
PROCEEDINGS
OF THE

ROYAL SOCIETY OF LONDON SERIES A. MATHEMATICAL AND PHYSICAL SCIENCES

Q
11 I

VOL 294 \ L 7

(Zoo)

Published by the Royal Society

Burlington House

Piccadilly
London, w. 1

18 October 1966

i

., Experiments with the Graph Traverser program

By J. E. DORAN AND D. MICffiE

Experimental Programming Unit, University of Edinburgh

mmunicated by D. G. Kendall, F.R.S.-Received 2 February 1966)

omatic method is described for the solution of a certain family of problems. To belong
8mily a problem must be expreBBible in the language of graph theory as that of finding
between two specified nodes of a specified graph.
ethod depends upon the evaluation of intermediate states of the problem according to
nt to which they have features in common with the goal state. We define evaluation

ns each of which aSBigns to any state of the problem a value which is in some way
to its . distance' from the goal state. Equivalently we aSBign to nodes of the corre.

g graph values which are related to the distance over the graph from the goal node.
e is reckoned as the smallest number of arcs needed to connect two nodes.
gol program, the Graph Traverser, has been written to operate in this context.

igned in a completely general way, and has two' empty' procedures one of which must
n to specify the structure of the graph, that is the constraints of the problem, and the
define an evaluation function.

ts obtained by supplying the program with definitions of various sliding block
and also a simple problem of algebraic manipulation are reported for a range of

ion functions.

.INTRODUCTION
c

'heuristic method is one that seeks to obtain' good' solutions for a small fraction
'f the cost which would be involved in obtaining optimal solutions. To take for

cv~ustration one example among many, Burstall (1966) has described a heuristic
Iprogram for the design of electricity distribution networks. Optimal solutions to""
fthis problem can be obtained by integer linear programming. However, the calcula-
!::ons required to apply this method increase exponentially with the number of

..' tions in the network, and if this number exceeds nine or ten, the method becomes
.I

-.~practicable. Burstall's program can process networks with 16 stations, and
('C

enerates solutions which, although not always optimal, compare well with those
i~~ined by experienced human designers. ;:.,

, admirably clear review of research in heuristic methods has recently been

iesented by Newell & Ernst (1965), who survey work relevant to the charac-
,;,'zation of genetal problem-solving procedures. They limit their treatment; as
~esthis paper, to those problems which are susceptible of a particular formal
epresentation, namely, a set of discrete states to which may be applied a set of
",cmitted transformations ('moves', 'operators'). Thus stated, the task is to find

,;: sequence of transformations which will convert some initial state into a final
~, te, or goal. The history of work in this general area has shown a certain tendency
(polarize around two distinct approaches. At one pole, attention is concentrated
pon the evaluation of states, while at the other pole the emphasis is upon the
~ection of operators. In the first case we ask: 'To which state shall we next apply
"perators? ' In the second case we ask: 'Which operator is to be applied next to this

"ate?' '.

:

[235] Vol 294. A.

evaluations made at this level
C," / ,~. t
, FxGURJD 1. Siinplified diagram showing how evaluations are backed-up tnrough the 'tree' .\
: Ii possible moves to arrive at the best next move. The process starts at level (3) byassi .

I i>: scores (high if favourable, low ~ not) to the board positions inspected. At level (2) ,
, score assigned to a position is the maximum of the scores of the descendant positio ,

..~ (machine moves seek to maximize the score). At level (1) the score assigned is ,

Ininimum of the scores at the lower level (opponent's moves seek to minimize the score.",
'. At the top of the diagram the machine selects the move leading to the highest score, th

doing the best it can allowing for the action of the opponent. l
':'

intermediate goals (subgoals). Operator selection is then applied by asking abou,.
each operator in turn 'does it directly promote subgoal11 If not, does it promo

subgoal21, ...,etc.'
The present work constitutes the first stage of an attempt to bind these two basi

procedures into a unified framework. This framework takes the form of a coropu c
program which we call the Graph Traverser. The results reported here are concern .
exclusively with state-evaluation, and the means whereby a search based upon t
principle alone may be organized efficiently. But indication is also given of !in;

.-along which the program might be enabled to improve its own evaluations. ",
Although we have used sliding block puzzles to investigate heuristic principl

these puzzles are not the point of interest of the work: on the contrary our appro~ "
and the Graph Traverser program which implements it, clairos a wide generali t
As an illustration of this generality we include in our report some pre.. .'

data gained by presenting the program with an exercise in elementary algebr~

Experiments with the Graph Traverser program 237

We should also mention in this context some recent work by our
lestone (1966) who has found the program useful in his study of

ods in elementary group theory. ;;

gical design and experimental development of the Graph Traverser
cted jointly the programming itself has been the work of one of us

,I;;.' I,., \ ' c

Problems and graphs. ,, . ~ i ..,

of the type with which we are concerned, is a one-person game. In .
o-person games, the state of the game remains undisturbed between
ccessive moves. A convenient formal representa~ion is that. . .: ,I

. .
':,t, !\) .',:"-\

Part of a symmetric graph with start (8) and goal (G) nodes marked.

tified with a graph in which the nc;>des represent states, and the arcs
.tted transitions (legal moves). A graph in the mathematical sense
t of as a set of nodes some of which are connected to some others by
y be directed (oriented graph) or undirected (symmetric graph).
part of a symmetric graph (i.e. arcs represented by lines rather than

to find a path across the graph from the start to the goal as econo-
sible, i.e. with as little labour as possible expended in the search,

as possible false trials, blind alleys and meanderings far from the
e path is short, we say that the solution is ' elegant'. If the search was

hat the solution is 'econoInical',

16-2

. "'. . - ,;~",
238 J. E. Doran and D. Michie,,' :?~J:' ,

..' !

The Graph Traverser program ,~
The program, written in: Algol, has three main: characteristics: '~~,
(1) It can be applied to any problem which can be translated in:to the abstracl~:

'graph traversal '. terms specified in: detail below. . ~'!;,
(2) In its present version it seeks always to achieve maximum economy, that ~'

minjmal search, and is satisfied to find any path consistent with this. '.-. ,;
(3) In order to carry out its search it must be give.n an eval~atio~ function whic~,~

enables nodes of the graph to be evaluated according to their estlInated distanCJ\~
from the goal. If the evaluation function is constant and therefore contains n~irj:
information, then the strategy of the program reduces to systematic enumeratiori~:,
terminating only when the goal is found. :' :~';

,!\;

FIGURE 3. The graph of figure 2 with values attached to the nodes. ,;\
'~':"."

The particular graph to be investigated is specified to the program by means of~1
procedure' develop' which, given a node, produ<;es a list of all nodes adjacent to th8;.,!~'

given node. For the purposes of this program, which is subject to the restrjctjo~:
of the language Algol 60, a node, which represents a problem state, is an integ~'
matrix. Two nodes must be specified to the program as the start and the goal. ;",
addition, a procedure' evaluate' must be made available which, given a node'1~

applies some evaluation function and delivers the corresponding value. ;~'~
The search proceeds iteratively. At the start of an iteration 'the program h~,

stor~d the nodes it has so far discovered, together with the following information
about each: (1) its value, as obtained by applying 'evaluate', and (2) a pointerthe node from which it was developed. The former is required for directing th, '

search and the latter for constructin:g a path when the search terminates. ~h, ,

iteration proceeds by finding the undeveloped node with the smallest value (1.e,
""
:.

1240 !" :';ij.,'.t ,!;j~:"E~~DJ;apJand n.) Michie'.~\~.:~~!~,
" greatest' apparent promise ') and using' develop' to find all nodes adjacent to it~:;!

Every node not previously located is evaluated and stored. The program thJ:
constructs a tree (i.e: a graph without loops). The iteration is now complete. .

I oInitially the program holds one node, the start, and iteration continues until th

goal is located. A procedure is then entered which constructs and prints out a pat
from the start to the goal. Should the number of nodes held (' size' of the tree) reac'~
a pre-set limit before the goal is located, the program will select the most promising

, undeveloped node and print out a path to it. Afresh search is then initiated using:~,,:
. the selected node as the new start. It follows from this that the search could con tinu' ~. .
;. .indefinite~y. In practice a' 'resignation' criterion is included~'iT~e term 'partia ~i:
:. search' will be used for the growth of one of a sequence of 'search t],"ees '. ~;. .' .. /;.
I,~.j;~;; Figures 3 and 4 show the program at work on the graph of figure 2. Th~significan) ..

.'ofthe diagrams is: : '.: '

~f! Figure 3 The graph of figure 2, with values attached ~ the nodes, which th
~ Program is to explore. '+ ;(~,,:.,:;.,. £
I' ,...~;j~;~;{(" .

I Figure 4 (a) Initial state"ofprogram's knowledge.'. .;~~::.,:..." ~

,; (b) End of first iteration. The value of the initial node has been replaced by th~...
, "...

:;: symbol' D', indicating that it has been developed and thus cannot be selected foi.t;!~' . 'i1'i
'., development agaIn. ;~c"J

~ (c) End of second ite~tion. Notice that when a node is already on the tree it i,~i~
.' never added again. This is indicated by the uncompleted connexion from the newlYf#'~

;; developed node ~o t~e no~e valued 22. .. . ~t
;*':: (d) End of third IteratIon. Two undeveloped nodes now tIe for Inlnlmum value~J

"
~ The one which was added earlier to the tree will be chosen for development. Notic~~;'

also that the new point of departure is not necessarily near to the node develope
in the previous iteration.

(e) End of fourth iteration.. (j) End of fifth iteration. " .

(g) The goal is found.
(h) The path is printed out. In practice, of course, it would be in numerical form.

We shall now give a more formal statement of the abstract problem attacked b
the program, and of the strategy adopted.

FoRMAL STATEMENT

There is specified a graph G = {X, r} where X is a 8et of nodes each of whi
(as handled by the present program) is a distinct two dimensional matrix with integ
entries, and where r is a many-valued function mapping X into itself (see Berge 196z
p. 5). In our context r(x) is the set of nodes resulting from the (one-step) develo ;
ment of x. Given 8E: X and gE: X, 8 + g, it is required to find a path from 8 to g, i.
a sequence of nodes Xl' X2' ..., X1t for some n, such that

(1) Xl = 8 and x" = g,
and (2) for all m such that 1 ~ m ~ n-l, xm+l E: r(xm).

:;i Experiments with the: Graph Traverser program 241

I ,~Ai9uired to fin~ ~uch a sequence with as few applicatio~ of r as possible. This
.. :A~e6QnQmY conditIon. Note that G need not be symmetnc.

~H(i;s~~ch is assisted by an evaluation function E which is a function from X to
t~~egative integers. The values taken by E(x) as x varies over X are intended

, , "iI:nk-order correlated with the' distances' from x to g, where by this is meant
,-,,;..

0 ~~;.'than the minimum possible number of nodes (the minimum number of
~ ;ina path from x to g.

-" '
':' "skategy implemented by the program uses rand 8 together with E to con-

i 8~~I,~quence of graphs ~ == {X".~} each of which is a tree. Each membe: of the

~ n.c~of trees, except the first, 18 constructed by the enlargement of Its pre-
decet~'(members of the s~que~ce do n~t coexist), and each has built into it th~
wm~9~the program's acqUIred informatIon a?out t~e problem graphG. ~(x) may
bit~?~~ht of as the.'~-parent' of the n~de x ill the 'ltthgraph.,:)!i':" ,.
~~~~the propertIes. :, ,\ ,;f¥)~!*J', "", '°'1

',:"'i~~'!)tX,C X and 8EX,;,'!'~~!';-:"
i(2)!;"~,(8)==<I> the nu1l set. ",' c" "

, ~{fi.'if ' ,
:~ii ~~) if x E.X, and x + 8 then ~i(X) == {y} where y is such that x E r(y).
~U's: ~ IS a partIal subgraph of G except that the arrOW8 are rever8ed.

~!~~A, ~ode is said to be developed if r has been applied to it and undeveloped otherwise.
~~~ally To == {{8}, ~o}' where ~o(8) == <1>. ~+1 is constructed from ~ as follows:

!j~{&;~~Undeveloped node x E Xi for which E(x) is least is found. Should there be
more; than one node with the minimum value, that which was earliest located is
~,~i~4;, Should there still be'~ ti&-and this can occur if the nodes concerned have

o'b~n; located by the same application of r-then an arbitrary selection is made.
" ,.

GiJl1 tneselected node Xmln..

! ~iW;y ~mln. =+= ~ and further space is available then r is applied to Xmln. and
,1+1= {X1+1J ~I+J IS constructed where,. -.. "

..!"\ () X X r().~,,; ~ a '+1 == 1 U Xmln.
."" ...'..
and: (b) ~1+1(X) == ~I(X) if XEX" and ~1+1(X) == {Xmln.} if XEX1+1-X,.
it:,(3) If Xmln. = g or no further space is available then a path is constructed from

"~"~ Xmln.. This path is the sequence of nodes
;.~~:j m m-lt~: 8 = ~I (Xmln.), ~, (Xmln.), ..., ~i(Xmln.), Xmln.

'W1iere the pathlength is m; ~(node) is interpreted here as a node rather than as a
~~" ~ontaining one node. If Xmln. = g then search terminates. If Xmln. =+= g then a
~~e~~ence is initiated with To = {{Xmln.}, ~o}.

~ii I,..1': ApPLICATION OF THE PROGRAM'c

To make any particular application, a translation must be made from the 'real'
problem to be solved, to the' ideal' problem embedded in the program. To make
~ translation it is necessary to write:, ""
;j: ':, (a) input and output procedures which control the relationship between the

~i!",: ' external ('data tape') and internal ('integer matrix') representations
C ", of the problem states;

242 ' J. E. Doran andD. Michie

'(b) a procedure, 'develop', specifying the graph function r; and
(c) a procedure' evaluate', specifying the evaluation function' E.

,

It is also necessary to adjust certai~ data tape parameters which set'bounds t
graph set X. Also specified via the data tape are:

(a) the starting and goal nodes;

(b) the total number of locations available for storage of the tree, subje
;,; a limitation imposed by the machine size;

c) the severity of the resignation criterion.
;;':t"i:':i'.~,. . ';'.. "
,c",\:,... ;~v.,~ The ro~e oj the evaluat1-Dn Junct1-on '.~,.,.

. For a given application, 'evaluate' may be changed at will,and certain adj
ments to this function will usually be possible via the data tape. The functiqn
to the program can be 'infallible' or 'useless' or 'worse than useless'. In the
case its rank correlation with the distances over the graph will be unity, in
second case zero, and in the third case negative. The fallibility of the evalua
function determines the search economy, measuring this in terms of the numb
applications of the procedure' develop' needed to find a path from the start to
goal.

Search economy is only fu\ly defined in these terms if viewed from the po'
view of the program. Overall economy also involves minimizing the' cost' of
application of 'develop', as well as minimizing the number of times this co
incurred. In practice this relates to the simplicity in some sense of the evalua
function. In the present form of the program this brand of economy is entirely
responsibility of the user.

We now conside~ members of a restricted class of puzzles known as sliding b
puzzles, starting with the eight-puzzle. This puzzle will provide our first illustra
of the action of the Graph Traverser program.

The eight-puzzle
The eight-puzzle is one of a large class of sliding block puzzles, in which the solver

is typically required to manipulate square or rectangular objects on a bounded plane
so as to rearrange them into some specified configuration. Gardner (1964, 1965 a, b, c)
has devoted some stimulating discussions to these puzzles. ",.

,
An early and famous example to which we shall return later in this paper is the..,."

, I;
fifteen-puzzle, consisting of fifteen numbered square pieces set in a 4 x 4 array, one
cell of the array being empty. The eight-puzzle is a simpler member of the same
family, there being only eight numbered pieces set in a 3 x 3 array. We shall ,
arbitrarily define the goal c?nfiguration asiollows:

1 2 3

8 0 4 ;
,.Jc

denoting the empty square by a zero.7Be:ore5proCeeding further, two points ShOUldf~
be noted.

,:::...:

,
, Experiments with the Graph Traverser program 243

he possible ways of setting up the puzzle are soluble and half are not:
plies that a sequence of moves can be foUnd which takes the starting
into the goal confi~ation. Equivalently, solubility implies that a

ing the starting and goal nodes of the puzzle graph does exist. In the
ance it demands that the starting configuration should be an even
of the goal configuration (Johnson & Story 1879; Tait 1880). We shall
ourselves with the subset of soluble configurations, which can col-

epresented by a connected graph.
zle looks easy, but. it is not. Three groups of subjects, about a dozen in

were given a battery of mental tests, including the five eight-puzzle
WI). in figure 5 (Hayes, Michie, Pole & Schofield 1965). The group
efficiency of solution ranged from 30 to 40 %, where the path efficiency
. dfind "" IS e e as .I, ;"'~:' Of;!

~;:' f'" "tfM;;i;~vc:, {:c,t~ ::..';:'. ::
:~~: " minimUIri possible path length :~.,\~,' , - - -.. .;:;;1

'..,' actual path length ,,", ...

~:,;~,
start :If:':., needed for solution goal

!!"""":r~ 3J4 ~ 12
0 . =~:

1 5 ...,.."
" '

2 7 6

r: 1 l- . ~ 2

~:J j , . ~ '

,[] " ' []7 2 5 . . 22 1 2 3

1 0 3 :';, ~'o, ~ 8, 0 4
'" '

[: :J: .30/1
1765 8 0 4

3 6 1[5J . .., 26

3 0 8

6 2 7

eight-puzzle starting configurations used for testing human performance.

not affected in any way by the length of the minimal path, except
minimal paths ('easy puzzles'). These results were obtained with
om the puzzle was entirely unf~miliar. In unpublished further
f the improvement of efficien;cy with pr~ctice, the best subjects
efficiencies exceeding 70 %. When we ourselves, and a number of
'liar with the puzzle, were given Tandomly chosen configurations to

es ranged from 70 to 90 %.

244

§
~

:g
>

"'"'
s :
"002

g'i1§'.;3
(

.~

8-
.so

~ .~
I'

~

I

&

i
~

l

j =.~"'"
";0A.S j

r
O

[
I

r

i
r

Jg
r

..
~

1
~

 1
:jii~

:c~
~

'.
" ..'" ~

.,
!'~

~
V

~
"('iflJ"'~

':$j{~
W

,"~
.

1 ~
 ~ ,':'.': ;~

¥~
i~

C
\I~

;!;~
;.

~
':::~

~
~

i:!;..'~
;f'~

)!t ~
81."~

~

c,,'~
"'~

~
"'l'

"'
1

"

"
",

~
,,V

;
.",

!~

'-
.",

r-
~

~i,'
.c.

r
~

(..

r

cDr00
C

\j115

J. E
. D

oran and D
. M

ichie

I

I
I

~~

- -
.

0)

C
D

1,...
~

,

~
~

~
;~

,~
;

",i"lJ;;"'!i'cl~
!;'1i,~

;!i~

~c,..

~~

.9

~

C
' r0'"

~
.-=
50

.
~10~.9~~

;

~
'

i~0l~~rD~~

.'!
"'"C

!)
;Q~~.S"tjiC

!),
Q

)
~~

=

~

]

II
:;i

D
~

;

,I.
'

1.

',,;}"o
,...

~
~

}'
"

~
1+

;,;:-

~

Experiments with the Graph Traverser program 245

subjects were tested with the Passalong, a sliding block puzzle used by
for mental testing (Alexander 1946) (see figure 6). The results obtained

.th those from the eight-puzzle in a way which indicated that the nature
ectual task may itself be very different. We mention this finding to
t the range of problems comprised by sliding block puzzles may offer a
.fied field of investigation than one lnight at first suppose.

.' Solution of the eight-puzzle by computer program

"bl~uter program can be written to analyse the eight-puzzle exhaustively by
t\1te force' technique, involving enumeration of the 20 160 centre-empty c

o~,~' po~tions, starting from the goal and working outwards. Such a program i
cen wrItten and successfully run by P. D. A. Schofield (see Hayes et al. 1965). ~~

i:g:Lnce is maxilnized by this method, in the sense that the shortest path is "~~

~)ii:obtained; economy, on the other hand, is at a minimum since the space h~r,

"ear~ii~d is effectively the whole graph. The fact that the eight-puzzle can be, and :,,';"1: .. - ~~een; completely analysed in this way makes it a particularly suitable starting- ~j

ouit for an examination of heuristic methods, where the aim is to effect the greatest
"511'"

pq~si~ble economy at the sacrifice of as little elegance as possible. Human problem-
;~olVillg; behaviour is conspicuous precisely in the capacity to develop effective
"i'"
~pproaches without attempting enumeration~
'CollSider how the Graph Traverser deals with the eight-puzzle when equipped

wit¥:~ definition of the puzzle and with a simple evaluation function. Without
;,lje~g concerned for the moment about how ~uch a function might be constructed,
: let us examine in figure 7 the record of a specImen run. The values produced by the

"'11;" '

function used are plotted in figure 8 for successive nodes along the path found.
;~Itis worth recapitulating in this specific context two features of the program: .
..~1), The next node to be developed is always the lowest-va.Iued undeveloped node,

,- reg1Lrdless of its distance from the previous node to be developed. Search is thus not
constrained into connected steps, but pushes forward whichever sector of the front

.c:i8'cunently evaluated as the most prolnising. 'Disconnected developments' there-
fore occur when the' main line' of search fails. The path is filled in retrospectively
'c,by a backward trace from the goal, once this is found.
,'. (2) When two or more undeveloped nodes tie for the lowest value, the node which

.':ias earliest added to the tree is chosen for development. Should this rule be..".."
:InSufficient to break the tie, an arbitrary selection is made. We have subsequently
~lized that random selection would be preferable, since variation of the arbitrary
~3employed turned out to have non-trivial consequences..
-; l'" ;:'~c. A crude evaluation function

~in the above example of the Graph Traverser as applied to the eight-puzzle
~<:>thing was said as to how the evaluation function used was obtained, except that
.~was given to the program.
,.:rwo features of an eight-puzzle configuration suggest themselves as particularly

j levant for evaluation purposes-the 'position' of the pieces and their 'sequence'
. d these were used to construct the function which controlled the search in

:,..

246

~GURE 7. A Graph Traverser search of the eight-puzzle graph. The values of the configura-I: 1
; tions are ringed. The unringed figures give the order in which the configurations we~i 'jadded to the search tree. . .

:'i:'c:-';~1'1

Experiments with the Graph Traverser program 247

, .to ., b .' din t th!::B~~,j;'; pOSI ~o~ s~ore Pi can e lece, accor go. e

~~~ber of moveSlt 18 distant from' ho the purpose the barrier
"""""edby intervening pieces (i.e. 'city 'position count', P, of

;; c c

'~~configuration of the puzzle is th . A 'sequence score', a,
, f1fi .
. "&:assignedtO each piece by chec ntral squares in turn,
". ""f"" ,:,i~9ttmg 2 for every piece not followed rand 0 for every other
~::;j~~'except that a piece in the centre Y non-central square is
~:{;ig9§i~dfor app~gthe,succession cri example, the following
-c.'..,J '.:; ~~"",{,c.;, 2' ;;' ':

".. ~:!;i~"." 5 "'.0 ..,.

~;~" 1 ~... ,;c "", ~;1

e followed by 3. A 'sequence count', S, for the configuration is formed"
.c ", 8

t1i~rsequenc~ scores, ~ a" which in the case illustrated is 13.
'-1

lated these two simple features as hopefully relevant to goal-seeking
e may take some weighted comb1nation of them, in the form P + wE, as
he configuration. Notice that a small change in w will not always cause
he strategic choices imposed by the evaluation function, as both the
sequence count can take only a finite number of values. However, the
ttings of w which are in general distinct is sufficiently large that one
hink in terms of continuous variation of performance from w = 0 to

w > 24 a unit change in sequenc~ count outweighs even the largest

rence of position count.

i M easurea of performance
wo interesting measures of the program's performance over a particular
aph: (1) the length of the path produced (P) (i.e. the number of arcs

he final path), and (2) the total number of nodes developed (D). Since
"., ode but the last must have been developed, but not every developed
5:t:;'node is necessaril included in the ath, it follows that P ~ D. Denote the minimal

n P*/P = path efficiency (as

ble to D, the number of nodes

FIGURE 7, (cont.)



J. E.Doran andD. Michie248

developed, yielding a measure of the amount by which this figure exceeds
minimum necessary. It is easy to see that the minimum necessary is equal to
so that a measure of efficiency in respect of development is P*ID, which we.
call the 'development efficiency'.

Finally we note that P*ID can be written P*IP x PIn. This is a useful
position in drawing our attention to the further quantity PID which
of the total number of nodes developed which are incorporated:
found. We shall later see that this quantity, which we shall refer to as the'
trance', is of great importance where, in contrast to the eight-puzzle, p*

60--' ,. \

11116 4 start of specimen

7 5
4/)

~
~

20,

r'IIIIIIIIIIIIIIII'.-LL
0 5 10 15 20

number of moves

FIGURE 8. The values along the final path of the search of the eight-puzzle
graph shown in figure 7.

It can be thought of as representing the degree to which the search tree is '~ rather than 'bushy'. Its reciprocal, DIP, could reasonably be termed the

alley ratio'. To recapitulate then
path efficiency x penetrance = development efficiency.

RESULTS

Schofield's results show that the largest minimal path for any.
starting configuration is 30, and that the configurations with this property --- -
12 distinct symmetry classes. We therefore selected for our first test battery A
starting configurations an arbitrary representative from each of these classes.order to investigate the relationship between program performance and' .

path length, we formed a second test battery B by choosing nine
whose minimal path lengths were distributed between eight and 28, four
being configurations upon which human subjects had been tested
E4 and E6 in Hayes et al. (1965». Each of these 21 initial configurations



Experiments with the Graph Traverser program 249

the Graph Traverser by means of. the evaluation function described
set successively at 0, t, t, t, 9. Notice that when w = 0, sequence is

evaluation is based upon position only.
sents the performance indices, for a selected value of w, for different

lengths, while table 2 presents mean values of the various per-
'ces for different values of the weighting coefficient w~

, (C..\ ~ '

SULTS OBTAINED BY APPLYING THE GRAPH TRAVERSER TO EIGHT-

E CONFIGURATIONS WITH VARYING MINIMAL PATH LENGTHS.~ ',' '

Ie evaJuation function With one variable parameter (w= 9) was. used. .~";':~y...
:~:;~5~~' r'.;:.. :;ff;r:

.pr"J:I;1 J,~,,:, ' 30

;~l!l)." .~. A

.', r-"-'~ -'-;'::::~(%) 100' 100 54 100 77 100 48 57 93 72
. 100 92 23 78 74 85 16 45 88 47

)0) 100 92 43 78 96 85 34 79 94 63

. RESULTS OBTAINED BY APPLYING THE GRAl'H TRAVERSER TO

WO TEST BATTERIES OF EIGHT-PUZZLE CONFIGURATIONS

uation function With one variable parameter (w) was used. B* denotes test
exclusion of two configurations (MP = 8 and MP = 12, text).

W=O w=t w=* w=t w=9
io'.,.-, Test battery A
~"'"ength 60 47 46 40 ' 43

er of nodes developed 2771 209 1641 61 661
ciency 52.7 56.9 67-6 76.3 72-0

ment efficiency 10.9 18-2 25.4 47.1 46.7
nce 20.8 29.7 36-2 60-0 63.3

Test battery B* J
ciency 41-2 35-3 61-9 75-3 75-5

ment efficiency 5.3 6-2 21-9 56-7 58.4
nce 12-0 14-7 30-8 70.3 72.7

The following points may be noted:
::(1) For both test batteries the best performance on the various criteria lies in the

re~on from w = i to w = 9. Results, not shown here, obtained by further increasing
,~~e value of w (i_e. the relative weight allotted to ' sequence ') showed no change from
~eresults with w = 9. The picture is of comparatively poor performance at w = 0,

:~t improving, as w increases, until a plateau is reached.
01,(2) If we now compare the figures for the various efficiencies we see that they are

C~o8ely correlated. There is thus no evidence that by changing w elegance can be

,~ed for economy or vice versa.
'~3) There is little evidence from this sample of any continuing trend relating the
!l.rious measures of efficiency to the length of the minimal path (i.e. the' distance'



250 "J;E. Doran and D. Michie~{f,'.;
C" ,

of the starting configuration from the goal}. The two shortest minimal path lengt~
(table I) are perhaps exceptions and these two 'easy' puzzles have been exclud!'"
in compiling tables 2 and 3. f=' " '?t!fl

It is a consequence of point (2) that the optimal values of w could have bee.';
located by inspecting the penetrance alone. Now the difference between a 'to~;!
problem, as is the eight-puzzle, and a 'real '-problem,is that in the latter we typicaU:.r
have no idea of the length of the minimal path, and therefore can calculate neith~ i

path efficiences nor development efficiencies. The penetrance, however, can alwaY8:
be calculated, and is therefore potentially of the greatest use as a general measur'~
of the efficiency of an evaluation function in solving a 'real', problem. Even morc
important, the penetrance may be calculated, and therefore progress estimated,
during the solution of 8i'problem, thus opening the door to methods whereby th'
program:' might improve i~s own 'evaluation function during the course of a lon~

, ""gearch c': ~,.,,' . "... . ,;~,
With these ideas in mind,; we next tried the program on the fifteen-puzzle. '

:. -':;'!; ,

Experiments with the fifteen-puzzle

For the fifteen-puzzle a limit of 500 was set on the tree size, and a single starting'
configuration was randomly chosen for preliminary tests. This configuration was"
the following: 'c,:..1
1, 7 13 11 1 ,c,;'- 0 4 14 6 ..

8 5' 2 12
10 15 9 3

'-
Tests were conducted under a 'stop rule', according to which the search was
abandoned as soon as a partial search, as previously defined, failed to decrease the
mean value of the nodes encountered in it by more than 5 %, as compared with the;
previous partial search. As a start, evaluation was based on piece-positions only.

Preliminary results revealed two undesirable features. The first of these consisted:
in the stranding of a piece at a considerable distance from its home, cut off by an::
intervening barrier of more-or-less correctly positioned pieces. An example is the"
following, encountered after 90 moves:

5 0 6 8
"

1 2 7 4

13 14 11 12

9 10 15 3

Here all!pieces are two moves or fewer from their respective homes, i.e. p ~ 2, with,
the single exception of piece number 3, fo~ which P = 5. Expressions of the for~

16 '..
~ h1p~, where 0 < a < I < b, were found to be effective. hi was defined as the"

i=1 ,
distance separating the empty square from the ith piece, expressing distance ~;
before in unit steps. ,~



Experiments with the Graph Traverser program 251

e of 'stranding' threw a second feature irito prominence, namely the
f intra-rowand/or intra-column reversals. An illustration is provided
oWing configuration, encountered after 190 moves:,.. i '

h'. I'} 113.. ,:cr" ,";..1;:\;t..~~".tt()lP," I ~ I I :t\'f;)"1~lffi; ;Ci!",

:"",;:\,:,"';c.'c."'~-'"

56 ' 7 L:J ,.~, ,,"c " . '

"""""':' !~ " 1" 1,,:1..; " I"" ' C".I,I'..n" } ...",' ;t.-! 1",-
-"""",,~,"f.""""" i'"c."",:",J.\,,'

1('lro~~111f!fJ;gS!tiiJ:,;f!" 9 1 0 11 8, ...:ti;llf;3_J:,;t"s"'ii1,; ; ; ;"i\if.:c"
13 1; O," '

uperficially this appears plose to solution;smce every piece is either hom'6~
, c

or to home, such configurations are in fact rather far from the goal:;
quir(Js a quite radical disruption of the degree of order which has been...
d a good evaluation function should reflect this fact.

ter was dealt ,with in an ad hoc fashion, by addition of a term, R, counting
r of such reversals present. The function finally adopted thus took the

~ p~ + cR, with a; b' and c representing adjustable parameters determining

~ei,ghtings given to the three features expressed by the h, p and R terms.
attery of. ten starting configurations was now' set up, by adding to the
on shown (Jarlier a further nine, drawn from a table of random permuta-

. g the program on these ten with different settings of the parameters

a systematic exploration was now made of the response of the system to
these weightings. Three levels were taken for each parameter, thus:

a=O,I,I; b=1,2,3; c=100,300,500;

re were in all 27 'treatment combinations'. The best performance was
, b = 2, 0 = 100. At these settings of the parameters, six out of the ten
e solved within the limitation of a single search tree. To grow a complete
bout 4 min on an Elliott 503 computer.
ptimization could have been successfully performed using pen;trance
the mean value found at these settings, 60 %, was the highest encountered
27 combinations. (Compare the eight-puzzle results of tables 1 and 2.)

inations resUlted in Uniform failure to solve--for example all those with

d of interest to try the most successful version of the evaluation function
2, c = 100) on the eight-puzzle, to compare performance with that
om the function specially designed for the smaller"problem. The results
urprisingly well, as evidenced by the summary given in table 3.

" ".: Predictive power of penetrance
"

,',.' It is a natural extension of earlier definitions to calculate, as a measure of progress,
:t,he penetrance of a 'partial search'. The latter has been defined in terms of the limit

; :~t to the size of the search tree. A partial search consists in the groWing of the tree
~Up to the present limit, remembering that each time this limit is reached in the course

i~:;Of a long search, the corresponding' partial path' is printed out and the tree is
.,.~ 17 Vol, 294. A.

;



,252 J. E. Doran and D. Michie ':c

erased. Resetting of weighting coefficients could also occur at the point, with t '

use as 'figure of merit' of
t .'. number of nodes in the Partial Pathpene rance = '

number of no~es developed in the partial search.
In this way program-improvement of the evaluation function itself can be envis~ge '
A.relevant test of the possible usefulness of penetrance in this respect is to ~ee of.

~hat extent it can predict the performance of a given evaluation function. over oth1,
areas of the graph than those from which it was calculated. In particular we woul '
like to know whether the penetrance of one partial search can be used as a guide" \c'

~hat is likely to happen in subsequent ones. ,:',rl:;'~
,~~,~,~~. ;, ';)1~,;;..":' c;,;~, ..

cTABLE 3. RESULTS OBTAINED BY APPLYING THE BEST FIE"rEEN-PUZZLEEVALUATIO

~~:~, FUNCTION TO THE EIGHT-PUZZLE, COMPARED WITH RESULTS OBTAINED usm't,I"'~" ..cO ;, ,;,:;THE STANDARD EIGHT-PUZZLE EVALUATION FUNCTION. "",:];~:fJj:;: ,;

, ~c. t(Jf""~"' ... .;}1!_, , ~ F ,t o ' 1 ( .:. ht I ) ~ +9~ f,J.Jfb"'l{j;tj"", ~."*,,.~j'-""c'. unc Ion elg .puzz e . ..p ..8" '.:,"~~'!.".,.. . 'i~'. ,j

"j(f')J~,t";:c:;')1(;',; Functlon2(flfteen.puzzle):~,p,+100R." 'I,:; ;",. r,"
Test battery A t1]

i', configuration ... 1 2 3 4 5 6 7 8 9 10 11 12'~

minimum pathlength 30 30 30 30 30 30 30 30 30 30 30 30"""
development efficiency (Fl) 81 34 91 48 28 30 23 26 47 56 54 43;(

.., development efficiency (F2) 30 53 67 48 48 65 31 39 86 35 100 75;;
; ,) . , mean mean "

".c,'~nrll development path mean
,..' efficiency efficiency penetrance

,.1"" .;" functIon 1 47 72 63
'I""""'~ function 2 56 76 73

~f:ft.." '," ,
c:t . :... Test battery B ' , ;i..

configuration ... 1 2 3 4 5 6 7 8 9 \'
1minimum pathlength 8 12 14 18 20 22 24 26 28

development efficiency (F 1) 100. -92. 23 78 74 85 16 45 87 '~
development efficiency (F2) 73. 100. 58 51 28 32 59 49 43 ~

:'~mean mean ~
development path mean c'

efficiency efficiency penetrance
function 1 58 75 73
function 2 46 71 65

. Not included in means, see text. , '

"c:,

To investigate this point we re-ran the program on the same test battery over & ;'
restricted range of 11 different parameter settings, with the further difference that ..;,
the search tree was limited to a size of 250, and two successive partial searches were :J:

permitted. The degree of success was only slightly lower than before. Excluding1
those cases in which the goal was found in the first partial search, we have plotted, J
in figure 9, a measure of subsequent performance against the penetrance of the firs' :

1

partial search only. The evident correlation supports the proposed use ofpenetrance;j
as a promise measure. ]j

j



:"
"if;...

° Experiments with the Graph Traverser program 253
;-., '

j .A trial of the program on the Passalong sliding block puzzle

trial of the adaptability of the program, a 'develop' procedure was
;f~tt~n for the Passalong (see figure 6). A simple evaluation function was devised.
:W~~; one 'bla~k mark' was allotted for each of the l~ .cells of the 3 x 4 array not
.'"~..;\,, d b a Iece of the correct type. Sec<;>ndly, additIonal terms were added to

,
,i ,ct,!""';"'"J ' !

on i ~¥t~,fr,;qi:,'1"'"" , ,
it) ~ ~'~;'r:;l';,,;,;'.,(;"
~ ~ i!",'.""Ii,'\"""".~"

;] 40 i:" ,:"
1 !. :'~, ,"'~, ,"

11'~ i "~r~!?.,, ""'.~,\~:,.."c~ L~'. /' "i ~ " ;:!! ',,,ii'"~.., ,. " ,'./~n
i:

0
40

penetrance over first partial search (%)

catter diagram showing a success measure over one partial search
tted against the pentrance of the previous partial search.

'/,; ~,:",!:'!!~,
:i,,~~LE4:RESULT~ OBTAINED BY APPLYING THE GRAPH, TRAVERSER TO THE PASS-

NGSLIDING BLOCK ~UZZLE, BY MEANS OF A SIMPLE EVALUATION FUNCTION

~.~f~' :
'!,:t" ; For the configurations, refer to figure 6.
',.'", iii ..

""" "1t';, ,'" ':'; minimum pB:th devel~pment
tr~~,~'!~,', pathlength actual no. of efficIency efficIency penetrance
~- ~nfiguration possible pathlength developments (%) (%) (%)

f,Ot'::jf'17 30 30 32 100 94 94
8 28 30 156 93" 18 19
9 46 58 258 79 18 23
0 70 72 359 97 19 20
'\1

c "j'

; ~,~ress various features of a configuration, such as degree of right-left symmetry,
~: (,'f~~~ual proximity of the vertical rectangles, freedom of movement of the horizontal

~-;:i~ctangle, etc.
~1,!The results of this limited trial, set out in table 4, show good performance on all
.!i~:'Fteria for configuration 7. Thereafter we find path efficiency high but development
fJ,;.~mciency low-compare the abrupt increase in difficulty for human solvers at this
:~;~,;point (Hayes et al. I96s)-indicating that the evaluation function is no longer fully
1~:",~~quate for these configurations. With a totally inadequate evaluation function
:fC?J:,e~ a constant function, the program is guaranteed to find the minimum path, at
li'i\,~,~ cost of an abysmally low development efficiency. In such a case it is in effect
,,'" "
i:' :It 17-2

~



"

254. ~.""; J E'Dc dD Mi hi ,..;~r'
,;.'io~\~i' "?!:,,l' :;'; or~~;,~~ . . c e """o.k

employing the well known, and laborious, algorithm of locating first all nodes a
distance 1 from the origin, the~ all at distance 2, etc. (see Berge 1962, pp. 67-68)1..
At this extreme point theheuristic~l~ment has disappeared. c-,":! ;", ,~'

:"" ...t;c;,'c";,"';:f! ., Application t6 algebraic manipulation' ,1, ., '

The next application-algebraic manipulation-was chosen to be fUrther afiel

i.e. to show that they can be connected by a sequence of legitimate operations. W';

chose for the first experiments the very simple case of a single binary operation, '* ;,~
'ona set of elements {a,b,c,d,e,j,g,h,i,j} with associativity and commutativity. W'
can; see that these properties im,plythat'any well formed e~ression, howeve'mo 8 f!'.~~~'J" c:;. ~"ifi~~~ "j

;"':;~\ct~:::~: 1 2 3 "~ Problem state ! « a*b)*a)~" ' "o'~- '" ,,.' " 7 6 5 :f"; (node) '"
, /\ "..i,'" !"/"

\.:.c,c;cC..' ]'1", transformations :: c. "

~ --";' c

[1]1 ~ ~

[;] 2 8 [IIJ] 4 8 (arcs) «b*a)*a) (a*(b*a».1c

765 103 123 c

.-
( * ( * b» , 765 765 ""':" aa c

~,..~ / ' 'i:

,,;~ generated states :': ,:ii

(descendant node~) ...'

FIGURE 10. Diagrammatic representation of the relationship between the general grap~
traversal problem, the eight-puzzle. and a simple algebraic manipulation problem.

, c

.
bracketed, is equivalent to any other well formed expression containing, in an :'

order, the same set of elements, but this is not known to the program, which seeks to'
demonstrate equivalence from first principles. The analogy here with the eight;.
puzzle or fifteen-puzzle is that although we can see that the solubility of a given
configuration is determined by whether it is an even permutation of the goal con;
figuration, the program seeks to demonstrate solubility by constructing a path. "'

The way in which a correspondence was set up between the algebraic problem,
and the graph traversal schema is shown in figure 10, with the corresponding"
identifications for the eight-puzzle shown for comparison. Just as the' development' ;
of an eight-puzzle configuration generates all the configurations of the puzzle which,
can be reached by a single move from the state in question, so an algebraic expression
is . developed' by generating all expressions which can be derived from it by a single;

application of either the commutativity or the associativity rule. We adopted
standard goal expressions of the type

(((a*b)*c)*d),
or ((((a*a)*a)*h)*k),

,
or ((d*e)*e).

where alphabetical order is required and where the' open brackets' are concen
trated to the left of the expression. ;



"?trr~',i~~':'!~;:,\..",;~:,\ c"~',;o';~~;iJ'~ ""'~~. ='""

.Experi~~ts With the

tion function, the sum ~wsPs was calculated, where thes~ation
s ,v,i., , "';i'

bola of the expression excludi'n:U ) and *, and where -IDs .
for example the weights 10,9,8,7,...,1,0 might be a
espectiv~ly-and where Ps is the ordinal number of the s

xcluding ) and *. In practice, the weights a;ssigned to th
were, ;'.. , Q987 0 , "r. J"', , , , , ..., "'~~.t~~~~:
djustable parameter. . "~~::~"..Jr,~;;:;~;~~,;~.."~~'::;;

btained for one simple task are summarized in tables 5
interest as illustrating once again the increase in search
e use of even the simplest evaluation function (cf. tables 1
ing that; the~ field of. symbol manipulation is open to t

S OBTAINED BY APPLYING THE GRAPH TRAmE:8 TO

i., ALGEBRAIC MANIPULATION PROBLEM ~,1'i; ;:.i:i,;,j';;i, , :,' ':'"
tio~ function: with one variable parameter was~~pl~y~J:i:" :

he p:roblem within a search tree of 500 nodes."";; ',,"" ;; i'
", '.. Starting expression: «(h*(a*!»*«c~)*c». ;, .il;,;

'" , 'GoaJ' expression: ««(a*o)*C)~)*!)*h). " ,",

"'f'" ;, i" parameter setting for evaJuation function

5. 7, ,. 8 9 10 11 12 13 14, ". ,.- - 13 9 9 10 10 10 -
- -~ 46 15 16 17 19 19 - -
- ~ 268 112 117 124 132 132 - -
24-4 11-5 28-3 60,0 56-3 58.8 52-6 52-6 18-2 13-6

, .-
" .

- SOLUTION PATHS TO AN ALGEBRAIO MANIPULATION PROB

convert the expression «h*(a*!»*«c*d)*c» into «(((a*c)*c)~)*
ivity and commutativity of the operation *. The solution on the left was '!'ph Traverser, and that on the right by hand. .

shortest path found by program
(parameter setting = 9) shortest path known

«h*(a*!»*«c~)*c» ((h*(a*!»*((c~)*c»
«(c*d)*c)*(h*(a*!)) «((c~)*c)*(h*(a*!))
«((c*d)*c)*((a*!)*h» «(c*d)*c)*«a*!)*h))
««c*d)*c)*(a*!)*h) ((c*(C*d»*((a*!)*h»
««(c*d)*c)*a)*!)*h) «(c*(c~»)*(a*!»)*h)
«(a*«c*d)*c»*!)*h) ««c*(c*d)*a)*!)*h)
((a*(c*(c~»)*!)*h) «(a*(c*(c~»)*!)*h)
«(a*«c*c)*d)*!):lch) ««a*c)*(c~»*!)*h)
««a*(c*c)*d)*!)*h) ««(a*c)*c)*d)*!)*h)
««(a*c)*c)~)*!)*h)

" DISOUSSION
'..?-~e fact that over a range of problems the program was able to find solutions
:?~. could be called' good' by human standards is not in itself of great significance
~.m these experiments a 'short term memory' of some hundreds of problem",

-



256 J. E. Doran and D. Michie
"

states was permitted-an order of magnitude greater than the span available t~{
the human solver. What is significant is " "

(1) That t~ level of perfo~an~ can be reached by a se~ch. method utilizin i I
state evaluatIon only, of a fairly SImple sort, before any princIples of operator; ,Ii " .-
selection have been built into the system. ,; !

(2) That the program proved fairly easy to adapt to problems as mutuall';I
dissimilar as sliding block puzzles and algebraic manipulation. ':j

c. ,"(3) That the program showed itself an effective instrument not only for th ':
implementation of evaluation functions in 'production' runs, but also for the.
initial development by trial and error.

(4) That the 'penetrance' gave good indications of potential usefulness fo'
endowing the program with the facility of improving its given evaluation functio' ,

For this purpose, there must be some measure available to the program by which i
can judge how well it is doing when in the midst of an attempt to solve som~ problerrl
The penetrance, which is a function of the structure of the search tree, promises
serve this purpose. Mor~ generally, if the program is to 'learn', it can only do so b~' ii:
using the information it has stored about the problem, i.e. by using the informatio li
embedded in its search tree. ! '~

"' "
Some analogies are offered here by the work of Samuel (1960) mentioned earlie .;

in particular by his techniques of adjusting his scoring polynomial (evaluatio ;J
function) so as to tend to give equal values to configurations lying on the sam~ {~minimax chain within the stored search tree. The analogy would be strengthened' '

an attempt were made by the program to adjust the evaluation function so as to~
reflect the metric properties (as compared with 8tructural properties, such a8iJ

measured by the penetrance) of the stored search tree-i.e. assign suitably different}
values to nodes lying far apart on a branch and vice versa. :~':

This idea is developed further in an article by Doran (1966) where there is also: t,'
a description of a new version of the program which uses a dynamic tree. By this. ;\:~: "1

meant that the program, on reaching the growth limit, behaves less catastrophically; '!i
! c

It no longer selects the most promising terminal node, and then commits itself to :,;,
a. path to that node before deleting the entire tree to create new working space.\)'{ 1;1
Instead, the program commits itself only to a 8ingle 'move', and only that part o~ "

..." ,
the tree thereby rendered valueless is erased. ~ ~

In the detailed description of the graph traversal schema, a specific problem type~: t
was descri~ed, and the ap~lications we have ~scuss~d have all f~lle~ within thist,
type. In this context, we WIsh to make two pomts. First, our applicatIons have an"
had in common a particular limiting condition, namely that their problem graphs'1
have been symmetric. This means that the search strategy has been inefficient to the,t
degree that a search tree could usefully have been grown from the goal node;"'
simultaneously with growth from the start. To see this, consider the analogy withl.,. ,

the case of a search conducted, not over a graph, but over an n-dimensional Euclid~~'l
ean space. Specifically we imagine in case 1 that a 'search hypersphere' is gr°w1'.; ;
from the origin until it ~ouches the goal, while in case : hypersp~eres are grown fr~:f~i I

both start and goal until they touch each other. Here It can easily be shown that theI" \
factor of economy (supposing cost to be represented by the total volume explored, "



" . ~,: Experiments with the Graph Traverser program 257
, ~';,J" '.

:;i~21~1~,;As pointed out to us byD. G. Kendall, it is possible that this way of looking
::~t;'thematter might lead to a useful definition of the effective dimensionality of a
,;",.,,~: "'Waph. The second point is that although a problem type has been strictly specified,

lih:practice fairly minor adjustments to the program will permit its application to a
"' ,~":#ider range of problem types, for example to a situation where some defining

,"',";!bEerty of a goal corlftguration is available, but where no particular goal is specified.
':~-r.Al~lassification of problem types may be obtained by distinguishing three pairs of

""""'°, ,.
,j\'.;;1~~:tnatives: (1) whether it is a path or a node that must be found; (2) whether the..
:\g~~node is fully specified, or specified up to some property it must have; and

:c:(~'};'~hether the graph is symmetric or non-symmetric.
'~:,,":W~~ow identify the problem types: ',1:" ",...:
r:, '".'.o~*;;; '.' .." .,

:~~ :: .,,~.'ji:tf' ""';' Type A: path full symmetric
;;:!\ '~-m..,{!'; ,

~~~¥,ding block ~uzzles are of this' demonstration of equivalen~e' type. It seems
:l~e~y that search trees should be grown from' both ends'. PractIcal problems that
";~;fall;inaturally into this category seem rather rare, although some problems in
""" , "
1~-;:;:~g~braic simplification and theorem-proving are of this type.

";~Tt}..¥",;
:i~~(;;~ "(1; , Type B: path full non-symmetric

'oJ&-, :)., \ '. path property symmetric
, " "."

"', \; ;;';ih r.., path property non-symmetric
';'~ "'~ ':i..",." ;"
tr~;~:,,;\The Graph Traverser strategy is most appropriate to these situations, although
~~", it does not use the symmetry in the second. Sliding block puzzles with partially
i~ecified goal configuration are of this type, a solution consisting in a path from the

i~t.~ing configuration to a terminal configuration satisfying the goal condition.

1:4g~m practical applications seem rare.
r~~ ~;'2;: '

:~c; Type 0: node property symmetric
" .

node property non-symmetr1,c'",{" .,
"Ii) ,:;~ically the graph structure is imposed as part of the strategy,. rather than given

" ';..9Y the terms of the problem.. Operations, or 'moves', provided by the strategy for
~:i;traDBforming problem states define arcs in the abstract representation, and thus

,,~;:c,onvert the initially given problem into a connected graph upon which the program
I,panwork. In particular, the symmetry or otherwise of the graph is likely to be a
~!:~tter of definition. A solution must merely satisfy the goal condition. The path
~~~is not of primary interest. The Graph Traverser strategy is applicable to this type
,J..,~f problem but it is not yet clear how efficient such an application would be. Many

'~~ractical problems are of this type, for example allocation and timetabling problems.
':ifi/ A more general type of problem is that where a solution is a set of nodes. This
. ".~cludes the above problem types, as special cases.

";~ In our work to date with the Graph Traverser we have avoided the use of operator
Selection, but such techniques can be inserted into the program schema. In its

~ ~:esent form the procedure' develop' produces all immediate descendants of a
'$1ven node. However, there is no difficulty in constraining it to produce only a

"'



. - ,,::., o;i;;~t:i::~~~t~~~::'-\; ;.\
258 J. E. Doran andD. Michie \;~';;.~.:-~~:;;. c ':,.

':'i,
subset of the immediate descendants, corresponding to selection and application'6"
only a subset of the available operators. This topic is discussed in an article bk:
Michie (1966). .

,.: Gener~lity versus speed

This paper has been about a general problem-solving program. the extr
case such a program embodies no more special knowledge about the p~oblem in h
than is required to set in motion a search for solutions. It typically purchases a
range of application in exchange for speed. For example, the Graph Traverse
best takes about 20 s to solve a difficult eight-puzzle configuration on an Elliott
and takes about 15s to demonstrate that the two expressions given in table 6
equivalent. Special-purpose programs for performing the same two tasks (Mi
1966; E. W. Elcock, personal communication) are an order ofmagnit~de faster
first sight this comparison seems so daciaging as to prompt the question: why bo
at all with general purpose programs1~c,'~: ::;'" ;.';,,1. '"

An immediate reply is that such programs could have a use when , one

problem-solving is required, where'the attraction of avoiding the-labour of
structing a special program may outweigh the defects of the general one.
'production runs', however, the balance would normally be tipped in favo
constructing an efficient, fast-running program for the particular problem.
possibility should be borne in mind here, that the construction of such a pro
may itself be aided by exploratory work using a general purpose program suc
the Graph Traverser.

. CONCLUSIONS

The first stage of this design project has been successful, in the sense:- (1) That the program, in its present restricted form~ does solve problems. It

in fact already been found to be a useful tool by a colleague working in a diffe
field (automatic theorem-proving: see Popplestone 1966).

(2) That it seems to meet our criteria for using it as the platform on which to b
the next, i.e. 'learning', stage.

The cost of this work was defrayed by a grant from the Science Research Council,;, '
which also provided a Junior Research Fellowship held by one of us (J. E. D.):\
Our thanks are also due to Dr N. T. J. Bailey, Director of the Unit of Biometry;;_,:
Oxford University, and to Dr M. H. Rogers, Director of the Computer Unit, Bristol:~
University, for generous provision of computing facilities, and to our colleagu~ ;,

R. M. Burstall for many helpful criticisms and comments. :: ~;
;;.

REFERENCES ,~
. "

Alexander, W. P. 1946 A perjormance 8calejor the meaBUrement oj practical ability. InstructIon,

book issued with' Alexander Perfonnance Scale '. London: Councils and Education Press.
Berge, C. 1962 The theory oj graphs. English translation by Alison Doig. London: Methuen.} .\

Burstall, R. M. 1966 Computer design of electricity supply networks by a heuristic method.~
Computer Journal (in press). [

Doran, J. E. 1966 An approach to automatic problem-solving. In Machine intelligence, ' '

(ed. N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)



Experiments with the Graph Traverser program 259

'"t;r,:M. 1964, 1965 a, b, c Mathematical games. Scient. Am. 210, 122-30; 212, 112-17;
~,~~, 120-4;.21~, 222-36. . . .
~e~~,J. E., :Mi~hie, ~., Po~e~ K. E. & Schofield, P. D:A. 1965 A qu~tItat~ve study. of
p~blem-solVlllg usmg sliding block puzzles: the' EIght-puzzle' and a modified versIon
!'ofthe Alexander Passalong Test. Experimental Programming Report, no. 7. Experimental

~~ogramming Unit, University of Edinburgh.
~on, w. w. & Story, W. E. 1879 Notes on the' 15' puzzle. Am. J. Math. 2, 397-404.
:iliEi;:D; 1966 Game playing and game learning automata. Ch. 8 of Advances in program-
fmi1lg and non-numerica~ computation (ed. L. Fox), pp. 183-95. London: Pergamon.
;";e~ D. 1966 Strategy-building with the GraphTrav~rser. In Machine intel~igence, 1 (ed.
1'~~L.'Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)
11';;£ & Ernst, G. 1965 The search for generality. In Information processing 1965:
':~~ceedings of IFIP Congress 1965, vol. 1 (ed. WayneA. Kalenich), pp. 17-24. Baltimore:
~an. ,,",

E ~A:~ Shaw, J. C. & Simon, H. A. 1960 A variety of intelligent learning in a general
Bfi>blem solver. In Se~f-organising Systems (eds. :Marshall C. Yovits and Scott Cameron)

lkF '

!PP~'.l.53-89. London: Pergamon.
~l~ne, R.J. 1966 Theorem proving by ,Beth tree methods. In Machine intelligence,
1~(8d;N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)I~~i;\' A. L. 1960 Programming computers to play games. In Advances in computers

, "
vol: x: (ed. Franz L. Alt.), pp. 165-92. London: Acadelnic Press.
;°g[~G. 1880 Note on the theory of the' 15 puzzle'. Proc. Roya~ Soc. Edinb. 10, 664-5.

~'g;fA. M. 1953 Digital computers applied to games, ch. 25 of Faster than thought (ed.
.J~~OWden), pp. 286-310. London: Pitman.


