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CHAPTER 12

are “named” by numbers, they can carry their dossiers with them.) We next need to
produce all the minimal models. This task amounts to producing all the various com-
binations of representative individuals.

Once the minimal models have been produced, we need to devise a procedure for
determining the truth values of the premises and conclusion in a given model. As we
have seen, this can be accomplished by borrowing the main technique from WANG'S
ALGORITHM (step 3 in Chapter 6) and by adding the conditions whose “main connective”
is in fact a quantifier. For suggestions on programming these steps, consult the imple-
mentation suggestions at the end of Chapter 6. Note that we also need a slightly different
TEST procedure than that given in Chapter 6 for WANG'S ALGORITHM.

Exercises

1. Write an algorithm (or program) that inputs the sentences of an argument and
determines the total number of distinct predicates in them.

2. Write an algorithm (or program) that takes a list of distinct predicates (either as
input or produced by another procedure in the same program) and generates
all the representative individuals.

3. Modify the algorithm MAIN-CONNECTIVE in Chapter 6 so that if a formula is
universally or existentially quantified, the quantifier whose scope covers the rest
of the formula is identified as the “main connective” of the formula. (The initial
quantifier is not really a connective, since it does not connect sentences. It is a
“connective” much like negation is a connective.)

4. Write an algorithm (or program) that takes as input a universally or existentially
quantified formula and a list of individuals and then does the following: (a) deletes
the initial quantifier and (b) outputs all the instances of the resulting formula.

5. Write an algorithm (or program) to determine when a formula is a simple predicate
formula—a formula containing only a predicate and individual constants.

PREDICATE LOGIC:
Quantifier Inference
Rules

A valid argument, we recall, is an argu-
ment where it is impossible for the premises to be TRUE
and the conclusion FALSE. In the logic of sentences,
there are several ways to determine if an argument is
valid or invalid. We can, in the logic of sentences, con-
struct a truth table and examine every situation to see
if it is possible for the premises to be TRUE and the
conclusion FALSE. In predicate logic, however, it is not
possible, in general, to construct or to inspect all models,
including those models in which the premises are TRUE
or the conclusion FALSE. Consequently, other ways of
showing an argument to be valid must be found. One
of the simplest ways is to derive the conclusion from
the premises in a formal deduction system with truth-
preserving rules of inference. (The system should also
be complete, in the sense that every conclusion of a
valid argument can be derived in the system.)
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CHAPTER 13

We turn now to the problem of deriving conclusions with sentences containing
quantifiers and variables. The whole point of symbolizing the structure of sentences with
quantifiers and variables is to enable ourselves to derive conclusions that we could not
prove by the methods of sentential logic zlone.

We feel sure that

1. All Greeks are mortal.
2. Socrates is a Greek.
.. 3. Socrates is mortal.

is a valid argument. We need to see why it is valid, and also we need to develop rules
that will allow us to derive the conclusion from the premises.
When the above argument is symbolized, we get something like

1. ¥x(Gx — Mx)
2. Gc
.. 3. Mc

Sentence (1) “says” that for every individual x, (Gx — Mx)' is satisfied by that individual.
Hence, an instance using ‘c’, the name of Socrates, for ‘x’ is TRUE. That is, if (1) has
the truth value TRUE, so does

1a. (Ge — Mc)

But now we can use —ELIM on (1a) and (2) to obtain (3).

The earlier rules for introducing and eliminating connectives in a sentential derivation
remain unchanged. We need only to add some rules for introducing and eliminating
quantifiers. Qur general strategy will be to eliminate quantifiers somehow, manipulate
and transform the results using the earlier sentential rules, and, finally, introduce ap-
propriate quantifiers, if needed, to obtain the desired conclusion. These new rules for
quantifier INTRO and ELIM are very precisely stated, and careful attention must be paid
not only to the sentence on the line to which the rule is applied but also to other sentences
in the proof or subproof.

Universal Quantifier Rules
]

Our earlier rules of inference from Chapters 8 and 9 apply to quantified sentences
considered as atomic sentences. Thus &ELIM will apply to a line with the sentence
‘(YxFx & VyGy) on it. We take ‘'VxFx' as a single sentence P and 'VyGy’' as Q. That
is, we take ‘(VxFx & VyGy)' as having the form (P & Q). Now, however, we are going
to extend our deduction system in order to make additional derivations to and from
quantified sentences.
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Universal Elimination

Reflecting on the truth conditions for a universally quantified sentence, say ‘VxFx', we
note that it has the value TRUE only if all instances of ‘Fx’ also have the value TRUE.
Hence, if we infer an instance, any instance, from ‘VxFx’, we shall never move from a
true sentence to a false one. This provides a justification for the rule:

VELIM RULE: From a sentence of the form
YvP
you may derive
Plciv)

In the statement of the rule, ‘v’ is used for any variable at all (w, x, y, z, ...) and ‘c’
for any constant at all (a, b, ¢, d,...). We use the notation P[c/v] for the result of
replacing all free occurrences of the variable v in formula P with the constant c.

For example, if P is ‘3x(Fx v Gy)', then Pfaly) is ‘Ax(Fx v Ga)’, but Pla/x] is still
‘Ax(Fx v Gyy), since ‘x’ is not free in P.

In a derivation, the use of VELIM would look like this:

10. Vx(Fx — Hx) :<PREMISE or Rule>

15. (Fd — Hd) ‘VELIM,10

The sentence on line 10 is universally quantified, and the sentence on line 15 results
from the one on line 10 by deleting the initial quantifier and replacing all now free
occurrences of the quantifier variable ‘x’ with the individual constant ‘d".

it is essential to note that this rule and alf the other quantifier rules require the scope
of the initial quantifier to stretch to the end of the sentence on that line. Here is an
example of a sentence where VELIM cannot be used, because the scope of the universal
quantifier expression ‘Vx’ is not the entire sentence:

(VxFx v VyGy)

From this sentence, one cannot get ‘(Fa v VyGy)' by VELIM.
One can use YELIM several times over, citing the same line:

10. Vx{(Fx — Hx)

15. (Fd — Hd) :VELIM,10
16. (Fe > He) :VELIM,10
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Universal Introduction

Next, we would like to be able to generalize, that is, to introduce a universal quantifier.
A clue to justifying this move can be found in elementary geometry classes, where the
teacher draws a triangle on the board and then uses this specific triangle to prove
theorems about all triangles. This works as long as no appeal is made to any special
properties of the example triangle. That is, if we can prove something about an arbitrarily
selected individual, we have proved it for any individual. We need only to ensure that
special properties of the selected individual play no role in the proof. The following rule
is qualified to ensure just that.

VINTRO RULE: From a sentence
P
you may derive
VYvP([v/c]
Provided that:
1. ¢ does not occur in any premise.
2. If P occurs in a subproof, no constant in P occurs in an
ASSUMPTION still in force.
3. All new occurrences of the variable v in P are free after

the replacement in P[v/c].

In proviso (2), an ASSUMPTION is “still in force” during the subproof following it
and during any sub-subproofs within that. Finally, the notation P[v/c] means that all
occurrences of the constant ¢ are replaced by the variable v. So, proviso (3) means
that when v replaces c, it should not fall within the scope of a quantifier already present
that uses v. The new occurrence of the variable should not, so to speak, be “captured”
by a quantifier already present in the wff P.

Examples of the correct use of VINTRO are given below. Assume throughout that
the restrictions on the constant on line 5 are all met.

Example 1. .
5. (Fa— Ga) :<Rule>
9. Vx(Fx — Gx) VINTRO,5
Example 2.
5. {Fb v 3yGy) :<Rule>
12. Vx(Fx v 3yGy) VINTRO,5

1
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Here is a complete derivation for the following argument:

Vx(Fx — Gx)
. (VyFy — VzG2z)

1. Vx(Fx — Gx) ‘PREMISE
/BEGIN: (VyFy — VzGz) by —»INTRO/

*2. VyFy :‘ASSUMPTION
*3. Fa 'VELIM,2

*4. Vx(Fx — Gx) :SEND, 1

*5. (Fa— Ga) ‘VELIM,4

*6. Ga —>ELIM,5.3
*7. VzGz VINTRO,6
*8. (VyFy — VzGz) —INTRO,2,7

/END: (VyFy — VzGz)/

9. (VyFy — VzGz) ‘RETURN,8

Here is an incorrect use of VINTRO:

Example 3.

5. (Fa — Ga) :<Rule>

9. Vx(Fx — Ga) 'VINTRO,5 [INCORRECT—Not all occurrences of ‘a’

replaced.}
Another incorrect use of VINTRO is:
Example 4.
<Rule>

5. (Fa— 3x(Ga & Hx))

9. ¥x(Fx — 3Ix(Gx & Hx)) VINTRO,5 [INCORRECT—the X’ in ‘Gx’

was captured.]

Observe that the replacement of ‘a’ in ‘Ga’ by ‘x’ in line 5 led to its being captured by
the existential quantifier already there. Instead of ‘x’, we could use another variable, say
'y, and correctly infer:

9. Vy(Fy — 3x(Gy & Hx)) VINTRO,5

With these two rules we can derive the conclusions of some arguments traditionaily
studied since the time of Aristotle. One, for instance, is the ancient syllogistic argument:
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All humans are mortal.

All Greeks are humans.
-. All Greeks are mortal.

The first step, of course, is to symbolize the English sentences:
Vx{Hx — Mx)
Vx(Gx — Hx)
- x(Gx — Mx)

A proof of the conclusion using our two quantification rules goes as follows:

1. Vx(Hx — Mx) ‘PREMISE
2. ¥x(Gx — Hx) :PREMISE
3. (Ha — Ma) VELIM, 1
4. (Ga — Ha) \VELIM,2
5. (Ga — Ma) :HS,2,1

6.

Vx(Gx — Mx) VINTRO,5
The restrictions on the ruie VINTRO prevent the following attempted derivation:

1. ¥x(Gx — Mx) ‘PREMISE

2. Gf :PREMISE

3. (Gf > Mf) VELIM, 1

4. Mf —ELIM,2,3

5. VxMx “VINTRO,4 [INCORRECT]

Here, 'f’ occurs in PREMISE 2 and cannot be generalized on.

Existential Quantifier Rules
- ]

Having a pair of rules for introducing and eliminating universal quantifiers, we need now
to develop a pair of rules of inference to introduce and eliminate existential quantifiers.

Existential Introduction

The next rule is again easy to justify. If something is true of a particular individual, then
there is some individual for which it is true. Schematically,

Fa
o 3AxFx
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The correct statement of the rule is:

3INTRO From a sentence of the form
Plc/v]
you may derive
3IvP

In this rule, the constant ¢ replaces all free occurrences of the variable v in well-formed
formula P.

You may find the statement of this rule to be odd, because as you move down the
lines of a derivation, you encounter the sentence P[c/v] before you come to the sentence
with the variable v, namely, 3vP. But to use the rule correctly, you need only to ensure
that the earlier sentence and the wiff you are about to existentially quantify are properly
related: The earlier one can be obtained from P by replacing all free occurrences of v
with ¢. In addition, if you are following a modified version of PROOF-GIVER, then you
will, in fact, encounter 3vP first in your task file before you get to P[c/v]. This is because
the task file begins at the end of the derivation and works up to the premises.

These are all correct uses of the rule 3INTRO:

n. Faa Faa Faa Faa :<PREMISE or Rule>

n + k. IxFxx IxFxa IxFax IxFaa :3INTRO,n

Each of these is a truth-preserving inference allowed by the rule. Any argument with
line n as premise and line (n + k) as conclusion is a valid argument. Each of the four
simple inferences above is allowable by the rule 3INTRO. Moreover, in our previous
example, although we could not derive 'VxMx' (‘Everything is mortal’), we could at line
5 derive ‘IxMx’ (‘Something is mortal’).

1. ¥x(Gx — Mx)  :PREMISE
2. Gf -PREMISE
3. (Gf > Mf) VELIM, 1

4. Mf —ELIM,3,2
5. IxMx :3INTRO,4

Existential Elimination

The final rule, AELIM, deals with the sorts of inferences one can validly make from an
existentially quantified sentence. Here we take a cue from legal practice. Frequently, in
legal situations, we know that someone committed the crime, but we don't know who
specifically it was. A warrant is issued for someone, John Doe or Jane Doe. We then
reason about, say, John Doe, although we don't know exactly who he is. Whatever
conclusion we reach that does not refer to John Doe by that name is, in general, a
correct conclusion.
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Our strategy with an existentially quantified sentence is to name someone as John assumption that 'a’ is a name of a circus lion. So, the information on line 10 may be
Doe and see what follows. If we reach a conclusion that does not depend on someone's : returned to the main proof.*

actually being named John Doe, then that is a valid conclusion from the original statement

referring, nonspecifically, to someone or other. Let us look at the rule and practice using
it.

Some Examples
L]

JELIM If a sentence on a previous line has the form

3vP When using the quantifier introduction and elimination rules, one must take care that
and there is a subproof beginning with ASSUMPTION the scope of the quantifier (introduced or eliminated) is the entire sentence on the line.

Plc/v] We shall examine some ways of dealing with sentences having quantifiers whose scope
where constant ¢ is new to the proof, and ending with a sentence is only a proper part of the sentence. For instance, in :

Q
not containing ¢, (VxFx & A)

then Q may be RETURNed from that subproof.
the scope of 'Vx’ is just the left conjunct. The inner structure of the right conjunct, ‘A’,

To say that a constant is “new to the proof’ means, simply, that it has not been used is of no concern here; it can be any sentence whatever, with one caution to be explained
before. Note that the RETURN rule has now been slightly, but significantly, expanded. sho;ﬂy. er caq;u:t “5:, Y}E\:"EML'&" this ser}tgnce as it stands, but we can derive another
Rule 3ELIM is different from any of the other elimination rules because it is not a senience from it to whic can apply:

rule for eliminating an existential quantifier from a line. It is more like a strategy for

constructing subproofs to derive conclusions from existentially quantified sentences. ; ;V)::Fx &A) ZEE’:&'?E
Let us work a few examples, again drawn from traditional Aristotelian logic. 3' Ax X :&ELIM'1
4. Fa 'VELIM,2
All circus animals are tame animals. 5. (Fa & A) :&INTRO,4,3
Some lions are circus animals. ) 6. Vx(Fx & A) VINTRO,5
*. Some lions are tame animals.
. The derivation assumes that the sentence A does not contain the constant ‘a’. If there
1. Vx(Cx — Ax) -PREMISE : ?rgemcg:?ti?ttsh;r:nsentence A, then the constant introduced at line 4 should be different .
2. (x&C :PREMISE ; :
(Lx & Cx) s . Here is another simple derivation that moves a quantifier to the beginning of the
/BEGIN: IELIM/ K sentence:
*
3. (La&Ca) :ASSUMPTION for 3IELIM,2 .
*4. Vx(Cx — Ax) ‘SEND., 1 1. (A — VxFx) ‘PREMISE
:5. (Ca — Aa) VELIM 4 /BEGIN: — INTRO for (A — Fa)/
*64 Ca :&ELIM,3
*7. Aa —ELIM,5,6
*g' (LLaa & Aa) :ﬁ:‘,:.’:g 8.7 : *Historical note: The argument above was stated as a correct Aristotelian syllogistic argument.
* 16 3 Ax :3 N e The noun phrase “tame animals™ must be used, although to a modern ear, the sentence sounds
. /Exhgll_)x' gguzw :3INTRO,9 stilted. With our symbolism, we could deat directly with the more naturally sounding argument:
’ All circus animals are tame.
11. Ix(Lx & Ax) :RETURN, 10 Some lions are circus animals.
.. Some lions are tame.
In line 3, we assumed that a is a lion who is a circus animal. The subproof concludes The symbolic form remains the same. The difference is that earlier, ‘Ax' symbolized ‘x is a tame

on line 10 with a sentence that does not mention a and thus does not depend on the animal’, while now it symbolizes 'x is tame'.
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2. A :ASSUMPTION
*3. (A— VxFx) :SEND, 1
"4, WxFx —ELIM,3,2
*5. Fa :VELIM,4
*6. (A— Fa) —INTRO,2,5

/END: —INTRO/
7. (A—> Fa) ‘RETURN,6
8. Vx(A— Fx) VINTRO,7

Quantifier Negation Rule
L]

Before we work on the next examples, it will be helpful to consider the cases where a
negation sign precedes a quantifier whose scope is the rest of the sentence. There are
two kinds of cases:

~¥xFx ~3IxFx
We propose to show that
‘~3xFx' is logically equivalent to ‘Vx~Fx’.

The equivalence between the other two, ‘~VxFx’ and ‘Ax~Fx’, is shown similarly; it is
an exercise at the end of the chapter. The results are of some importance, since these
logical equivalences open the way to using the rule of replacement on wits with quantifiers
flanked by negation signs.

One way to show the equivalence is by way of a semantic discussion of the truth
conditions for the pair of sentences. Thus we would begin by pointing out that

‘~3xFx' is TRUE if and only if ‘IxFx’ is FALSE
and that
‘AxFx’ is FALSE if and only if every instance of ‘Fx’ is FALSE.

But this is so if and only if every instance of ‘~Fx’ is TRUE, and that is the condition if
and only if ‘Vx~Fx' is TRUE.

A second way of showing equivalence is to prove that the biconditional of the two
is a theorem. Thus we shall prove ‘(~3xFx « VYx~Fx)' beginning with no premises.
There is a problem of strategy during the derivation, and we shall interrupt the derivation
at that point to discuss the problem and a solution.

29
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*1. ~3xFx :ASSUMPTION

/BEGIN: ~INTRO to derive ~Fa/
::2. Fa :ASSUMPTION

3. 3xFx :3INTRO,2
::4 ~3xFx :SEND, 1
5. ~Fa :~INTRO,2,3,4

/END: ~INTRO/

:e. ~Fa ‘RETURN,5
7. Vx~Fx VINTRO,6
*8.  (~3xFx— Vx~Fx) —INTRO,1,7
/END: —-INTRO/
9. (~3xFx — Vx~Fx) ‘RETURN,8
*10. VX~Fx :ASSUMPTION
/BEGIN: ~INTRO to derive ~3xFx/
1. 3xFx :ASSUMPTION
" /BEGIN: 3ELIM/
2. Fb :ASSUMPTION for JELIM.2
8. Vx~Fx :SEND,10
14. ~Fb ‘VELIM,13

We now have a problem: A contradiction can be seen on lines 12 and 14, but since they
contain ‘b’—the constant in the assumption at 12—they cannot be returned out of the
subproof. But given a contradiction, any sentence can be proved—in particular, a con-
tradiction without the constant ‘b’ Letting ‘A’ be an atomic sentence (say, ‘Grass is
green’), we continue the proof.

***95. (Fbv (A & ~A)) VINTRO,12

***18. (A & ~A) VELIM, 15,14
/END: 3ELIM/
::17. (A & ~A) :RETURN,16
18 A &ELIM,17
9. ~A :&ELIM,17
20.  ~3xFx :~INTRO,11,18,19
/END: ~INTRO/

:21. ~3xFx ‘RETURN,20

22, (Vx~Fx— ~3xFx) :—=INTRO,10,21

/END: —>INTRO/

23. (Vx~Fx — ~3xFx) ‘RETURN,22
24. (~3xFx o ¥x~Fx) :INTRO,9,23

Since ‘Fx’ played no significant role in the above proof, this result holds for any wit
in place of ‘Fx’. We can now adopt a quantifier negation rule:
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QUANTIFIER NEGATION (QN) ~3vS is derivable iff Yv~S§ is derivable.
~VWVvS is derivable iff 3v~S$ is derivable.

This rule enables us, at any time in a proof, to “move the negation sign through a
quantifier” if we change the quantity of the quantifier. This derived rule is very useful,
as the following proof shows:

To prove that ‘Vx(Fx — A)’ is logically equivalent to ‘(dxFx — A)’

A proof, using no premises, of the biconditional:

*

1. Vx(Fx— A) :ASSUMPTION
/BEGIN: — INTRO for (IxFx — A)/
**2.  3xFx :ASSUMPTION
/BEGIN: JELIM/
g Fa :ASSUMPTION for 3ELIM,2
g, Vx(Fx — A) :SEND, 1
***s, (Fa— A) 'VELIM,4
'8 A :— ELIM,3,5
/END: IELIM/
7. A _ :RETURN,6
**8.  (IxFx— A) :— INTRO,2,7
/END: — INTRO/
*9.  (IxFx— A) :RETURN,8
*10. (Vx(Fx — A) > (IxFx — A)) :— INTRO,1,9
/END: — INTRO/
11. (Vx(Fx — A) — (3xFx — A)) :RETURN,10
*12. (3xFx— A) :ASSUMPTION
/BEGIN: ~ELIM to derive Vx(Fx — Ay
*43.  ~Vx(Fx— A) :ASSUMPTION
**14.  Ix ~(Fx> A) :QN,13
/BEGIN: JELIM/
***15. ~(Fb — A) :ASSUMPTION for JELIM, 14
***16. ~~(Fb & ~A) :RR EQ,15
***47. (Fb & ~A) :RR DN,16
***18. Fb &ELIM,17
***49. IxFx :3INTRO,18
***20, ~A :&ELIM,17
**req. (IxFx & ~A) :&INTRO, 20,19
/END: IELIM/
**22.  (AxFx & ~A) ‘RETURN,21
**23.  3IxFx :&ELIM,22
**24. (@xFx— A) :SEND, 12
**25. A : — ELIM,24,23
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**26.  ~A :&ELIM,22
**27.  Vx(Fx— A) :~ELIM,13,25,26
/END: ~ELIM/

*28. Wx(Fx— A) :RETURN,27

*29. ((3xFx — A) > Vx(Fx — A)) :— INTRO, 12,28
/END: — INTRO/ :

30. ((3xFx — A) - Vx(Fx — A)) :RETURN,29

31. (Vx(Fx — A) & (3xFx — A)) :>INTRO,11,30

Let us apply our expanded set of rules to a few examples in order to become more
familiar with proofs. The first example has some historical interest. The British logician
and logic-machine builder W. S. Jevons, modifying an example from Augustus De Mor-
gan, accused traditional Aristotelian logic of being unable to validate this argument:

Horses are animals.
Therefore, every head of a horse is a head of an animal.

Using ‘Dyx’ for 'y is a head of x’, we can symbolize these sentences as:

Vx(Hx — Ax)
= Wy(3x(Hx & Dyx) — 3z(Az & Dyz))

Now working back from the conclusion, we can devise a simple proof.

1. Vx{Hx — Ax) :PREMISE
/BEGIN: — INTRO for (3x(Hx & Dax) — 3z(Az & Daz))/
*2. 3x(Hx & Dax) :ASSUMPTION
/BEGIN: 3z(Az & Daz)/
**3.  (Hb & Dab) :ASSUMPTION for 3ELIM,2
*4.  Vx(Hx > Ax) :SEND, 1
::s. (Hb — Ab) ‘VELIM,4
76 Hb & ELIM,3
7. Ab :— ELIM,6,5
**8.  Dab :&ELIM,3
**9.  (Ab & Dab) : & INTRO,7.,8
**10. 3z(Az & Daz) :3INTRO,9
/END: ELIM/
*11. 3z(Az & Daz) ‘RETURN,10
*12. (Ix(Hx & Dax) — 3z(Az & Daz)) :— INTRO,2,11
JEND: — INTRO/
13. (3x(Hx & Dax) — 3z(Az & Daz)) ‘RETURN, 12
14. VYy(Ix(Hx & Dyx) — 3z(Az & Dyz)) VINTRO,13

This concludes the proof. Notice that line 13 contains ‘a’ with no restrictions on VINTRO,
since the assumptions at lines 2 and 3 are no longer in force.
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The next example illustrates how we can handle the identity relation with our present
notation. [We could, by the way, extend our present system to treat the identity relation
in a special way, with special rules of inference for formulas with an identity sign (=).}
Consider this argument:

If one event causes another event, the first event begins before the second. When
one event begins before another, the events are notidentical. Every event is identical
to itself. Hence, no event is its own cause.

Our dictionary for symbolizing is:

Cxy: x causes y
Bxy: x begins before y
Ixy: x is identical to y

We symbolize this argument as follows:

1. VxVy(Cxy — Bxy)
2. ¥xVy(Bxy — ~Ixy)
3. Vxlxx

. 4, Yx~Cxx

Observe that the conclusion is a universally quantified sentence. This suggests that in
the last step in the derivation, the rule VINTRO is applied. As usual, our strategy will be
to eliminate quantifiers first, perform sentence transformations, and then introduce quan-
tifiers where needed.

1. VxVy(Cxy — Bxy) ‘PREMISE

2. VxV¥y(Bxy — ~Ixy) :PREMISE

3. Vxixx :PREMISE

4. laa 'VELIM,3 :
5. Vy(Bay — ~lay) VELIM,2 .
6. (Baa —» ~laa) ‘VELIM,5

7. Vy(Cay — Bay) ‘VELIM,1

8. (Caa — Baa) ‘VELIM,7

9. ~~laa :RR DN,4
10. ~Baa :MT,6,9
11. ~Caa ‘MT,8,10
12. ¥x~Cxx VINTRO, 11

Our final example will give us some practice with the quantifier negation rule:

Not all successful people are rich. But all successful people are either happy or
rich. So, there are some people who are not rich and yet who are happy.
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Symbolizing this with some care, we get:

1. ~V¥x(Sx — Rx)
2. ¥x(Sx — (Rx v Hx))
oo 3. 3x(~Rx & Hx)

One proof of this argument is: -

1. ~¥x(Sx — Rx) :PREMISE
2. Vx(Sx — (Rx v Hx)) :PREMISE
3. 3x~(Sx— Rx) QN1

/BEGIN: 3ELIM to derive 3x(~Rx & Hx)/

:4. ~(Sa — Ra) :ASSUMPTION for 3ELIM,3
5. V¥x(Sx— (RxvHx)) :SEND,2

*6. (Sa— (Rav Ha)) VELIM,5

*7.  ~~(Sa & ~Ra) ‘AR EQ,4

:8 (Sa & ~Ra) ‘RR DN,7

9. Sa :&ELIM,8

:10. (Ra v Ha) —>ELIM,9,6
11. ~Ra :&ELIM,8

*12. Ha -vELIM, 11,10

*13. (~Ra & Ha) :&INTRO,11,12

*14. 3x(~Rx & Hx) :3INTRO,13

JEND: JELIM/
15. 3x(~Rx & Hx) :RETURN,14

This concludes the proof. It will be very helpful for you to review these examples and
to work some of the related exercises at the end of the chapter.

ot

Invalid Arguments
R

We have been deriving conclusions of valid arguments. But what if an argument is
invalid? How would we show that an argument is invalid? Consider this argument:

All circus animals are tame.
Some lions are not circus animals.
. Some lions are not tame.

Vx(Cx — Ax)
Ix(Lx & ~Cx)
. Ix(bx & ~Ax)

Try as we might, we would not be able to produce the indicated conclusion using our
rules. And it is well that we cannot, for the conclusion is not a logical consequence of
the premises. But how do we show that it is not?

Rt
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To show an argument to be invalid, we must provide a model in which the premises
are true sentences but the conclusion is a false one. That is, we must describe a mode!
where inspection of the dossiers on individuals in the model reveals that the premises

JINTRO—From a sentence P[c/v], you may derive 3vP.
JELIM—If a sentence has the form 3vP, and there is a subproof with ASSUMPTION
Plc/v], where c is new to the whole proof, and the subproof ends with sentence

are TRUE but the conclusion is FALSE. There are many such models for the argument
we are now considering; here is one with just two individuals:

Q not containing ¢, then Q may be RETURNed from the subproof.

A quantifier negation rule was (partially) proved:

C AL
alt 1 0 ~3vS is derivable iff Yv~$ is derivable.
blo 1 1 ~YvS is derivable iff Iv~S is derivable.

We can see that both ‘(Ca — Aa)’ and '(Cb — Ab)’ are TRUE in this model. Thus
'Vx(Cx — Ax) is TRUE in the model.

Furthermore, V(Lb & ~Cb) = TRUE, so
‘Ix(Lx & ~Cb)' is TRUE in the model.

But V(La & ~Aa) = FALSE, and V(Lb & ~Ab) = FALSE also. Since there are no other
individuals,

1. Vx(Fx— Gx) 6. ~3xFx
“Ix(Lx & ~Ax)' is FALSE in the model. Ix(Fx & Hx) ~Vx(Fx — Gx)
- 3x(Gx & Hx)
There is no algorithm for finding models that invalidate an argument. However, some 2. ~Vx(Fx— Gx) 7. ~Vx(Fx— ~Gx)
procedures and rules of thumb can be devised for this search task, as we shall see in ~3x(Fx & ~Gx) ~.3x(Fx & Gx)
the next chapter. 3. ~3x(Fx & ~Gx) 8. ~3x(Fx & Gx)
=~ Vx(Fx — Gx) ~Vx(Fx — ~Gx)
] 4. Vx(Fx— 3yRxy) 9. Vx~Gx
VxVy(Rxy — Gx) VxVy(Rxy — Fx)
IxFx Vx(Fx — Gx)
Summary ~.3xGx ~.3x3y~Rxy
— 5. ¥x(Fx— Gx) 10.  Vx((Fx v Gx) = Hx)

Two universal quantification rules were discussed: universal elimination (YELIM) and
universal introduction (VINTRO).

VELIM—From a sentence of the form ¥YvP, you may derive P[c/v].
VINTRO—From a sentence P, you may derive YvP{v/c], provided that:

¢ ) 1. Vx(Fx & Gx) (VxFx & ¥YxGx)
1. ¢ does not occur in any premise. 2. Vx(Fx & A} (VxFx & A)
2. If P isin a subproof, no constant in P occurs in an ASSUMPTION still in force. 3. 3Ix(Fx v Gx) (IxFx v AxGx)
3. All new occurrences of v in P are free after the replacement in P{v/c]. 4. Vx(FxvA) (VxFx v A)
. 5. ¥Wx(A— Fx) (A — VxFx)
The notation P{c/v] means that the constant ¢ replaces all free occurrences of the variable 6. 3Ax(Fx— A) (VxFx — A)
v in P. Similarly, P[v/c] means that the variable v replaces all occurrences of the constant 7. VxVyFxy VyVxFxy
cin P and is free after replacement. 8. 3IxIyFxy Jy3xFxy
Two existential quantification rules were also discussed: existential introduction 9. ~Vx3yFxy IxVy~Fxy
(INTRO) and existential elimination (IELIM). 10.  Vx{{Fx v Gx) — Hx) Vx((Fx — Hx) & (Gx— Hx))

Pl SR

This rule enables us to move negation signs back and forth through quantifiers, it we

change the quantity of the gquantifiers.

Some examples were worked, and then the problem of showing an argument to be

invalid was introduced.

Exercises

A. Construct derivations for the following arguments:

(IxGx — 3x(Hx & Dx))
~{3xFx — AxHx)

on pages 290 to 293 in this chapter.

~¥x~Fx
B. Prove that the following pairs of sentences are logically equivalent as was done

Vx({(Hx v Dx) — ~Fx)
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C. Some sentences are derivable from no premises at all. These sentences are
called theorems of logic, and if our rules are correctly chosen, they will be
universally valid sentences. Let us prove a theorem of logic.

To prove: (3yVxFxy — V¥x3yFxy)

/BEGIN: — INTRO to derive conclusion/

*1. AyVxFxy :ASSUMPTION
/BEGIN: JELIM/

**2.  VxFxa :ASSUMPTION for 3ELIM, 1

**3.  Fba 'VELIM,2

**4.  3yFby 3INTRO,3
/END: 3ELIM/

*5. 3yFby ‘RETURN, 4

*6. Vx3IyFxy VINTRO,5

*7. (ByVxFxy — Vx3yFxy) :— INTRO,1,6

/END: — INTRO/
8. (AyVxFxy — ¥x3yFxy) ‘RETURN,7

Notice that in the proof of a theorem of logic, the last line is not starred. Prove
the following theorems of logic:

1
2
3
4

5.

. Ix(Fx — VxFx)

. ((3xFx — VxFx) — (VxFx v Vx~Fx))

. (Vx(Fx = Gx) — (Ix~Gx — 3x~Fx))
. (3x(AyFy — Gx(IxFx — JyGy))
~3yVx(Fxy & ~Fxx)

D. Symbolize and then construct derivations for these arguments.

1.

2.

3.

All phenomenalists deny the reality of matter, but no materialist does.

Hence, no materialist is a phenomenalist.

No capitalists are socialists. Only socialists are egalitarians. Therefore,

no capitalist is an egalitarian.

All politicians are good communicators. Some women are politicians.

Thus, some women are good communicators.

. All students take either logic or mathematics. Some students do not take
mathematics. Therefore, some students take logic.

. Anyone who helps a criminal is guilty. Therefore, any criminal who helps
himself is guilty.

. If Adam graduates, then everyone does. Adam graduates only if Betty
does also. But Betty graduates only if everyone does. So, if someone
doesn't graduate, neither Adam nor Betty graduates.

. No one who thinks for himself or herself supports every position of the
party. One is totally loyal only if one supports every position of the party.
Hence, those who are totally loyal do not think for themselves.

. Some teachers are admired by all those students who admire any teacher

at all. Every student admires some teacher or other. Therefore, there are

teachers who are admired by all students.

9.

10.
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People like anything liked by anyone they like. Not everybody dislikes
everybody. People like those who like them. Consequently, somebody
likes himself.

Whenever there is a problem at the college, all the faculty blame the dean
for it. Now, if someone blames someone for something, then he (or she)
must think that person has contro! over what he (or she) is being blamed
for. The dean is a person. Hence, there is a person whom the faculty
thinks has control over all the problems at the college.




