Web-Scale Data
Management Systems

Prof. Oliver Kennedy

http://www.cse.buffalo.edu/~okennedy/courses/cse704fa2012.html

okennedy@buffalo.edu

Monday, September 10, 12

http://www.cse.buffalo.edu/~okennedy/courses/cse704fa2012.html
http://www.cse.buffalo.edu/~okennedy/courses/cse704fa2012.html
mailto:okennedy@buffalo.edu
mailto:okennedy@buffalo.edu

About Me

® New to UB (super excited to be here)
® 4+ years working in databases

® And 3+ years in distributed systems before
that

® Worked with analytics teams at Microsoft Azure

Monday, September 10, 12

Office Hours

® Davis Hall 338H
® Monday: 2:00-4:00 PM
® Thursday: 2:00-4:00 PM

® or by appointment

Monday, September 10, 12

Course Goals

® Familiarize you with systems for storing
and analyzing really really big data

® Real world systems (if you want to go into industry)

® |Interesting problems (if you want to go into academia)

® Past, present, and future systems

® Give (some of) you experience working
with these systems.

Monday, September 10, 12

Course Requirements

(Everyone)

® Submit paper overviews Each Week
¢ |-2 paragraphs per paper
® What'’s the message of the paper!

® What are the pros and cons of the
paper’s approach?

® Everyone gets 2 weeks of missed overviews

Monday, September 10, 12

Course Requirements
(2+ Credits)

® Present 2 papers
® 30-40 minute presentation
® 20-30 minutes of discussion

® Arrange to go over your presentation
with me by the prior Thursday.

Monday, September 10, 12

Course Requirements
(3+ Credits)

® A simple implementation project
® Hadoop-based Join Algorithms
® A Ring DHT
® Standalone Distributed Join Algorithms

® Or develop your own project!

Monday, September 10, 12

Course Requirements

(3+ Credits; Continued)

® Available Resources for Projects

® A |2 core development testbed

® $100 of Amazon Cloud Credit

® Be careful with this credit!

® Avoid running out early!

Monday, September 10, 12

Course Requirements

(3+ Credits; Continued)

® Project Requirements
® A |-page milestone report on Nov |
® A short (~4 page) final report
® A short (10-15 minute) presentation

® Confirm your project with me by Oct. |

Monday, September 10, 12

Dryad

Map Reduce & HDFS

Hive & HadoopDB

Pig & Dremel

MonetDB & DataCyclotron
Cassandra & BigTable/HBase
Zookeeper & Percolator
Chord & Dynamo

PIQL

Lipstick

Borealis & DBToaster

Data-Flow Computation
Map/Reduce

SQL on M/R

Other Languages on M/R
Column Stores
Semistructured Databases
Distributed Consistency
Distributed Hash Tables
Enforced Scalability

Workflow Provenance
Stream Processors

Monday, September 10, 12

Dryad

Map Reduce & HDFS

Hive & HadoopDB

Pig & Dremel

MonetDB & DataCyclotron
Cassandra & BigTable/HBase
Zookeeper & Percolator

Chord & Dynamo

Very recent < PIQL
(presented last month) L|PSt|Ck

Borealis & DBToaster

Data-Flow Computation
Map/Reduce

SQL on M/R

Other Languages on M/R
Column Stores
Semistructured Databases
Distributed Consistency
Distributed Hash Tables
Enforced Scalability

Workflow Provenance
Stream Processors

Monday, September 10, 12

Questions about
the Course!?

Dryad

Michael Isard, Mihai Budiu, Yuan Yu,Andrew Birrell, Dennis Fetterly
Microsoft Research: Silicon Valley

(presented by Oliver Kennedy)

Monday, September 10, 12

Parallel Programming

Parallel Programming

Monday, September 10, 12

Parallel Programming

Hard Problem!

Monday, September 10, 12

Parallel Programming

IPC!

Hard Problem! Deadlock!

Error Handling!

Monday, September 10, 12

What Has Worked?

What Has Worked?

Monday, September 10, 12

What Has Worked?

The programmer The computer
knows what'’s understands the
data-parallel. infrastructure.

Monday, September 10, 12

What Has Worked?

cat users.dat

What Has VWorked?

cat users.dat

sed ‘s/\([" 1*\).*/\1/'

grep ‘buffalo’

wCc -1

Unix pipes allow programmers to
compose ‘nuggets’ of computation

Monday, September 10, 12

Graph Programming

Use the same metaphor!

Join nuggets of code into a graph

Monday, September 10, 12

Graph Programming

How about an Example?

Graph Programming

SELECT distinct p.objID
FROM photoObjAll p
JOIN neighbors n

ON p.objID = n.objID
AND n.objID < n.neighborObjID
JOIN photoObjAll 1

ON 1.0bjID = n.neighborObjID
AND SimilarColor (l.rgb,n.rgb)

Monday, September 10, 12

Graph Programming

SELECT distinct p.objID Join X
FROM photoObijall p ‘oA

MJOIN nelghbors n ’4u?*_m‘-u

ON p.objID = n.objID
AND n.objID < n.neighborObjID |

JOIN photoObjAll 1

ON 1.0bjID = n.neighborObjID
AND SimilarColor (l.rgb,n.rgb)

Monday, September 10, 12

Graph Programming

SELECT distinct p.objID Join X
FROM photoObjAll p ‘oW

MJOIN nelghbors n aﬂ?ﬁu

ON p.objID = n.objID
AND n.objID < n. nelohborOb ID ’

ON 1. ob3iID = n.neighborObiID
| AND SlmllarColor(l rgb n. rgb

\hwmv

wJOIN P otcO-JAll T W
?

Monday, September 10, 12

Graph Programming

W

Graph Programming

o

E
Y

Graph Programming

o

Read pNXn
Emit n.neighborID : pNMn

p1®Vn

Graph Programming

o

()

E
Y

Graph Programming

7

Graph Programming

7

Read n.neighborID : pNXn
Emit sorted pXn by n.neighborId

¥

p1®Vn

Graph Programming

&

E
a6

Graph Programming

T Channel
TCP
CTE/ In-Mem FIFO
@ File

Graph Programming

Graph Programming

A
SO

® Graph Programming
® Execution Model

® Evaluation

Monday, September 10, 12

Building a Graph

Building a Graph

<V, E, I, O >

ttttttttttttt

~
] O b0 O wn

S
> 0 &« L = U 0 »n

V

Building a Graph

Building a Graph

®)

< {A}, {}, (A}, {A} >

Building a Graph

A"k

®)

< {A}, {}, (A}, {A} >

Building a Graph

Building a Graph

k-Times

Building a Graph

k-Times

Everything is Cloned

Building a Graph

< Va®Vs, Eau Esu kEnew, Ia, Or >

Building a Graph

Ak >= Bk

One-to-One (B)-ooooeoocooeeren.

< Va®Ve, Eanu Esu Enew, Ia, O >

Building a Graph

< Va®Vs, Eau Esu kEnew, Ia, Or >

Building a Graph

A"k >> B"k

All-to-Any (B)-rrrrereeeeeeeee

< Va®Ve, Eanu Esu Enew, Ia, O >

Building a Graph

(A>=C>=D>=B) || (A>=E=>B)

,

&) &)

< Va®Ve, Eauv Es, Iau Is, Oau O >

Building a Graph

(A>=C>=D>=B) || (A>=E=>B)

< Va®Ve, Eauv Es, Iau Is, Oau O >

Building a Graph

(A>=C>=D>=B) || (A>=E=>B)

< VA@*\/B, En U*EB, Ia U*IB, Oa U Oz >

* = except merging duplicates

Summary

A"k Parallelize A, with k replicas

Connect A’s outputs to B’s inputs

A == (one-to-one)
Connect A’s outputs to B’s inputs
A >> B
(all-to-any)
A || B Merge graphs A and B

(deduplicating nodes in both A and B)

Monday, September 10, 12

® Graph Programming
® Execution Model

® Evaluation

Monday, September 10, 12

Job Execution

Job Execution

Job Manager

The Job Manager coordinates graph execution

Job Execution

Job Execution

Edges can be implemented as...
Files,

Job Execution

Edges can be implemented as...
Files, TCP Streams,

Job Execution

Edges can be implemented as...
Files, TCP Streams, In-Memory FIFOs, ...etc

Job Execution

Q Edges can be implemented as...
Q Files, TCP Streams, In-Memory FIFOs, ...etc

Monday, September 10, 12

Job Execution

The programmer doesn’t need to
worry about the channels

Job Execution

®

For In-Memory FIFOs, downstream
nodes are spawned immediately.

Job Execution

/r~ ~~~ ~ e

Job Execution

Job Execution

Files are completed before spawning
downstream nodes.

Job Execution

Files are completed before spawning
downstream nodes.

Job Execution

Files are completed before spawning
downstream nodes.

Job Execution

Files are completed before spawning
downstream nodes.

Job Execution

When the source node is
finished, the file is closed.

Job Execution

When the source node is
finished, the file is closed.

Job Execution

... anhd the downstream node is
spawhed.

Job Execution

... ahd the downstream node is
spawhed.

Job Execution

... anhd the downstream node is
spawhed.

Job Execution

Job Execution

If the downstream node fails...
... its connection to the Job Manager dies...

Job Execution

-—

y <é)5'|ect> f

If the downstream node fails...
... its connection to the Job Manager dies...
...and the Job Manager restarts it.

Job Execution

The node restarts its computation
from the start of the file.

Job Execution

—_—
0 agsiecen 7 FEEEE E o

Q For a FIFO or Stream, the Job Manager recreates
Q the data by also restarting the downstream node.

Monday, September 10, 12

Job Execution

-—

0 “_ *

Q For a FIFO or Stream, the Job Manager recreates
Q the data by also restarting the downstream node.

Monday, September 10, 12

Job Execution

‘1-
—_—
0 agsiecen 7 FEEEE E o

G For a FIFO or Stream, the Job Manager recreates
Q the data by also restarting the downstream node.

Monday, September 10, 12

Job Execution

-—

0 “_ *G

Q For a FIFO or Stream, the Job Manager recreates
Q the data by also restarting the downstream node.

Monday, September 10, 12

Job Execution

-—

Ol
@ g %G

Q For a FIFO or Stream, the Job Manager recreates
Q the data by also restarting the downstream node.

Monday, September 10, 12

Job Execution

-—

0 “_ *G

Q The downstream node is assumed to
Q be deterministic (and side-effect free)

Monday, September 10, 12

Job Execution

Q The downstream node is assumed to
Q be deterministic (and side-effect free)

Runtime Graph Refinement

What about aggregation!

Runtime Graph Refinement

(B

A WDOOOB®®W

Aggregation is Expensive!

Runtime Graph Refinement

(Lots of work)

(Lots of Network Traffic)

/
A WDOOOB®®W

Aggregation is Expensive!

Runtime Graph Refinement

Server 2
Server |

We can use runtime information to optimize!

Runtime Graph Refinement

Once the Job Manager assigns nodes to machines...

Runtime Graph Refinement

... we can apply a user-provided function to pre-aggregate.

Runtime Graph Refinement

(Less Work)
B 0 Network Stream

(Lower Bandwidth)

1
‘

@ In-Memory
— FIFO

@ @@

... we can apply a user-provided function to pre-aggregate.

® Graph Programming
® Execution Model

® Evaluation

Monday, September 10, 12

Evaluation

SELECT distinct p.objID
FROM photoObjAll p
JOIN neighbors n

ON p.objID = n.objID
AND n.objID < n.neighborObjID
JOIN photoObjAll 1

ON 1.0bjID = n.neighborObjID
AND SimilarColor (l.rgb,n.rgb)

Monday, September 10, 12

Evaluation

16.0

14.0

12.0

10.0

8.0

Speed-up

6.0

4.0

2.0

0.0

—&— Dryad In-Memory

—&— Dryad Two-Pass

—&— SQLServer 2005

—
—
o

e

/_/'/

—

2 4 6 8
Number of Computers

10

Speed-up

25.00

20.00

15.00

10.00

5.00

0.00

—&— Dryad Two-pass
—fi—DryadLINQ

Number of computers

15

20

25

30

35

40

45

Monday, September 10, 12

P: Read/Parse Input
D: Distribute Copies
S: In-Memory Sort

MS: Merge Sort

C: Count

Evaluation

Each

@

IS:

(§ o

Time: ?? (really bad)

Monday, September 10, 12

Evaluation

/Dynamically Refined IntO\

Each is: Each

Time: | | min 30 sec

Execution time (in seconds)

350

300

250

200

150

100

50

Evaluation

50

100 150

Number of computers

200

250

Monday, September 10, 12

Conclusions

® The hard part of distributed programming is
infrastructure.

® Programmers like thinking in code nuggets.

® Graphs are a natural representation of distributed
computations.

® Dryad isn’t used much, but production dataflow
systems use virtually identical techniques.

® FE g, Storm (Twitter’s analytics infrastructure)

Monday, September 10, 12

<> |lOl 2 =L O OM github.com/nathanmarz/storm

g[ﬂ“b Signup and Pricing Explore GitHub Features Blog Sign in

e | nathanmarz / storm tr Star (890 || b Fork < 3

Code Network Pull Requests 10 Issues 78 Wiki Graphs

Distributed and fault-tolerant realtime computation: stream processing, continuous computation, distributed RPC, and more —
Read more

hitp//storm-project.net

@ CloneinMac <P 2IP ﬁ Git Read-Only https://github.com/nathanmarz/storm.git

P branch: master ~ Files Commits Branches 33

® Latest commit 1 the master branch
update changelog
B rethanmarz autnored 2 days ago @) commit 240c774832
storm /
name message

Fix directory bug in install_zmq.sh [minghan]
Implemented pluggable spout wait strategies [nathanmarz]
add storm dir for logs folder to use absolute path for logs folder [haitaoyao)
added |SchemableSpout interface [nathanmarz)
formatting [nathanmarz]
Adding InteliiJ files to ignore [sjoerdmulder]
update changelog [nathanmarz]

@ UCENSE.hml release commit [nathanmarz]

Monday, September 10, 12

Conclusions

® The hard part of distributed programming is
infrastructure.

® Programmers like thinking in code nuggets.

® Graphs are a natural representation of distributed
computations.

® Dryad isn’t used much, but production dataflow
systems use virtually identical techniques.

® FE g, Storm (Twitter’s analytics infrastructure)

Monday, September 10, 12

Conclusions

® The hard part of distributed programming is
infrastructure.

® Programmers like thinking in code nuggets.

® Graphs are a natural representation of distributed
computations.

® Dryad isn’t used much, but production dataflow
systems use virtually identical techniques.

® FE g, Storm (Twitter’s analytics infrastructure)

Questions!?

Monday, September 10, 12

