and parse them to extract the
query strings. Subsequent items are all library tuples con-
taining a query string, a count, and a hash of the string.
Each D vertex distributes to k outputs based on the query
string hash; S performs an in-memory sort. C accumulates
total counts for each query and MS performs a streaming
merge-sort. S and MS come from a vertex library and take
a comparison function as a parameter; in this example they
sort based on the query hash. We have encapsulated the
simple vertices into subgraphs denoted by diamonds in or-
der to reduce the total number of vertices in the job (and
hence the overhead associated with process start-up) and
the volume of temporary data written to disk.

The graph shown in Figure 9 does not scale well to very
large datasets. It is wasteful to execute a separate Q vertex
for every input partition. Each partition is only around
100 MBytes, and the P vertex performs a substantial data
reduction, so the amount of data which needs to be sorted
by the S vertices is very much less than the total RAM on
a computer. Also, each R subgraph has n inputs, and when
n grows to hundreds of thousands of partitions, it becomes
unwieldy to read in parallel from so many channels.

Q Q

R

Q

R k

k

k

n

n

is:Each

R

is:

Each

MS

C

P

C

S

C

S

D

Figure 9: The communication graph to compute a query his-
togram. Details are in Section 6.3. This figure shows the first cut
“naive” encapsulated version that doesn’t scale well.

After trying a number of different encapsulation and dy-
namic refinement schemes we arrived at the communication
graphs shown in Figure 10 for our experiment. Each sub-
graph in the first phase now has multiple inputs, grouped
automatically using the refinement in Figure 7 to ensure
they all lie on the same computer. The inputs are sent to
the parser P through a non-deterministic merge vertex M .
The distribution (vertex D) has been taken out of the first
phase to allow another layer of grouping and aggregation
(again using the refinement in Figure 7) before the explo-
sion in the number of output channels.

We ran this experiment on 10,160,519,065,748 Bytes of in-
put data in a cluster of around 1800 computers embedded
in a data center. The input was divided into 99,713 parti-
tions replicated across the computers, and we specified that
the application should use 450 R subgraphs. The first phase
grouped the inputs into at most 1GBytes at a time, all ly-
ing on the same computer, resulting in 10,405 Q′ subgraphs
that wrote a total of 153,703,445,725 Bytes. The outputs
from the Q′ subgraphs were then grouped into sets of at
most 600 MBytes on the same local switch resulting in 217
T subgraphs. Each T was connected to every R subgraph,
and they wrote a total of 118,364,131,628 Bytes. The to-
tal output from the R subgraphs was 33,375,616,713 Bytes,
and the end-to-end computation took 11 minutes and 30
seconds. Though this experiment only uses 11,072 vertices,
intermediate experiments with other graph topologies con-
firmed that Dryad can successfully execute jobs containing
hundreds of thousands of vertices.

We would like to emphasize several points about the op-
timization process we used to arrive at the graphs in Fig-
ure 10:

1. At no point during the optimization did we have to
modify any of the code running inside the vertices:
we were simply manipulating the graph of the job’s
communication flow, changing tens of lines of code.

2. This communication graph is well suited to any map-
reduce computation with similar characteristics: i.e.
that the map phase (our P vertex) performs substan-
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Figure 7: Sorting increasing amounts of data while keeping the volume
of data per computer fixed. The total data sorted by an -machine
experiment is around GBytes, or Bytes when .

Computers
Dryad 2167 451 242 135 92

DryadLINQ 2666 580 328 176 113

Table 2: Time in seconds to process skyserver Q18 using different num-
ber of computers.

network even when performing a dataset repartitioning
across all computers in the cluster.

5.3 SkyServer

For this experiment we implemented the most time-
consuming query (Q18) from the Sloan Digital Sky Sur-
vey database [23]. The query identifies a “gravitational
lens” effect by comparing the locations and colors of
stars in a large astronomical table, using a three-way
Join over two input tables containing 11.8 GBytes and
41.8 GBytes of data, respectively. In this experiment,
we compare the performance of the two-pass variant
of the Dryad program described in [26] with that of
DryadLINQ. The Dryad program is around 1000 lines of
C++ code whereas the corresponding DryadLINQ pro-
gram is only around 100 lines of C#. The input tables
were manually range-partitioned into 40 partitions using
the same keys. We varied , the number of comput-
ers used, to investigate the scaling performance. For a
given we ensured that the tables were distributed such
that each computer had approximately partitions of
each, and that for a given partition key-range the data
from the two tables was stored on the same computer.

Table 2 shows the elapsed times in seconds for the na-
tive Dryad and DryadLINQ programs as we varied be-
tween 1 and 40. On repeated runs the times were consis-
tent to within 3.5% of their averages. The DryadLINQ
implementation is around 1.3 times slower than the na-
tive Dryad job. We believe the slowdown is mainly due
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Figure 8: The speed-up of the Skyserver Q18 computation as the num-
ber of computers is varied. The baseline is relative to DryadLINQ job
running on a single computer and times are given in Table 2.

to a hand-tuned sort strategy used by the Dryad program,
which is somewhat faster than DryadLINQ’s automatic
parallel sort implementation. However, the DryadLINQ
program is written at a much higher level. It abstracts
much of the distributed nature of the computation from
the programmer, and is only 10% of the length of the
native code.

Figure 8 graphs the inverse of the running times, nor-
malized to show the speed-up factor relative to the two-
pass single-computer Dryad version. For all
computers were connected to the same local switch, and
the speedup factor is approximately proportional to the
number of computers used. When the comput-
ers must communicate through the core switch and the
scaling becomes sublinear.

5.4 PageRank

We also evaluate the performance of DryadLINQ at per-
forming PageRank calculations on a large web graph.
PageRank is a conceptually simple iterative computation
for scoring hyperlinked pages. Each page starts with
a real-valued score. At each iteration every page dis-
tributes its score across its outgoing links and updates its
score to the sum of values received from pages linking
to it. Each iteration of PageRank is a fairly simple rela-
tional query. We first Join the set of links with the set of
ranks, using the source as the key. This results in a set of
scores, one for each link, that we can accumulate using
a GroupBy-Sum with the link’s destinations as keys. We
compare two implementations: an initial “naive” attempt
and an optimized version.

Our first DryadLINQ implementation follows the out-
line above, except that the links are already grouped by
source (this is how the crawler retrieves them). This
makes the Join less complicated—once per page rather
than once per link—but requires that we follow it with
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Evaluation
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Figure 8: The speedup of the SQL query computation is near-
linear in the number of computers used. The baseline is relative
to Dryad running on a single computer and times are given in Table 2.

n = 6 and up, again with close to linear speed-up, and
approximately twice as fast as the two-pass variant. The
SQLServer result matches our expectations: our special-
ized Dryad program runs significantly, but not outrageously,
faster than SQLServer’s general-purpose query engine. We
should note of course that Dryad simply provides an execu-
tion engine while the database provides much more function-
ality, including logging, transactions, and mutable relations.

6.3 Data mining
The data-mining experiment fits the pattern of map then

reduce. The purpose of running this experiment was to ver-
ify that Dryad works sufficiently well in these straightfor-
ward cases, and that it works at large scales.

The computation in this experiment reads query logs gath-
ered by the MSN Search service, extracts the query strings,
and builds a histogram of query frequency. The basic com-
munication graph is shown in Figure 9. The log files are
partitioned and replicated across the computers’ disks. The
P vertices each read their part of the log files using library
newline-delimited text items, and parse them to extract the
query strings. Subsequent items are all library tuples con-
taining a query string, a count, and a hash of the string.
Each D vertex distributes to k outputs based on the query
string hash; S performs an in-memory sort. C accumulates
total counts for each query and MS performs a streaming
merge-sort. S and MS come from a vertex library and take
a comparison function as a parameter; in this example they
sort based on the query hash. We have encapsulated the
simple vertices into subgraphs denoted by diamonds in or-
der to reduce the total number of vertices in the job (and
hence the overhead associated with process start-up) and
the volume of temporary data written to disk.

The graph shown in Figure 9 does not scale well to very
large datasets. It is wasteful to execute a separate Q vertex
for every input partition. Each partition is only around
100 MBytes, and the P vertex performs a substantial data
reduction, so the amount of data which needs to be sorted
by the S vertices is very much less than the total RAM on
a computer. Also, each R subgraph has n inputs, and when
n grows to hundreds of thousands of partitions, it becomes
unwieldy to read in parallel from so many channels.

Q Q

R

Q

R k

k

k

n

n

is:Each

R

is:

Each

MS

C

P

C

S

C

S

D

Figure 9: The communication graph to compute a query his-
togram. Details are in Section 6.3. This figure shows the first cut
“naive” encapsulated version that doesn’t scale well.

After trying a number of different encapsulation and dy-
namic refinement schemes we arrived at the communication
graphs shown in Figure 10 for our experiment. Each sub-
graph in the first phase now has multiple inputs, grouped
automatically using the refinement in Figure 7 to ensure
they all lie on the same computer. The inputs are sent to
the parser P through a non-deterministic merge vertex M .
The distribution (vertex D) has been taken out of the first
phase to allow another layer of grouping and aggregation
(again using the refinement in Figure 7) before the explo-
sion in the number of output channels.

We ran this experiment on 10,160,519,065,748 Bytes of in-
put data in a cluster of around 1800 computers embedded
in a data center. The input was divided into 99,713 parti-
tions replicated across the computers, and we specified that
the application should use 450 R subgraphs. The first phase
grouped the inputs into at most 1GBytes at a time, all ly-
ing on the same computer, resulting in 10,405 Q′ subgraphs
that wrote a total of 153,703,445,725 Bytes. The outputs
from the Q′ subgraphs were then grouped into sets of at
most 600 MBytes on the same local switch resulting in 217
T subgraphs. Each T was connected to every R subgraph,
and they wrote a total of 118,364,131,628 Bytes. The to-
tal output from the R subgraphs was 33,375,616,713 Bytes,
and the end-to-end computation took 11 minutes and 30
seconds. Though this experiment only uses 11,072 vertices,
intermediate experiments with other graph topologies con-
firmed that Dryad can successfully execute jobs containing
hundreds of thousands of vertices.

We would like to emphasize several points about the op-
timization process we used to arrive at the graphs in Fig-
ure 10:

1. At no point during the optimization did we have to
modify any of the code running inside the vertices:
we were simply manipulating the graph of the job’s
communication flow, changing tens of lines of code.

2. This communication graph is well suited to any map-
reduce computation with similar characteristics: i.e.
that the map phase (our P vertex) performs substan-
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Figure 10: Rearranging the vertices gives better scaling performance compared with Figure 9. The user supplies graph (a) specifying that
450 buckets should be used when distributing the output, and that each Q′ vertex may receive up to 1GB of input while each T may receive up
to 600MB. The number of Q′ and T vertices is determined at run time based on the number of partitions in the input and the network locations
and output sizes of preceding vertices in the graph, and the refined graph (b) is executed by the system. Details are in Section 6.3.

tial data reduction and the reduce phase (our C vertex)
performs some additional relatively minor data reduc-
tion. A different topology might give better perfor-
mance for a map-reduce task with different behavior;
for example if the reduce phase performed substantial
data reduction a dynamic merge tree as described in
Figure 6 might be more suitable.

3. When scaling up another order of magnitude or two,
we might change the topology again, e.g. by adding
more layers of aggregation between the T and R stages.
Such re-factoring is easy to do.

4. Getting good performance for large-scale data-mining
computations is not trivial. Many novel features of the
Dryad system, including subgraph encapsulation and
dynamic refinement, were used. These made it simple
to experiment with different optimization schemes that
would have been difficult or impossible to implement
using a simpler but less powerful system.

7. BUILDING ON DRYAD
As explained in the introduction, we have targeted Dryad

at developers who are experienced at using high-level com-
piled programming languages. In some domains there may
be great value in making common large-scale data process-
ing tasks easier to perform, since this allows non-developers
to directly query the data store [33]. We designed Dryad to
be usable as a platform on which to develop such more re-
stricted but simpler programming interfaces, and two other
groups within Microsoft have already prototyped systems to
address particular application domains.

7.1 The “Nebula” scripting language
One team has layered a scripting interface on top of Dryad.

It allows a user to specify a computation as a series of stages
(corresponding to the Dryad stages described in Section 3.6),

each taking inputs from one or more previous stages or the
file system. Nebula transforms Dryad into a generalization
of the Unix piping mechanism and it allows programmers to
write giant acyclic graphs spanning many computers. Often
a Nebula script only refers to existing executables such as
perl or grep, allowing a user to write an entire complex dis-
tributed application without compiling any code. The Neb-
ula layer on top of Dryad, together with some perl wrap-
per functions, has proved to be very successful for large-
scale text processing, with a low barrier to entry for users.
Scripts typically run on thousands of computers and contain
5–15 stages including multiple projections, aggregations and
joins, often combining the information from multiple input
sets in sophisticated ways.

Nebula hides most of the details of the Dryad program
from the developer. Stages are connected to preceding stages
using operators that implicitly determine the number of ver-
tices required. For example, a “Filter” operation creates one
new vertex for every vertex in its input list, and connects
them pointwise to form a pipeline. An “Aggregate” opera-
tion can be used to perform exchanges and merges. The im-
plementation of the Nebula operators makes use of dynamic
optimizations like those described in Section 5.2 however
the operator abstraction allows users to remain unaware of
the details of these optimizations. All Nebula vertices exe-
cute the process wrapper described in Section 4.2, and the
vertices in a given stage all run the same executable and
command-line, specified using the script. The Nebula sys-
tem defines conventions for passing the names of the input
and output pipes to the vertex executable command-line.

There is a very popular “front-end” to Nebula that lets
the user describe a job using a combination of: fragments of
perl that parse lines of text from different sources into struc-
tured records; and a relational query over those structured
records expressed in a subset of SQL that includes select,
project and join. This job description is converted into
a Nebula script and executed using Dryad. The perl pars-
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Figure 7: Sorting increasing amounts of data while keeping the volume
of data per computer fixed. The total data sorted by an -machine
experiment is around GBytes, or Bytes when .

Computers
Dryad 2167 451 242 135 92

DryadLINQ 2666 580 328 176 113

Table 2: Time in seconds to process skyserver Q18 using different num-
ber of computers.

network even when performing a dataset repartitioning
across all computers in the cluster.

5.3 SkyServer

For this experiment we implemented the most time-
consuming query (Q18) from the Sloan Digital Sky Sur-
vey database [23]. The query identifies a “gravitational
lens” effect by comparing the locations and colors of
stars in a large astronomical table, using a three-way
Join over two input tables containing 11.8 GBytes and
41.8 GBytes of data, respectively. In this experiment,
we compare the performance of the two-pass variant
of the Dryad program described in [26] with that of
DryadLINQ. The Dryad program is around 1000 lines of
C++ code whereas the corresponding DryadLINQ pro-
gram is only around 100 lines of C#. The input tables
were manually range-partitioned into 40 partitions using
the same keys. We varied , the number of comput-
ers used, to investigate the scaling performance. For a
given we ensured that the tables were distributed such
that each computer had approximately partitions of
each, and that for a given partition key-range the data
from the two tables was stored on the same computer.

Table 2 shows the elapsed times in seconds for the na-
tive Dryad and DryadLINQ programs as we varied be-
tween 1 and 40. On repeated runs the times were consis-
tent to within 3.5% of their averages. The DryadLINQ
implementation is around 1.3 times slower than the na-
tive Dryad job. We believe the slowdown is mainly due
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Figure 8: The speed-up of the Skyserver Q18 computation as the num-
ber of computers is varied. The baseline is relative to DryadLINQ job
running on a single computer and times are given in Table 2.

to a hand-tuned sort strategy used by the Dryad program,
which is somewhat faster than DryadLINQ’s automatic
parallel sort implementation. However, the DryadLINQ
program is written at a much higher level. It abstracts
much of the distributed nature of the computation from
the programmer, and is only 10% of the length of the
native code.

Figure 8 graphs the inverse of the running times, nor-
malized to show the speed-up factor relative to the two-
pass single-computer Dryad version. For all
computers were connected to the same local switch, and
the speedup factor is approximately proportional to the
number of computers used. When the comput-
ers must communicate through the core switch and the
scaling becomes sublinear.

5.4 PageRank

We also evaluate the performance of DryadLINQ at per-
forming PageRank calculations on a large web graph.
PageRank is a conceptually simple iterative computation
for scoring hyperlinked pages. Each page starts with
a real-valued score. At each iteration every page dis-
tributes its score across its outgoing links and updates its
score to the sum of values received from pages linking
to it. Each iteration of PageRank is a fairly simple rela-
tional query. We first Join the set of links with the set of
ranks, using the source as the key. This results in a set of
scores, one for each link, that we can accumulate using
a GroupBy-Sum with the link’s destinations as keys. We
compare two implementations: an initial “naive” attempt
and an optimized version.

Our first DryadLINQ implementation follows the out-
line above, except that the links are already grouped by
source (this is how the crawler retrieves them). This
makes the Join less complicated—once per page rather
than once per link—but requires that we follow it with
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• Programmers like thinking in code nuggets.

• Graphs are a natural representation of distributed 
computations.

• Dryad isn’t used much, but production dataflow 
systems use virtually identical techniques.

• E.g., Storm (Twitter’s analytics infrastructure)
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