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omatic method is described for the solution of a certain family of problems. To belong
family a problem must be expressible in the language of graph theory as that of finding
between two specified nodes of a specified graph.
16 mothod depends upon the evaluation of intermediate states of the problem according to
extent to which they have features in common with the goal state. We define evaluation
tions each of which assigns to any state of the problemn a value which is in some way
lod to its ‘distance’ from the goal state. Equivalently we assign to nodes of the corre-
ding graph values which are related to the distance over the graph from the goal node.
ance is reckoned as the smallest number of ares needed to connect two nodes.
#t Algol program, the Graph Traverser, has been written to operate in this context.
designed in a completely general way, and has two ‘empty’ procedures one of which must
written to specify the structure of the graph, that is the constraints of the problem, and the
r to define an evaluation function.
Results obtained by supplying the program with definitions of various sliding block
izzles and also a simple problem of algebraic manipulation are reported for a range of
saluation functions.

INTRODUCTION

istic method is one that seeks to obtain ‘good’ solutions for a small fraction
& cost which would be involved in obtaining optimal solutions. To take for
ration one example among many, Burstall (1966) has described a heuristic
am for the design of electricity distribution networks. Optimal solutions to
roblem can be obtained by integer linear programming. However, the calcula-
required to apply this method increase exponentially with the number of
ns in the network, and if this number exceeds nine or ten, the method becomes
cticable. Burstall’s program can process networks with 16 stations, and
rates solutions which, although not always optimal, compare well with those
ned by experienced human designers.

n admirably clear review of research in heuristic methods has recently been
ented by Newell & Ernst (1965), who survey work relevant to the charac-
tion of general problem-solving procedures. They limit their treatment, as
§ this paper, to those problems which are susceptible of a particular formal
esentation, namely, a set of discrete states to which may be applied a set of
itted transformations (‘moves’, ‘operators’). Thus stated, the task is to find
sequence of transformations which will convert some initial state into a final
ate, or goal. The history of work in this general area has shown a certain tendency
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The first preoccupation has been characteristic of much of the work on automa,
game-playing; indeed Turing’s original proposal of the idea was in the context gt
his experiments with chess-playing automata (Turing 1953; Michie 1966). A standag,
method (see Samuel 1960) has been to work out all possible combinations to g fig
number of moves ahead, evaluate, according to some strategic features, all the b
positions generated in this way, and use these evaluations to trace a path back #
the current position. This path is used to define the next move to be selected, b8
shown in figure 1. =

The work based primarily on operator selection is typified by the studies made }
Newell, Shaw & Simon (r1960) with their ‘General Problem Solver’ program.
evaluations are made only to the crude degree necessary to define an ordered se
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Ficure 1. Simplified diagram showing how evaluations are backed-up through the ‘t
possible moves to arrive at the best next move. The process starts at level (3) by ass
scores (high if favourable, low if not) to the board positions mspected. At level (£
score assigned to a position is the maximum of the scores of the descendant pos
(machine moves seek to mazimize the score). At level (1) the score assigned
minimum of the scores at the lower level (opponent’s moves seek to minimize the s
At the top of the diagram the machine selects the move leading to the highest score
doing the best it can allowing for the action of the opponent.

intermediate goals (subgoals). Operator selection is then applied by asking api
each operator in turn ‘does it directly promote subgoal 1? If not, does it proitl
subgoal 27, ..., ete.’

The present work constitutes the first stage of an attempt to bind these two!
procedures into a unified framework. This framework takes the form of a comy
program which we call the Graph Traverser. The results reported here are con
exclusively with state-evaluation, and the means whereby a search based upon
principle alone may be organized efficiently. But indication is also given of;
along which the program might be enabled to improve its own evaluations;

Although we have used sliding block puzzles to investigate heuristic prinél
these puzzles are not the point, of interest of the work: on the contrary our appré
and the Graph Traverser program which implements it, claims a wide geners
As an illustration of this generality we include in our report some prelimi
data gained by presenting the program with an exercise in elementary alge



mam‘pulation. We should also mention in this context some recent work by our
colleague Popplestone (1966) who has found the program useful 1n his study of
peuristic methods in elementary group theory.

while the logical design and experimental development of the Graph Traverser
pas been conducted jointly the programming ‘telf has been the work of one of us
(J.E. D).

Problems and graphs

A problem, of the type with which we are concerned, is a one-person game. In
contrast to two-person games, the state of the game remains undisturbed between
the player’s successive moves. A convenient formal representation is that in which

i

Figure 2. Part of a symmetric graph with start (S) and goal (@) nodes marked.

a game is identified with a graph in which the nodes represent states, and the arcs
represent permitted transitions (legal moves). A graph in the mathematical sense
may be thought of as a set of nodes some of which are connected to some others by
arcs which may be directed (oriented graph) or undirected (symmetric graph).
Figure 2 shows part of a symmetric graph (i.e. arcs represented by lines rather than
aITows).

The task is to find a path across the graph from the start to the goal as econo-
mically as possible, i.e. with as little labour as possible expended in the search,
avoiding, as far as possible false trials, blind alleys and meanderings far from the
final path. If the path is short, we say that the solution is ‘elegant’. If the search was
short, we say that the solution is * economical’.

16-2
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The Graph Traverser program

The program, written in Algol, has three main characteristics:

(1) Tt can be applied to any problem which can be translated into the abstract
‘graph traversal’ terms specified in detail below.

(2) In its present version it seeks always to achieve maximum economy, that is
minimal search, and is satisfied to find any path consistent with this.

(3) In order to carry out its search it must be given an evaluation function whieh
enables nodes of the graph to be evaluated according to their estimated distance
from the goal. If the evaluation function is constant and therefore contains no
information, then the strategy of the program reduces to systematic enumeration
terminating only when the goal is found.
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Fi1cure 3. The graph of figure 2 with values attached to the nodes.

The particular graph to be investigated is specified to the program by means of a
procedure ‘develop’ which, given a node, produces a list of all nodes adjacent to the
given node. For the purposes of this program, which is subject to the restrictions
of the language Algol 60, a node, which represents a problem state, is an integet
matrix. Two nodes must be specified to the program as the start and the goal. In
addition, a procedure ‘evaluate’ must be made available which, given a node,
applies some evaluation function and delivers the corresponding value.

The search proceeds iteratively. At the start of an iteration the program has
stored the nodes it has so far discovered, together with the following information
about each: (1) its value, as obtained by applying ‘evaluate’, and (2) a pointer to
the node from which it was developed. The former is required for directing the
search and the latter for constructing a path when the search terminates. The
iteration proceeds by finding the undeveloped node with the smallest value (i-e.
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Ficure 4. The Graph Traverser searching the graph of figure 2.
For commentary see text.
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greatest ‘apparent promise’) and using ‘develop’ to find all nodes adjacent
Every node not previously located is evaluated and stored. The program
constructs a tree (i.e. a graph without loops). The iteration is now complete

Initially the program holds one node, the start, and iteration continues unt;
goal is located. A procedure is then entered which constructs and prints out a
from the start to the goal. Should the number of nodes held (* size’ of the tree);
a pre-set limit before the goal is located, the program will select the most prom
undeveloped node and print out a path to it. A fresh search is then initiated
the selected node as the new start. It follows from this that the search could con
indefinitely. In practice a ‘resignation’ ecriterion is included. The term ‘p:
search’ will be used for the growth of one of a sequence of ‘search trees’.

Figures 3 and 4 show the program at work on the graph of figure 2. The signific
of the diagrams is:

Figure 3 The graph of figure 2, with values attached to the nodes, whicl
program is to explore.

Figure 4 (a) Initial state of program’s knowledge.

(b) End of first iteration. The value of the initial node has been replaced b
symbol ‘D’, indicating that it has been developed and thus cannot be selecte
development again.

(¢) End of second iteration. Notice that when a node is already on the tre:
never added again. This is indicated by the uncompleted connexion from ther
developed node to the node valued 22.

(d) End of third iteration. Two undeveloped nodes now tie for minimum v
The one which was added earlier to the tree will be chosen for development. N
also that the new point of departure is not necessarily near to the node deve.
in the previous iteration.

(¢) End of fourth iteration.

(f) End of fifth iteration.

(g) The goal is found.

(k) The path is printed out. In practice, of course, it would be in numerical

We shall now give a more formal statement of the abstract problem attack
the program, and of the strategy adopted.

FORMAL STATEMENT
There is specified a graph ¢ = {X,T'} where X is a set of nodes each of +
(as handled by the present program) is a distinct two dimensional matriz with it
entries, and where I is a many-valued function mapping X into itself (see Berge
p. 5). In our context I'(x) is the set of nodes resulting from the (one-step) dev
ment of z. Given se X and ge X, s + g, it is required to find a path from s to
a sequence of nodes &y, s, ..., %, for some n, such that

(1) z;=s and =z,=49,

and (2) for all msuch that 1 <m <n—1, Zpyi1 € D(@,)-
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" Ttis required to find such a sequence with as few applications of I" as possible. This

is the economy condition. Note that G need not be symmetric.

The search is assisted by an evaluation function E which is a function from X to
the non-negative integers. The values taken by E(x) as » varies over X are intended
to be rank-order correlated with the ‘distances’ from x to g, where by this is meant
one less than the minimum possible number of nodes (the minimum number of
¢gres’) in a path from x to g.

The strategy implemented by the program uses I and s together with £ to con-
struct a sequence of graphs 7, = {X;, A;} each of which is a tree. Each member of the
sequence of trees, except the first, is constructed by the enlargement of its pre-
decessor (members of the sequence do not coexist), and each has built into it the
whole of the program’s acquired information about the problem graph G. A,(z) may
pe thought of as the ‘I'-parent’ of the node z in the sth graph.

T. has the properties:

(1) X;<X and selX,;
(2) A,(s) = O, the null set;
(3) ifze X, and x & s then A(z) = {y} where y is such that xe I'(y).

Thus 7, is a partial subgraph of G except that the arrows are reversed.

A node is said to be developed if I has been applied to it and undeveloped otherwise.
Initially T}, = {{s}, A}, where Ay(s) = @. T}, is constructed from 7} as follows:

(1) The undeveloped node x € X, for which E(x) is least is found. Should there be
more than one node with the minimum value, that which was earliest located is
selected. Should there still be a tie—and this can occur if the nodes concerned have
been located by the same application of [—then an arbitrary selection is made.
Call the selected node zmin..

(2) If xmin. + g and further space is available then I' is applied to rmin. and
T, ={X,,,, A} 18 constructed where

(@) X,y = X;vl(@min)
and (b)) A, (x)=Ax) if zeX,, and A ()= {Tmnn} if zeX; ;- X,

(3) If min. = ¢ or no further space is available then a path is constructed from

810 Tmin.. This path is the sequence of nodes

8§ = A;n(xmm_), AT_i(.Z‘min.), caey Ai(xmin.): L'min.
where the pathlength is m; A,(node) is interpreted here as a node rather than as a
set containing one node. If xpmin. = g then search terminates. If xmin. + g then a
new sequence is initiated with 7, = {{xmin.}, Ao}

APPLICATION OF THE PROGRAM

'To make any particular application, a translation must be made from the ‘real’
Problem to be solved, to the ‘ideal’ problem embedded in the program. To make
this translation it is necessary to write:

(a) input and output procedures which control the relationship between the
external (‘data tape’) and internal (‘integer matrix’) representations
of the problem states;
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(b) a procedure, ‘develop’, specifying the graph function I'; and

(c) a procedure ‘evaluate’, specifying the evaluation function E.

It is also necessary to adjust certain data tape parameters which set bounds to the z
graph set X. Also specified via the data tape are:

(@) the starting and goal nodes; i. \
(b) the total number of locations awvailable for storage of the tree, subject to 1
a limitation imposed by the machine size;

(c) the severity of the resignation criterion.

The role of the evaluation function

For a given application, ‘evaluate’ may be changed at will, and certain adjust-
ments to this function will usually be possible via the data tape. The function given
to the program can be ‘infallible’ or ‘useless’ or ‘worse than useless’. In the first
case its rank correlation with the distances over the graph will be unity, in the
second case zero, and in the third case negative. The fallibility of the evaluation
function determines the search economy, measuring this in terms of the number of
applications of the procedure ‘develop’ needed to find a path from the start to the
goal.

Search economy is only fully defined in these terms if viewed from the point of
view of the program. Overall economy also involves minimizing the ‘cost’ of each
application of ‘develop’, as well as minimizing the number of times this cost is
incurred. In practice this relates to the simplicity in some sense of the evaluation
function. In the present form of the program this brand of economy is entirely the
responsibility of the user.

We now consider members of a restricted class of puzzles known as sliding block
puzzles, starting with the eight-puzzle. This puzzle will provide our first illustration
of the action of the Graph Traverser program.

The eight-puzzle

The eight-puzzle is one of a large class of sliding block puzzles, in which the solver
is typically required to manipulate square or rectangular objects on a bounded plane
50 as to rearrange them into some specified configuration. Gardner (1964, 1965 4, b,¢)
has devoted some stimulating discussions to these puzzles.

An early and famous example to which we shall return later in this paper is the
fifteen-puzzle, consisting of fifteen numbered square pieces set in a 4 x 4 array, one
ell of the array being empty. The eight-puzzle is a simpler member of the same
amily, there being only eight numbered pieces set in a 3x 3 array. We shall
wbitrarily define the goal configuration as follows:

1 2 3
8 0 4
7 6 5

enoting the empty square by a zero. Before proceeding further, two points should
e noted. !
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* the possible ways of setting up the puzzle are soluble and half are not.
implies that a sequence of moves can be found which takes the starting
ion into the goal configuration. Equivalently, solubility implies that a
scting the starting and goal nodes of the puzzle graph does exist. In the
stance it demands that the starting configuration should be an even
»m of the goal configuration (Johnson & Story 1879; Tait 1880). We shall
rn ourselves with the subset of soluble configurations, which can col-
e represented by a connected graph.

puzzle looks easy, but it is not. Three groups of subjects, about a dozen in
), were given a battery of mental tests, including the five eight-puzzle
1own in figure 5 (Hayes, Michie, Pole & Schofield 1965). The group
yr efficiency of solution ranged from 30 to 40 %,, where the path efficiency
n is defined as:

minimum possible path length
actual path length

minimum number of moves
start needed for solution goal
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mecies ranged from 70 to 90 %.
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The same subjects were tested with the Passalong, a sliding block puzzle used by
Psychologist}s for mental testing (Alexander 1946) (see figure 6). The results obtained
contrasted with those from the eight-puzzlein a way which indicated that the nature
of the intellectual task may itself be very different. We mention this finding to
indicate that the range of problems comprised by sliding block puzzles may offer a
more diversified field of investigation than one might at first suppose.

Solution of the eight-puzzle by computer program

A computer program can be written to analyse the eight-puzzle exhaustively by
a ‘brute force’ technique, involving enumeration of the 20160 centre-empty
‘normal’ positions, starting from the goal and working outwards. Such a program
has been written and successfully run by P.D. A. Schofield (see Hayes ef al. 19635).

Elegance is maximized by this method, in the sense that the shortest path is
always obtained; economy, on the other hand, is at a minimum since the space
searched is effectively the whole graph. The fact that the eight-puzzle can be, and
has been, completely analysed in this way makes it a particularly suitable starting-
point for an examination of heuristic methods, where the aim is to effect the greatest
possible economy at the sacrifice of as little elegance as possible. Human problem-
golving behaviour is conspicuous precisely in the capacity to develop effective
approaches without attempting enumeration.

Consider how the Graph Traverser deals with the eight-puzzle when equipped
with a definition of the puzzle and with a simple evaluation function. Without
being concerned for the moment about how such a function might be constructed,
let us examine in figure 7 the record of a specimen run. The values produced by the
function used are plotted in figure 8 for successive nodes along the path found.

It is worth recapitulating in this specific context two features of the program:

(1) The next node to be developed is always the lowest-valued undeveloped node,
regardless of its distance from the previous node to be developed. Search is thus not
constrained into connected steps, but pushes forward whichever sector of the front
is currently evaluated as the most promising. ‘ Disconnected developments’ there-
fore occur when the ‘main line’ of search fails. The path is filled in retrospectively
by a backward trace from the goal, once this is found.

(2) When two or more undeveloped nodes tie for the lowest value, the node which
was earliest added to the tree is chosen for development. Should this rule be
insufficient to break the tie, an arbitrary selection is made. We have subsequently
realized that random selection would be preferable, since variation of the arbitrary
rule employed turned out to have non-trivial consequences.

A crude evaluation function

In the above example of the Graph Traverser as applied to the eight-puzzle
nothing was said as to how the evaluation function used was obtained, except that
it was given to the program.

Two features of an eight-puzzle configuration suggest themselves as particularly
relevant for evaluation purposes—the ‘position’ of the pieces and their ‘sequence’
and these were used to construct the function which controlled the search in
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re 7. A ‘position score’ p; can be assigned to the ith piece, according to the
sber of moves it is distant from ‘home’, disregarding for the purpose the barrier
red by intervening pieces (i.e. ‘city block’ distance). A ‘position count’, P, of
8
ven configuration of the puzzle is then obtained as ¥ p;. A ‘sequence score’, s,
i=1
pe assigned to each piece by checking round the non-central squares in turn,
tting 2 for every piece not followed by its proper successor and 0 for every other
re, except that a piece in the centre scores one. An empty non-central square is
ored for applying the succession criterion so that in, for example, the following

Lﬁguration: 2 0 3
5 8 6
1 7 4

. held to be followed by 3. A ‘sequence count’, S, for the configuration is formed

8
the sum of the sequence scores, ¥ s;, which in the case illustrated is 13.
i=1

{aving isolated these two simple features as hopefully relevant to goal-seeking
)aviour, we may take some weighted combination of them, in the form P +wS, as
, value of the configuration. Notice that a small change in w will not always cause
hange in the strategic choices imposed by the evaluation function, as both the
sition and sequence count can take only a finite number of values. However, the
mber of settings of w which are in general distinct is sufficiently large that one
iy safely think in terms of continuous variation of performance from w = 0 to
_ 94 For w > 24 a unit change in sequence count outweighs even the largest

ssible difference of position count.

Measures of performance

There are two interesting measures of the program’s performance over a particular
wrch of a graph: (1) the Iength of the path produced (P) (i.e. the number of arcs
mprising the final path), and (2) the total number of nodes developed (D). Since
ery path node but the last must have been developed, but not every developed
de is necessarily included in the path, it follows that P < D. Denote the minimal
th length for a given start and goal by P*. Then P*|P = path efficiency (as
fined earlier). There is & corresponding idea applicable to D, the number of nodes

F1GURE 7. (cont.)
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developed, yielding a measure of the amount by which this figure exceeds tjy
minimum necessary. It is easy to see that the minimum necessary is equal to P
so that a measure of efficiency in respect of development is P*/D, which we shali:
call the ‘development efficiency’.

Fmally we note that P*/D can be written P*/P x P/D. This is a useful decop
position in drawing our attention to the further quantity P/D which is the fractio
of the total number of nodes developed which are incorporated into the actual path
found. We shall later see that this quantity, which we shall refer to as the ‘pene-
trance’, is of great importance where, in contrast to the eight-puzzle, P* is unknown, *

60e_
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F16URE 8. The values along the final path of the search of the eight-puzzle
graph shown in figure 7.

It can be thought of as representing the degree to which the search tree is ‘elongated’
rather than ‘bushy’. Its reciprocal, D/P, could reasonably be termed the ‘blind
alley ratio’. To recapitulate then

path efficiency x penetrance = development efficiency.

REsurLTs

Schofield’s results show that the largest minimal path for any eight-puzzle
starting configuration is 30, and that the configurations with this property fall into
12 distinet symmetry classes. We therefore selected for our first test battery A of
starting configurations an arbitrary representative from each of these classes. In
order to investigate the relationship between program performance and minimal
path length, we formed a second test battery B by choosing nine configurations
whose minimal path lengths were distributed between eight and 28, four of these
being configurations upon which human subjects had been tested (subtests E2, K3
E4 and E6 in Hayes et al. (1965)). Each of these 21 initial configurations was
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ced by the Graph Traverser by means of the evaluation function described

» with w set successively at 0, &, 3 3, 9. Notice that when w = 0, sequence 1s

ed, and evaluation is based upon position only.
ble 1 presents the performance indices, for a selected value of w, for different
pal path lengths, while table 2 presents mean values of the various per-

ance indices for different values of the weighting coefficient .

E 1. RESULTS OBTAINED BY APPLYING THE GRAPH TRAVERSER TO EIGHT-
PUZZLE CONFIGURATIONS WITH VARYING MINIMAL PATH LENGTHS.

A simple evaluation function with one variable parameter (w = 9) was used.

minimal path lengths

rf’w

8 12 14 18 20 22 24 26 28 30

battery

e —

-
 efficiency (%) 100 100 54 o 77 100 48 57 93 72
93 78 74 85 16 45 88 47

elopment 100 92
iciency (%)
etrance (%) 100 92 43 78 96 85 34 79 94 63

TABLE 2. RESULTS OBTAINED BY APPLYING THE (GRAPH TRAVERSER TO

TWO TEST BATTERIES OF EIGHT-PUZZLE CONFIGURATIONS
simple evaluation function with one variable parameter (w) was used. B* denotes test
ary B after exclugion of two configurations (MP = 8 and MP = 12, text).

w=10 w= g w =% w= % w=9

Test battery A

dian path length 60 47 46 40 43
dian number of nodes developed  277% 209 1644 61 661
an path efficiency 52-7 56-0 67-6 76-3 72:0
an development efficiency 10-9 18-2 254 471 467
20-8 29-7 36-2 60-0 63-3

an penetrance

Test battery B*

san path efficiency 41-2 35-3 61-9 753 755
:an development efficiency 53 6-2 21-9 56-7 58-4
12-0 14-7 30-8 70-3 727

;an penetrance

lhe following points may be noted:

1) For both test batteries the best performance on the various criteria lies in the
jon from w = 3tow = 9. Results, not shown here, obtained by further increasing
svalue of w (i.e. the relative weight allotted to ‘sequence’) showed no change from
y results with w = 9. The picture is of comparatively poor performance at w = 0,
t improving, as w INCTeases, until a plateau is reached.

9) Tf we now compare the figures for the various officiencies we sce that they are
sely correlated. There is thus no evidence that by changing w elegance can be
rified for economy or vice versa. :

(8) There is little evidence from this sample of any continuing trend relating the

rious measures of efficiency to the length of the minimal path (i.e. the ‘distance’
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of the starting configuration from the goal). The two shortest minimal path lengt
(table 1) are perhaps exceptions and these two ‘easy’ puzzles have been exclu
in compiling tables 2 and 3.

Tt is a consequence of point (2) that the optimal values of w could have %
located by inspecting the penetrance alone. Now the difference between a ‘toy
problem, asis the eight-puzzle, and a ‘real’ problem, is that in the latter we typica
have no idea of the length of the minimal path, and therefore can calculate neithg
path efficiences nor development efficiencies. The penetrance, however, can alwa
be calculated, and is therefore potentially of the greatest use as a general measure
of the efficiency of an evaluation function in solving a ‘real’ problem. Even mo
important, the penetrance may be calculated, and therefore progress estimated
during the solution of a problem, thus opening the door to methods whereby th
program might improve its own evaluation function during the course of a lon
search.

With these ideas in mind, we next tried the program on the fifteen-puzzle.

Experiments with the fifteen-puzzle

For the fifteen-puzzle a limit of 500 was set on the tree size, and a single starting,
configuration was randomly chosen for preliminary tests. This configuration was:
the following: :

7 13 11 1
0 4 14 6
8 5 2 12
10 15 9 3

Tests were conducted under a ‘stop rule’, according to which the search was
abandoned as soon as a partial search, as previously defined, failed to decrease the
mean value of the nodes encountered in it by more than 5 %, as compared with the
previous partial search. As a start, evaluation was based on piece-positions only. "
Preliminary results revealed two undesirable features. The first of these consisted 8
in the stranding of a piece at a considerable distance from its home, cut off by an
intervening barrier of more-or-less correctly positioned pieces. An example is the
following, encountered after 90 moves:

5 0 6 8
1 2 7 4
13 14 11 12
9 10 15 3

Here all pieces are two moves or fewer from their respective homes, i.e. p < 2, with
the single exception of piece number 3, for which p = 5. Expressions of the for®

15 e
S, hept, where 0 < a < 1 < b, were found to be effective. h, was defined as the

i~1 ‘
distance separating the empty square from the ith piece, expressing distance 88

before in unit steps. _ i
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e cure of ‘stranding’ threw a second feature into prominence, namely the
,nce of intra-row and/or intra-column reversals. An illustration is provided
1e following configuration, encountered after 190 moves:

2 1] 3 4

5 6 7[12
9 10 11, 8
13 14 0 15

ough superficially this appears close to solution, since every piece is either home
ext door to home, such configurations are in fact rather far from the goal.
tion requires a quite radical disruption of the degree of order which has been
; up, and a good evaluation function should reflect this fact.

e matter was dealt with in an ad hoc fashion, by addition of a term, R, counting
qumber of such reversals present. The function finally adopted thus took the

15

1 S hEpi+cR, with a, b and ¢ representing adjustable parameters determining
i=1

-elative weightings given to the three features expressed by the A, p and R terms.

test battery of ten starting configurations was now set up, by adding to the
iguration shown earlier a further nine, drawn from a table of random permuta-
s. By running the program on these ten with different settings of the parameters
and ¢, a systematic exploration was now made of the response of the system. to
ation in these weightings. Three levels were taken for each parameter, thus:

@=0,31; b=123; c=100,300,500;

hat there were in all 27 ‘treatment combinations’. The best performance was
1a=13,b=2,¢=100 At these settings of the parameters, six out of the ten
zles were solved within the limitation of a single search tree. To grow a complete
 took about 4 min on an Elliott 503 computer.

.gain, optimization could have been successfully performed using penetrance
1e, since the mean value found at these settings, 60 %, was the highest encountered
r all the 27 combinations. (Compare the eight-puzzle results of tables 1 and 2.)
1e combinations resulted in uniform failure to solve—for example all those with
b=1.

b seemed of interest to try the most successful version of the evaluation function
=1 b=2c=100) on the eight-puzzle, to compare performance with that
ained from the function specially designed for the smaller problem. The results
wpared surprisingly well, as evidenced by the summary given in table 3.

Predictive power of penetrance

t is a natural extension of earlier definitions to calculate, as a measure of progress,
penetrance of a ‘ partial search ' The latter has been defined in terms of the limit
to the size of the search tree. A partial search consists in the growing of the tree
to the present limit, remembering that each time this limit is reached in the course
1 long search, the corresponding  partial path’ is printed out and the tree 1s

17 . ’ Vol 294. A.
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erased. Resetting of weighting coefficients could also occur at the point, with
use as ‘figure of merit’ of

number of nodes in the partial path
number of nodes developed in the partial search”

penetrance =

In this way program-improvement of the evaluation function itself can be envisag
A relevant test of the possible usefulness of penetrance in this respect is to see
what extent it can predict the performance of a given evaluation function over otly
areas of the graph than those from which it was calculated. In particular we woy
like to know whether the penetrance of one partial search can be used as a guide
what is likely to happen in subsequent ones.

TABLE 3. RESULTS OBTAINED BY APPLYING THE BEST FIFTEEN-PUZZLE EVALUATIO :
FUNCTION TO THE EIGHT-PUZZLE, COMPARED WITH RESULTS OBTAINED USIKé
THE STANDARD EIGHT-PUZZLE EVALUATION FUNCTION.

Function 1 (eight-puzzle): Xp,+ 9Zs;. .
Function 2 (fifteen-puzzle): Xh? P>+ 100R.
Test battery A

configuration T | 2 3 4 5 6 7 8 9 10 11
minimum pathlength 36 30 30 30 30 30 30 30 30 30 30
development efficiency (F1) 81 34 91 48 28 30 23 26 47 56 54
development efficiency (F2) 30 53 67 48 48 65 31 39 86 35 100

mean mean
development path mean
efficiency efficiency penetrance
function 1 47 72 63
function 2 56 76 73

Test battery B

configuration 1 2 3 4 5 6 7 8 9

minimum pathlength 8 12 14 18 20 22 24 26 28 .
development efficiency (F1) 100%* 92* 23 78 74 85 16 45 87
development efficiency (F 2) 73* 100* 58 51 28 32 59 49 43
mearn mean }t
development path mean i‘
efficiency efficiency penetrance !
function 1 58 75 73 4
function 2 46 71 65 E

* Not included in means, see text.

To investigate this point we re-ran the program on the same test battery over &
restricted range of 11 different parameter settings, with the further difference that 4
the search tree was limited to a size of 250, and two successive partial searches were |
permitted. The degree of success was only slightly lower than before. Excluding
those cases in which the goal was found in the first partial search, we have plotted,
in figure 9, a measure of subsequent performance against the penetrance of the first

partial search only. The evident correlation supports the proposed use of penetrance
as a promise measure.

R
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4 trial of the program on the Passalong sliding block puzzle

253

a first trial of the adaptability of the program, a ‘develop’ procedure was
en for the Passalong (see figure 6). A simple evaluation funetion was devised.
, one ‘black mark’ was allotted for each of the 12 cells of the 3 x 4 array not
ed by a piece of the correct type. Secondly, additional terms were added to

perccntage of puzzles solved during
second partial search

o]
T

0

[

|

L

40

penetrance over first partial search (9)

-

50

60

70

Fiourke 9. Scatter diagram showing a success measure over one partial search

plotted against the pentrance of the previous partial search,

i 4. RESULTS OBTAINED BY APPLYING THE GRAPH TRAVERSER TO THE PASS-
NG SLIDING BLOCK PUZZLE, BY MEANS OF A SIMPLE EVALUATION FUNCTION

minimum

pathlength

30
28
46
70

actual
ration possible pathlength developments

30
30
58
72

no. of

32
156
258
359

path
effictency

(%)

100
93
79
97

For the configurations, refer to figure 6.

development

efficiency
(%)
94
18
18
19

penctrance
(%)
94
19
23
20

8 various features of a configuration, such as degree of right-left symmetry,
I proximity of the vertical rectangles, freedom of movement of the horizontal

gle, ete.

results of this limited trial, set out in table 4, show good performance on all
2 for configuration 7. Thereafter we find path efficiency high but development;
ey low—compare the abrupt increase in difficulty for human solvers at this
Hayes et al. 1965)—indicating that the evaluation function is no longer fully
we for these configurations. With a fofally inadequate evaluation function
onstant function, the program is guaranteed to find the minimum path, at
it of an abysmally low development efficiency. In such a case it is in effect

17-2
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employing the well known, and laborious, algorithm of locating first all nodes
distance 1 from the origin, then all at distance 2, etc. (see Berge 1962, pp. 67-68
At this extreme point the heuristic element has disappeared.

Application to algebraic manipulation

The next application—algebraic manipulation—was chosen to be further afield
The problem asstated here is to demonstrate equivalence between two expressions
i.e. to show that they can be connected by a sequence of legitimate operations. W,
chose for the first experiments the very simple case of a single binary operation, ‘%’
on a set of elements {a,b,c,d,e,f,g,k,1,)} with associativity and commutativity. We -
can see that these properties imply that any well formed expression, however

4 0 8

123 ~-—— problem state —» ((a*b)*a)

765 (node) ‘

/ \ —transformations— ..
480 (ares) (a*(b*a))
123 428 048 ((b*a)*a)
765 10 3 123
765 765 {a*(a*b))

\ generated states

(descendant nodes)

Fieure 10. Diagrammatic representation of the relationship between the general graph
traversal problem, the eight-puzzle, and a simple algebraic manipulation problem. ‘

bracketed, is equivalent to any other well formed expression containing, in any -
order, the same set of elements, but this is not known to the program, which seeks to
demonstrate equivalence from first principles. The analogy here with the eight-
puzzle or fifteen-puzzle is that although we can see that the solubility of a given
configuration is determined by whether it is an even permutation of the goal con- -
figuration, the program seeks to demonstrate solubility by constructing a path.

The way in which a correspondence was set up between the algebraic problem
and the graph traversal schema is shown in figure 10, with the corresponding
identifications for the eight-puzzle shown for comparison. Just as the ‘ development’
of an eight-puzzle configuration generates all the configurations of the puzzle which
can be reached by a single move from the state in question, so an algebraic expression
is ‘developed’ by generating all expressions which can be derived from it by a single
application of either the commutativity or the associativity rule. We adopted
standard goal expressions of the type

(((a%D) *c)*d),
or ((((a%a)*a)xh) * k),
or ((d*e)xe),

where alphabetical order is required and where the ‘open brackets’ are concen-
trated to the left of the expression.
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,n evaluation function, the sum >w,p, was calculated, where the summation
8

¢ the symbols of the expression excluding ) and %, and where w, s a weight
ed to s—for example the weights 10,9, 8,7,...,1,0 might be assigned to
C,.onsts] respectively—and where p, is the ordinal number of the symbol in the
_ again excluding ) and *. In practice, the weights assigned to the symbols

Q,9,8,7,...,0

@Q is an adjustable parameter.
, results obtained for one simple task are summarized in tables 5 and 6. They
ainly of interest as illustrating once again the increase in search economy
jant on the use of even the simplest evaluation function (cf. tables 1 and 2), as
ys indicating that the field of symbol manipulation is open to the Graph

wser approach.

C, ..., %] WeTE

E 5. RESULTS OBTAINED BY APPLYING THE GRAFPH TRAVERSER TO A SIMPLE
ALGEBRAIC MANIPULATION PROBLEM

mple evaluation function with one variable parameter was employed. A dash indicates
, to solve the problem within a search tree of 500 nodes.
Starting expression: ((h*(a*f))*((c*d)*c)).
‘Gioal’ expression: (((((a*c)*c)*d)*f)*h).
parameter setting for evaluation function
P”_’_ﬂ__—MJ—P’J———

-

——

5 7 8 9 10 11 12 13 14 15 20
ount — — 13 9 9 10 10 10 — — _
.developed — — 46 15 16 17 19 19 — —— -—
ize — __ 288 112 117 124 132 132 — — —
rance (%) 244 115 98-3 60-0 563 588 526 52-6 182 136 102

TABLE 6. SOLUTION PATHS TO AN ALGEBRAIC MANIPULATION PROBLEM

e tagk is to convert the expression ((hx(axf ))*((cxd)

the associativity and commutativi

#c)) into (((((a*c)*c)*d)*f)*h) using
ty of the operation #*. The solution on the left was

1 by the Graph Traverser, and that on the right by hand.

shortest path found by program

(parameter getting = 9)

((hx(axf ))#((cxd)#c))
(((cxd)ke)x(hx(axf)))
(({cxdyxe)x((axf )#R))
(({(cxd)%c)x(axf ) y#h)
(( (c*d)*c)*a)*f)*h)
((a*((c*d)*c))*f)*h)
(a*(c*(c*d)))*f )kh)
(a*((c*c)*d))*f):xh)
((a*(c*c))*d)*f)*h)
((a*c)*c)*d)*f)*h)

0o -1 O WO

(
(
({
{(
{(
((

DISCUSSION

ghortest path known

((hs(axf))#({cxd)¥c))
(({cxd)xc)x(hxlaxf )
(({cxd)rc)x((axf J¥h))
((ck(cxd))*((axf )xh))
((c(cxd))x{axf))xh)
(((c*(c*d))*a)*f)*h)
((a*(c*(c*d)))*f)*h)
(((a*o)*(c*d))*f)*h)
((

(
(
(
(
(((((asc)xc)sd)xf )%h)

he fact that over a range of problems the program was able to find solutions
ch could be called ‘ good’ by human standardsis not in itself of great significance
® in these experiments a ‘short term memory’ of some hundreds of problem
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states was permitted—an order of magnitude greater than the span available
the human solver. What is significant is

(1) That this level of performance can be reached by a search method utili
state evaluation only, of a fairly simple sort, before any principles of opera
selection have been built into the system. ;

(2) That the program proved fairly easy to adapt to problems as mutu K|
dissimilar as sliding block puzzles and algebraic manipulation.

(3) That the program showed itself an effective instrument not only for th
implementation of evaluation functions in ‘production’ runs, but also for their:
initial development by trial and error. e

(4) That the ‘penetrance’ gave good indications of potential usefulness far
endowing the program with the facility of improving its given evaluation function, |
For this purpose, there must be some measure available to the program by whichit |
can judge how well it is doing when in the midst of an attempt to solve some problem,
The penetrance, which is a function of the structure of the search tree, promises to "
serve this purpose. More generally, if the program is to ‘learn’, it can only do so by'
using the information it has stored about the problem, i.e. by using the information
embedded in its search tree.

Some analogies are offered here by the work of Samuel (1960) mentioned earlier l
in particular by his techniques of adjusting his scoring polynomial (evaluation
function) so as to tend to give equal values to configurations lying on the same :‘;
minimax chain within the stored search tree. The analogy would be strengthened if
an attempt were made by the program to adjust the evaluation function so as to
reflect the metric properties (as compared with structural properties, such a8
measured by the penetrance) of the stored search tree—i.e. assign suitably different
values to nodes lying far apart on a branch and vice versa.

This idea is developed further in an article by Doran (1966) where there is also
a description of a new version of the program which uses a dynamic tree. By thisis |
meant that the program, on reaching the growth limit, behavesless catastrophically.
Tt no longer selects the most promising terminal node, and then commits itgelf to
a path to that node before deleting the entire tree to create new working space.
Instead, the program commits itself only to a single ‘move’, and only that part of
the tree thereby rendered valueless is erased.

In the detailed description of the graph traversal schema, a specific problem type
was described, and the applications we have discussed have all fallen within this
type. In this context, we wish to make two points. First, our applications have all
had in common a particular limiting condition, namely that their problem graphs
have been symmetric. This means that the search strategy has been inefficient to the
degree that a search tree could usefully have been grown from the goal node
simultaneously with growth from the start. To see this, consider the analogy with
the cage of a search conducted, not over a graph, but over an n-dimensional Euclid- -
ean space. Specifically we imagine in case 1 that a “search hypersphere’ is grown
from the origin until it touches the goal, while in case 2 hyperspheres are grown from
both start and goal until they touch each other. Here it can easily be shown that the
factor of economy (supposing cost to be represented by the total volume explored) !
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. As pointed out to us by D. G. Kendall, it is possible that this way of looking
matter might lead to a useful definition of the effective dimensionality of a
The second point is that although a problem type has been strictly specified,
stice fairly minor adjustments to the program will permit its application to a
range of problem types, for example to a situation where some defining
ty of a goal configuration is available, but where no particular goal is specified.
assification of problem types may be obtained by distinguishing three pairs of
atives: (1) whether it is a path or a node that must be found; (2) whether the
ode is fully specified, or specified up to some property it must have; and
ether the graph is symmefric or non-symmetric.

now identify the problem types:

Type A: path  full symmetric

ing block puzzles are of this ‘demonstration of equivalence’ type. It seems
that search trees should be grown from ‘both ends’. Practical problems that
aturally into this category seem rather rare, although some problems in
-aic simplification and theorem-proving are of this type.

Type B: path full non-symmetric
path property symmelric
path  properly non-symmetric

» Graph Traverser strategy is most appropriate to these situations, although
s not use the symmetry in the second. Sliding block puzzles with partially
ied goal configuration are of this type, a solution consisting in a path from the
ng configuration to a terminal configuration satisfying the goal condition.
1 practical applications seem rare.

Type C: node property symmelric
node property non-symmetric

pically the graph structure is imposed as part of the strategy, rather than given
e terms of the problem. Operations, or ‘moves’, provided by the strategy for
forming problem states define arcs in the abstract representation, and thus
art, the initially given problem into a connected graph upon which the program
vork. In particular, the symmetry or otherwise of the graph is likely to be a
er of definition. A solution must merely satisfy the goal condition. The path
: of primary interest. The Graph Traverser strategy is applicable to this type
oblem but it is not yet clear how efficient such an application would be. Many
sical problems are of this type, for example allocation and timetabling problems.
more general type of problem is that where a solution is a set of nodes. This
des the above problem types, as special cases.

our work to date with the Graph Traverser we have avoided the use of operator
tion, but such techniques can be inserted into the program schema. In its
wnt form the procedure ‘develop’ produces all immediate descendants of a
1 node. However, there is no difficulty in constraining it to produce only a
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subset of the immediate descendants, corresponding to selection and application g
only a subset of the available operators. This topic is discussed in an article }
Michie (1966).

Generality versus speed

This paper has been about a general problem-solving program. In the extremg §
case such a program embodies no more special knowledge about the problem in hand
than is required to set in motion a search for solutions. It typically purchases a wide
range of application in exchange for speed. For example, the Graph Traverser at
best takes about 20 s to solve a difficult eight-puzzle configuration on an Elliott 503,
and takes about 15s to demonstrate that the two expressions given in table 6 are
equivalent. Special-purpose programs for performing the same two tasks (Michie
1966; K. W. Elcock, personal communication) are an order of magnitude faster. At
first sight this comparison seems so damaging as to prompt the question: why bother
at all with general purpose programs? ‘

An immediate reply is that such programs could have a use when ‘one-off’
problem-solving is required, where the attraction of avoiding the labour of con-
structing a special program may outweigh the defects of the general one. For
‘production runs’, however, the balance would normally be tipped in favour of
constructing an efficient, fast-running program for the particular problem. The
possibility should be borne in mind here, that the construction of such a program
may itself be aided by exploratory work using a general purpose program such as
the Graph Traverser.

CONCLUSIONS

The first stage of this design project has been successful, in the sense:

(1) That the program, in its present restricted form, does solve problems. It has
in fact already been found to be a useful tool by a colleague working in a different
field (automatic theorem-proving: see Popplestone 1966).

(2) That it seems to meet our criteria for using it as the platform on which to build
'he next, i.e. ‘learning’, stage.

The cost of this work was defrayed by a grant from the Science Research Council,
vhich also provided a Junior Research Fellowship held by one of us (J. E.D.).
Jur thanks are also due to Dr N.T.J. Bailey, Director of the Unit of Biometry,
)xford University, and to Dr M. H. Rogers, Director of the Computer Unit, Bristol |
Jniversity, for generous provision of computing facilities, and to our colleague
. M. Burstall for many helpful criticisms and comments. |
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