PROCEEDINGS

OF THE

ROYAL SOCIETY OF LONDON

- SERIES A. MATHEMATICAL AND PHYSICAL SCIENCES

Yl
L7
(2

VOL 294

Published by the Royal Society
Burlington House
Piccadilly
London, W. 1

18 October 1966

Experiments with the Graph Traverser program

By J. E. DoraN axp D. MicHIE
Ezperimental Programming Unit, University of Edinburgh

P (Communicated by D. @. Kendall, F.R.S.—Received 2 February 1966)

"An automatio method is described for the solution of & certain family of problems. To belong
this family a problem must be expressible in the language of graph theory as that of finding
path between two specified nodes of a specified graph.

The method depends upon the evaluation of intermediate states of the problem according to
the extent to which they have features in common with the goal state. We define evaluation
functions each of which assigns to any state of the problem a value which is in some way
related to its ‘distance’ from the goal state. Equivalently we assign to nodes of the corre-
sponding gra.ph values which are related to the distance over the graph from the goal node.
- Distance is reckoned as the smallest number of arcs needed to connect two nodes.

: An Algol program, the Graph Traverser, has been written to operate in this context.
" Yt is designed in a completely general way, and has two ‘empty’ procedures one of which must
. be written to specify the structure of the graph, that is the constraints of the problem, and the
other to define an evaluation function.

Results obtained by supplying the program with definitions of various sliding block
puzzles and also a simple problem of algebraic manipulation are reported for a range of
evaluation functions. .

INTRODUCTION

A heuristic method is one that seeks to obtain ‘good’ solutions for a small fraction
bf the cost which would be involved in obtaining optimal solutions. To take for
Allustration one example among many, Burstall (1966) has described a heuristic
program for the design of electricity distribution networks. Optimal solutions to
this problem can be obtained by integer linear programming. However, the calcula-
tions required to apply this method increase exponentially with the number of
ations in the network, and if this number exceeds nine or ten, the method becomes
mpracticable. Burstall’s program can process networks with 16 stations, and
enera.tes solutxons which, a.lthough not always optlmal compare well with those

epresentatlon namely, a set of discrete states to which- may be applied a set of

‘mitted transformations (‘moves’, ‘operators’). Thus stated, the task is to find
Sequence of transformations which will convert some initial state into a final
te, or goal. The history of work in this general area has shown a certain tendency
0 polarize around two distinct approaches. At one pole, attention is concentrated
Pon the evaluation of states, while at the other pole the emphasis is upon the
election, of operators. In the first case we ask: ‘To which state shall we next apply

Perators?” In the second case we ask: ¢ Which operator is to be applied next to this
ate?’

[235] Vol. 294. A.

.b 236 J. E. Doran and D. Michie

The first preoccupation has been characteristic of much of the work on autOma e
game-playing; indeed Turing’s original proposal of the idea was in the context
his experiments with chess-playing automata (Turing 1953; Michie 1966). A stand,
method (see Samuel 1960) has been to work out all possible combinations to 5 fix
number of moves ahead, evaluate, according to some strategic features, all the ho
positions generated in this way, and use these evaluations to trace a path back

- the current position. This path is used to define the next move to be selecte
shown in figure 1. :

.- The work based primarily on operator selection is typified by the studies made

. -Newell, Shaw & Simon (1960) with their ‘General Problem Solver’ program. ..f-'

eva.luatlons are made only to the crude degree necessary to define an ordered set

~§

+7 15

-3 0 +3 10 -20 -70 -100 +3

eva.luations made at this level

+100 +50 +20 -7

FIGURE 1. Simplified daagram showing how eva.luatlons are backed- -up tErough the ‘tree
- possible moves to arrive at the best next move. The process starts at level (3) by assign
o - scores (high if favourable, low if not) to the board positions inspected. At level (2) th
~ soore assigned to a position is the maximum of the scores of the descendant posmo]

(ma.ohme moves seek to maximize the score). At level (1) the score a.ssxgned is ;.'
" minimum of the scores at the lower level (opponent’s moves seek to minimaize the scord
i At the top of the diagram the machine selects the move leading to the highest score,
is doing the best it can allowing for the action of the opponent. 4

B

intermediate goals (subgoals). Operator selection is then applied by asking abouf ;
each operator in turn ‘does it directly promote subgoal 1? If not, does it promo o |
subgoal 2, ...,etec.’
The present work constitutes the first stage of an attempt to bind these two baﬁl '
procedures into a unified framework. This framework takes the form of a computes
program which we call the Graph Traverser. The results reported here are concern &
exclusively with state-evaluation, and the means whereby a search based upon this -
principle alone may be organized efficiently. But indication is also given of lm
along which the program might be enabled to improve its own evaluations. a n
Although we have used sliding block puzzles to investigate heuristic prmclPl
these puzzles are not the point of interest of the work: on the contrary our approac by
and the Graph Traverser program which implements it, claims a wide gener
As an illustration of this generality we include in our report some preliming
data gained by presenting the program with an exercise in elementary a,lgebJ ¥

2 Experiments with the Graph Traverser program 237

Eu]atlon We should also mention in this context some recent work by our
1f gue Popplestone (1966) who has found the program useful in his study of
%qstlc methods in elementary group theory.

i' l}".’ KETQE S p,,.d L6

" Problems and graphs

IGUB.E 2. Part of a symmetric graph with start (S) and goal (@) nodes marked.

me is identified with a graph in which the nodes represent states, and the arcs
"°Present permitted transitions (legal moves) A graph in the mathematical sense
3be thought of as a set of nodes some of which are connected to some others by
ar e8] Whlch may be directed (oriented graph) or undirected (symmetric graph).
e 2 shows part of a symmetric graph (i.e. arcs represented by lines rather than

8rr0Ws)
itk The tagsk is to find a path across the graph from the start to the goal as econo-
ally as possible, i.e. with as little labour as possible expended in the search,
1d~mg, as far as possible false trials, blind alleys and meanderings far from the
ath. If the path is short, we say that the solution is ‘elegant’. If the search was
t, we say that the solution is ‘economical’.

16-2

238 _. ' J. E. Doran and D. Michie

The Graph Traverser program

The program, written in Algol, has three main characteristics:

(1) It can be applied to any problem which can be translated into the abstrac
‘graph traversal - terms specified in detail below.

(2) In its present version it seeks always to achieve maximum economy, that
minimal search, and is satisfied to find any path consistent with this.

(3) In order to carry out its search it must be given an evaluation function whic
enables nodes of the graph to be evaluated according to their estimated distan§'
from the goal. If the evaluation function is constant and therefore contains ng -
information, then the strategy of the program reduces to systematic enumerationy -
" terminating only when the goal is found. : :

F1aure 3. The graph of figure 2 with values attached to the nodes.

The particular graph to be investigated is specified to the program by means of
procedure ‘develop’ which, given a node, produces a list of all nodes adjacent to th
given node. For the purposes of this program, which is subject to the restrictionds
of the language Algol 60, a node, which represents a problem state, is an integex,
matrix. Two nodes must be specified to the program as the start and the goal. In
addition, a procedure ‘evaluate’ must be made available which, given 2 nod
applies some evaluation function and delivers the corresponding value.

The search proceeds iteratively. At the start of an iteration the program hasy
stored the nodes it has so far discovered, together with the following informationy
about each: (1) its value, as obtained by applying ‘evaluate’, and (2) a pointer W5
the node from which it was developed. The former is required for directing b
search and the latter for constructing a path when the search terminates. T
iteration proceeds by finding the undeveloped node with the smallest value (I

14

Frovne 4. The Graph Traverser searching the geaph of figure 2,
For commoentary see fext,

S

e
%

(3R~

2T

- greatest ‘apparent promise’) and using ‘develop’ to find all nodes adjacent to it

- goal is located. A procedure is then entered which constructs and prints out a pat

1T AR v Ly

of the diagrams is:

1240 coeorvg -+ Je B Doran.and D. Michie R,

Every node not previously located is evaluated and stored. The program thug
constructs a tree (i.e. a graph without loops). The iteration is now complete, *
Initially the program holds one node, the start, and iteration continues until the

from the start to the goal. Should the number of nodes held (‘size’ of the tree) reac
a pre-get limit before the goal is located, the program will select the most promising
undeveloped node and print out a path to it. A fresh search is then initiated usin;
‘the selected node as the new start. It follows from this that the search could continug
indefinitely. In practice a ‘resignation’ criterion is included:*The term ¢ partm
search’ will be used for the growth of one of a sequence of ‘search trees’.
© Figures 3and 4show the progra.m at Work onthe graph of ﬁgure 2 The significance

Figure 3 The graph of ﬁgure 2 w1th values attached to the nodes, which th
program is to explore. Pogrrr vy -

Figure 4 (a) Initial state of program’s knowledge o
(b) End of first iteration. The value of the initial node has been replaced by th
symbol ‘D’, indicating that lt has been developed and thus cannot be selected for
development again.
(¢) End of second iteration, Notice that when a node is already on 1 the tree it i
- never added again. This is indicated by the uncompleted connexion from the newly
developed node to the node valued 22.
(2) End of third iteration. Two undeveloped nodes now tie for minimum value,;
The one which was added earlier to the tree will be chosen for development. Notm"

in the previous iteration.
(e) End of fourth iteration.
(f) End of fifth iteration.
(9) The goal is found.
() The path is printed out. In practice, of course, it would be in numerical form

We shall now give a more formal statement of the abstract problem attacked b Z
the program, and of the strategy adopted. 4

FoRMAL STATEMENT .

There is specified a graph G = {X,T'} where X is a set of nodes each of whicl
(as handled by the present program) is a distinct two dimensional matriz with intege
entries, and where I'is a many-valued function mapping X into itself (see Berge 1962
P- 5). In our context I'(x) is the set of nodes resulting from the (one-step) devek_)
ment of z. Given se X and ge X, 8 # g, it is required to find a path from s to ¢, 1 .
a sequence of nodes x,,x,, ..., z, for some n, such that 4

(1) z,=s and z,=g,
and (2) forallmsuchthatl <m <n-1, z,,el(z,).

Eaxperiments with the Graph Traverser program 241

quired to find such a sequence with as few applications of I" as possible. This

caqnomy condition. Note that G need not be symmetric.

arch is assisted by an evaluation function E which is a function from X to
gative integers. The values taken by E(x) as varies over X are intended

-order correlated with the ‘distances’ from z to g, where by this is meant

sequence of gra.phs T; = {X,, A;} each of which is a tree. Each member of the
5 of trees, except the first, is constructed by the enlargement of its pre-

d the program’s acquired information about the problem graph G. Ay(x) may
'ought of as the ¢ I‘-pa.rent of the node « in the ¢th graph

':1;}1&1‘171]

ated by the same apphcatlon of I'—then an arbltrary selection is made.
elected node Znin..

{X 11,4} is constructed where

3 (a) X‘H‘l = X.‘U F(xmln,)

(b) Ai+1(x) A (x) if A X‘, annd A,‘_{_l(x) {xmln } if xe€ 'X‘i+l e X‘t

' (3) If min. = ¢ or no further space is available then a path is constructed from
) t° Zmin.. This path is the sequence of nodes

8 = A¢ (xmin), A-; 1(117xn1n), cery A (xmin), Zmin,

Where the pathlength is m; A;(node) is interpreted here as a node rather than as a
set conta,lmng one node. If zmin, = g then search terminates. If Zmin. + g then a
‘nevvsi',_‘seq}lence is initiated with T, = {{*m1n.}, Ag}.

o s APPLICATION OF THE PROGRAM
. To make any particular application, a translation must be made from the ‘real’
Problem to be solved, to the ‘ideal’ problem embedded in the program. To make
8 translation it is necessary to write:
(a) input and output procedures which control the relationship between the
. external (‘data tape’) and internal (‘integer matrix’) representations
of the problem states;

242 - - - J. K. Doran and.D. Michie
‘ 5.‘“(b) a procedure, ‘develop’, specifying the graph function I'; and

(¢) a procedure ‘evaluate’ speclfymg the evaluation function E

It is also necessary to adjust certain data tape parameters which set bounds to t
graph set X. Also specified via the data tape are:

(a) the starting and goal nodes;

(b) the total number of locations avaﬂable for storage of the tree, subject to;
¢ .. a limitation imposed by the machine size; :

S (c) the seventy of the remgnatlon cntenon

et " The role of the evaluation function PR

"= For & given application, ‘evaluate’ may be changed at will, and certain adjus
ments to this function will usually be possible via the data tape. The function give
to the program can be ‘infallible’ or ‘useless’ or ‘worse than useless’. In the first3
case its rank correlation with the distances over the graph will be unity, in th
second case zero, and in the third case negative. The fallibility of the evaluatio
function determines the search economy, measuring this in terms of the number
applications of the procedure ‘develop’ needed to find a path from the start to th‘ -
goal,
Search economy is only fully defined in these terms if viewed from the point of
view of the program. Overall economy also involves minimizing the ‘cost’ of each‘ i
application of ‘develop’, as well as minimizing the number of times this cost is}
incurred. In practice this relates to the simplicity in some sense of the evaluation™"
function. In the present form of the program this brand of economy is entirely the
responsibility of the user. .
We now consider members of a restricted class of puzzles known as sliding block™ b
puzzles, starting with the eight-puzzle. This puzzle will provide our first 1]1ustrat10n i |
of the action of the Graph Traverser program.

LT

The eight-puzzle

The eight-puzzle is one of a large class of sliding block puzzles, in which the solver ‘
is typically required to manipulate square or rectangular objects on a bounded plane
80 a8 to rearrange them into some specified configuration. Gardner (1964, 1965a,5,¢)
has devoted some stimulating discussions to these puzzles. g

An early and famous example to which we shall return later in this paper is the
fifteen-puzzle, consisting of fifteen numbered square pieces set in a 4 x 4 array, one
cell of the array being empty. The eight-puzzle is a simpler member of the same = E
family, there being only eight numbered pieces set in a 3x 3 array. We shall
arbitrarily define the goal configuration asfollows:

1 2 3
8 0 4
7 6 5

denoting the empty square by a zero. Before proceeding further, two points should ° :
be noted. :

* Eaperiments with the Graph Traverser program 243

3 alf the possible ways of setting up the puzzle are soluble and half are not.
: ﬁﬁi]jty implies that a sequence of moves can be found which takes the starting
tion into the goal configuration. Equivalently, solubility implies that a
the starting and goal nodes of the puzzle graph does exist. In the
instance it demands that the starting configuration should be an even
Litation of the goal configuration (Johnson & Story 1879; Tait 1880). We shall
cern ourselves with the subset of soluble configurations, which can col-
ctively b;e represented by a connected graph.

he puzzle looks easy, but it is not. Three groups of subjects, about a dozen in
group, were given a battery of mental tests, including the five eight-puzzle
shown in figure 5 (Hayes, Michie, Pole & Schofield 1965). The group
for efficiency of solution ranged from 30 to 40 %, where the path efficiency-
ion is defined as: " o ool 4 Hgowoe ‘ w5
e minimum possiblép{a‘tli length
: actual path length = -« ’ pE

A

i

) minimum number of moves
needed for solution goal

@7 3 4]
1.0 5
|2 78
@z 174 :
7 0 3
o 5 s
@ 2_5-‘ — 2 3
103 e L0 4
o 48] 68
@[5 2 7]
8 0 4
(3 6 1]
©+ s 1] > 26
3 0 8
o 2 7]

F16ure 5. Five eight;puzzle starting configurations used for testing human performance.

:Eﬂiciency was not affected in any way by the length of the minimal path, except
) for very short minimal paths (‘easy puzzles’). These results were obtained with
bjects to whom the puzzle was entirely unfamiliar. In unpublished further
'obsgrvations of the improvement of efficiency with practice, the best subjects
Altained, path efficiencies exceeding 70 %. When we ourselves, and a number of
olleagues familiar with the puzzle, were given randomly chosen configurations to
ve, efficiencies ranged from 70 to 90 %.

no. of moves . no.ofmoves -
tarting position needed for solution target position | ; n@gd for solution target position

s pgg "~ ‘BB %
WE Ty
e B BEE
6. % H 27 =ID—‘/%D P : \DD%D '
7 0 0
S— L] ;
1] 10. DD .
2 L] so——»D]DD %
7 HaER -
/] =red .=.b171e |

Tl R B o oA
L RRans L. oo AR B

¥¥e

SIYOTN “(J pPuU®e uero(o * _[‘

Ezxperiments with the Graph Traverser program 245

he same subjects were tested with the Passalong, a sliding block puzzle used by
h logists for mental testing (Alexander 1946) (see figure 6). The results obtained
d with those from the eight-puzzle in a way which indicated that the nature
“Intellectual task may itself be very different. We mention this finding to
o that the range of problems comprised by sliding block puzzles may offer a
ersified field of investigation than one might at first suppose. —

puter program can be written to analyse the eight-puzzle exhaustively by
te force’ technique, involving enumeration of the 20160 centre-empty
al’ positions, starting from the goal and working outwards. Such a program g

t

Solution of the eight-puzzle by computer program

heen written and successfully run by P. D. A. Schofield (see Hayes et al. 1965)..
egance is maximized by this method, in the sense that the shortest path is "
btained; economy, on the other hand, is at a minimum since the space
ed is effectively the whole graph. The fact that the eight-puzzle can be, and
'; n, completely analysed in this way makes it a particularly suitable starting-
t for an examination of heuristic methods, where the aim is to effect the greatest -
'ble economy at the sacrifice of as little elegance as possible. Human problem-
ing behaviour is conspicuous precisely in the capacity to develop effective '
;pproaches without attempting enumeration.

& Consider how the Graph Traverser deals with the eight-puzzle when equipped
“;,a. definition of the puzzle and with a simple evaluation function. Without
belng concerned for the moment about how such a function might be constructed,
et 13 examine in figure 7 the record of a specimen run. The values produced by the
netion used are plotted in figure 8 for successive nodes along the path found. i
It is worth recapitulating in this specific context two features of the program: &
() The next node to be developed is always the lowest-valued undeveloped node,

. 18“ currently evaluated as the most promising. ‘Disconnected developments’ there-
fore occur when the ‘main line’ of search fails. The path is filled in retrospectively
by a backward trace from the goal, once this i is found.

tsufficient to break the tie, an arbitrary selection is made. We have subsequently
realized that random selection would be preferable, since variation of the arbitrary
I’UE employed turned out to have non-trivial consequences.

A crude evaluation function

g In the above example of the Graph Traverser as applied to the eight-puzzle
Dothing was said as to how the evaluation function used was obtained, except that
: t Wwas given to the program.

k Two features of an eight-puzzle configuration suggest themselves as partlcularly
X levant for evaluation purposes—the ‘position’ of the pieces and their ‘sequence’
an d these were used to construct the function which controlled the search in

—JF—T. Doran and D. Michie

-t — oM -
o @) oo o
Bl e [TE -
0 - eINe
L e e
= =
o] [oe
(3 - o Lo b
; © L

246

-m
mio
ot

added to the search tree.

Experiments with the Graph Traverser program 247
A ‘position score’ p; can be assigned to the ith piece, ‘according to the

ber of moves it is distant from ‘homg’, disregarding for the purpose the barrier
by intervening pieces (i.e. ‘city block’ distance). A ‘position count’, P, of

e
i

S 8 :
nfiguration of the puzzle is the obtained as 3 p;. A ‘sequence score’, 8,
el A Dt o

‘assigned fo each piece by checkin. round the non-central squares in turn,
: g 2 for every piece not followed by it proper successor and 0 for every other
except that a piece in the centre scores aue. An empty non-central square is
d for applying the succession criterion so thay in, for example, the following

5 held to be followed by 3. A ‘sequence count’, S, for the configuration is formed
of tliéfééflilencé scores, i§:1 8;, which in the case illustrated is 13. '

[\;mg isolated these two simple features as hopefully relevant to goal-seeking
ehaviour, we may take some weighted combination of them, in the form P + w8, as
he value of the configuration. Notice that a small change in w will not always cause
{_cﬁange in the strategio choices imposed by the evaluation function, as both the
osition and sequence count can take only a finite number of values. However, the
_lber' of settings of w which are in general distinct is sufficiently large that one
ay safely think in terms of continuous variation of performance from w = 0 to
4. For w > 24 a unit change in sequence count outweighs even the largest
“possible difference of position count.

S Measures of performance

here are two interesting measures of the program’s performance over a particular

h of a graph: (1) the length of the path produced (P) (i.e. the number of arcs
omprising the final path), and (2) the total number of nodes developed (D). Since
very path node but the last must have been developed, but not every developed
ode is necessarily included in the path, it follows that P < D. Denote the minimal
ath length for a given start and goal by P*. Then P*/P = path efficiency (as
defined earlier). There is a corresponding idea applicable to D, the number of nodes

F1GURE 7. (cont.)

248 J. E. Doran and D. Michie

developed, yielding a measure of the amount by which this fizure exceeds thy g
minimum necessary. It is easy to see that the minimum necessary is equal to Ps =
so that a measure of efficiency in respect of development is P* /D), which we shal]
call the ‘development efficiency’. , I

Finally we note that P*/D can be written P*/P x P/D. This is a useful decoms 1
position in drawing our attention to the further quantity P/D which is the fraction 1
of the total number of nodes developed which are incorporated into the actual path *§
found. We shall later see that this quantity, which we shall refer to as the 'prtug;:', 1

gna- |
—.‘0’\\ STHEE
I .- k|
*\ _ | A
4 ; 3| start of specimen run
5
i \ 4
o
g
gL
=
\
N O O
5 10 15 2

number of moves

F1aure 8. The values along the final path of the search of tho sight-puzzls
graph shown in figure 7.

It can be thought of as representing the degree to which the search tree is ‘elongated” =
rather than ‘bushy’. Its reciprocal, D/P, could reasonably be termed the ' blind
alley ratio’. To recapitulate then

path efficiency x penetrance = development efficicncy.

REesvrrs

Schofield’s results show that the largest minimal path for any eight-puzzle)
starting configuration is 30, and that the configurations with this property fall into ’
12 distinct symmetry classes. We therefore selected for our first test battery A of
starting configurations an arbitrary representative from each of these classes. In
order to investigate the relationship between program performance and minimal =
path length, we formed a second test battery B by choosing nine configurations =g
whose minimal path lengths were distributed between eight and 28, four of these
being configurations upon which human subjects had been tested (subtests £2, B3
E4 and E6 in Hayes et al. (1965)). Each of these 21 initial configurations wad

Experiments with the Graph Traverser program E 249

cked by the Graph Traverser by means of the evaluation function described
with w set successively at 0, 3, %, 3, 9. Notice that when w = 0, sequence is

¥ted, and evaluation is based upon position only. _

[able 1 presents the performance indices, for a selected value of w, for different

path lengths, while table 2 presents mean values of the various per-

. ance indices for different values of the weighting coefficient w. ;

et

[- - A - . . N

1007 '100° 54 100 77 100 48

100 - 92- 23 78 74 85 16 45 88 47
etrance (%) 100 92 43 78 96 85 34 79 94 63

' TABLE 2. RESULTS OBTAINED BY APPLYING THE GrAPH TRAVERSER TO
TWO TEST BATTERIES OF EIGHT-PUZZLE CONFIGURATIONS

simple evaluation function with one variable parameter (w) was used. B* denotes test
ry B after exclusion of two configurations (MP = 8 and MP = 12, text).

g w=0 w=13 =3 w=} w=9
i Test battery A
median path length . 60 47 46 40 43
mbdian: number of nodes developed 2773 209 164} 61 66}
mean‘path efficiency 52-7 56-9 67-6 76-3 72-0
, development efficiency 10-9 18-2 25-4 47-1 46-7
8{; penetrance 20-8 29-7 36-2 60-0 63-3
. Test battery B* F
fmean path efficiency 41-2 35-3 61-9 75-3 755
mean development efficiency - 53 6-2 21-9 56-7 58-4
’ 12-0 14-7 30-8 70-3 727

E}ean penetrance

%

The following points may be noted:

- (1) For both test batteries the best performance on the various criteria lies in the

gion from w = 3 tow = 9. Results, not shown here, obtained by further increasing

the value of w (i.e. the relative weight allotted to ‘sequence ’) showed no change from
results with w = 9. The picture is of comparatively poor performance at w = 0,

t improving, as w increases, until a plateau is reached.

2) If we now compare the figures for the various efficiencies we see that they are

0sely correlated. There is thus no evidence that by changing w elegance can be

pacrified for economy or vice versa.

3) There is little evidence from this sample of any continuing trend relating the

ous measures of efficiency to the length of the minimal path (i.e. the ‘distance’

250 277, E. Doran and D. Michie *#

of the starting configuration from the goal). The two shortiesi; minimal path lengt
(table 1) are perhaps exceptions and these two ‘easy puzzles have been exclude od
in compiling tables 2and 3. -~ "
It is a consequence of point (2) that the optlmal values of w could have beey
located by inspecting the penetrance alone. Now the difference between a ‘toy?
problem, asis the eight-puzzle, and a ‘real " problem, is that in the latter we typically
have no idea of the length of the minimal path, and therefore can calculate neither;
path efficiences nor development efficiencies. The penetrance, however, can alwa
be calculated, and is therefore potentially of the greatest use as a general measurs
of the efficiency of an evaluation function in solving a ‘real’ problem. Even m,
important, the penetrance may be calculated, and therefore progress estlmated
during the solution of & problem, thus opening the door to methods whereby the
program mlght improve- 1ts own evaluation function durmg the course of a long
search. ' %
With these ideas i in mmd we next tried the progra.m on the ﬁfteen—puzzle

Expenmente with the fifteen-puzzle

For the fifteen-puzzle a limit of 500 was set on the tree size, and a single starting
configuration was randomly chosen for preliminary tests. This configuration was
the followmg

7 13 11 1
B 0 4 14 6
8 5°2 12
10 15 9 3

Tests were conducted under a ‘stop rule’, according to which the search was]
abandoned as soon as a partial search, as previously defined, failed to decrease the’s
mean value of the nodes encountered in it by more than 5 %, as compared with the S
previous partial search. As a start, evaluation was based on piece-positions only.

Preliminary results revealed two undesirable features. The first of these consisted ,
in the stranding of a piece at a considerable distance from its home, cut off by an
intervening barrier of more-or-less correctly positioned pieces. An example is the g
following, encountered after 90 moves:

5 0 6 8 .
1 2 7 4 '
13 14 11 12
9 10 15 3

Here all pieces are two moves or fewer from their respective homes, i.e. p < 2, with
the single exception of piece number 3, for which p = 5. Expressions of the form

2 ha p8, where 0 <a <1< b, were found to be effective. h, was defined as the

dlsta,nce separating the empty square from the sth piece, expressing distance
before in unit steps.

Experiments with the Graph Traz;eréér program 251; }

The cure of stra.ndmg threw a second feature into prommence namely the
ce of intra-row and/or intra- column reversals. An illustration is provided
1e following configuration, encountered after 190 moves: .

fpreit onik frgo

Although superﬁcla.lly this "&ppea.rs close to solutlon, smce every plece is elther home 5

p, and a good evaluation function should reflect this fact.
e matter was dealt with in an ad hoc fashion, by addition of a term, R, countmg

t 'Vela,tlve Welghtmgs glven to the three features expressed by the h, p and R terms,
A test battery of ten starting configurations was now set up, by adding to the
"'co guration shown earlier a further nine, drawn from a table of random permuta-
tions. By running the program on these ten with different settings of the parameters
band ¢, a systematic exploration was now made of the response of the system to
variation in these weightings. Three levels were taken for each parameter, thus:

a=0,41; b=123; c¢=100,300,500;

that there were in all 27 ‘treatment combinations’. The best performance was
tha =3, b =2, ¢ = 100. At these settings of the parameters, six out of the ten
uzzles were solved within the limitation of a single search tree. To grow a complete
ee took about 4 min on an Elliott 503 computer.

Again, optimization could have been successfully performed using penetrance
one, since the mean value found at these settings, 60 %,, was the highest encountered
- over all the 27 combinations. (Compare the eight-puzzle results of tables 1 and 2.)
" Some combinations resulted in uniform failure to solve—for example all those with
; G b=1.

" It seemed of interest to try the most successful version of the evaluation function
g (a =1,b=2,c=100) on the eight-puzzle, to compare performance with that
Obtamed from the function specially designed for the smaller problem. The results
. Sompared surprisingly well, as evidenced by the summary given in table 3.

Predictive power of penetrance

Ttis a natural extension of earlier definitions to calculate, as a measure of progress,
the penetrance of a ‘partial search’. The latter has been defined in terms of the limit
8et to the size of the search tree. A partial search consists in the growing of the tree
Up to the present limit, remembering that each time thislimit is reached in the course
of a long search, the corresponding ‘partial path’ is printed out and the tree is

Sy Vol. 294. A.

252 J. E. Doran and D. Michie . - . ’

use as ‘ﬁgure of merit’ of - .
R number of nodes in the partial path

R penetrance = number of nodes developed in the partial search”

In this way progra.m-lmprovement of the evaluation function itself can be envxsa,ge
A relevant test of the possible usefulness of penetrance in this respect is to see
what extent it can predict the performance of a given evaluation function over otheps
areas of the graph than those from which it was calculated. In particular we Woul
like to know whether the penetrance of one partial search can be used a8 a gmde
“wha,t is hkely to happen in subsequent ones.

Funetion'1 (elght-puzzle) Zp‘+92',a‘ S
Fu.nctlon 2 (fifteen-puzzle): Zh*p‘+ 100R.

Test battery A

HUESIR R

" configuration w. 1 2 3 4 5 8 7 8 9 10 11
. ‘minimum pathlength 30 30 30 30 30 30 30 30 30 30 30
- development efficiency (F1) 81 34 91 48 28 30 23 26 47 56 54
.. development efficiency (F2) 30 53 67 48 48 65 31 39 88 35 100
R mean mean
crdap development path mean
efficiency efficiency penetrance
funetion 1 47 72 63
function 2 56 76 73
Test battery B . ‘
configuration oee 1 2 3 4 5 6 7 8
minimum pathlength 8 12 14 18 20 22 24 28
development, efficiency (F1) 100* -92* 23 78 74 85 16 45
development efficiency (F2) 73* 100* 58 51 28 32 59 49
mean " mean
development path mean
efficiency efficiency penetrance
function 1 58 75 73
function 2 46 71 65

* Not included in means, see toxt.

To investigate this point we re-ran the program on the same test battery over & .
restricted range of 11 different parameter settings, with the further difference that :
the search tree was limited to a size of 250, and two successive partial searches were
permitted. The degree of success was only slightly lower than before. Excluding
those cases in which the goal was found in the first partial search, we have plotted, |
in figure 9, a measure of subsequent performance against the penetrance of the ﬁfS‘
partial search only. The evident correlation supports the proposed use of penetranoe
as a promise measure.

e B

l-

!

. Experiments with the Graph Traverser program 253

' A trial of the program on the Passalong sliding block puzdle

s'a first trial of the adaptability of the program, a ‘develop’ procedure was
yritten for the Passalong (see figure 6). A simple evaluation function was devised.
t. one ‘black mark’ was allotted for each of the 12 cells of the 3 x 4 array not

2

i ered by & piece of the correct type. Secondly, additional terms were added to
Ay

P
(=}

ge of puzzles solved during

b8,

[d
(=]

second partial search ..
.
(=]

0 lg— | J
40 T 50 60 70

penetrance over first partial search (%)

Trgure 9. Scatter diagram showing a success measure over one partial search
plotted against the pentrance of the previous partial search.

TABLE 4. RESULTS OBTAINED BY APPLYING THE GRAPH TRAVERSER TO THE PAss-
FALONG SLIDING BLOCK PUZZLE, BY MEANS OF A SIMPLE EVALUATION FUNCTION

g

R

For the configurations, refer to figure 6.

" minimum path development

L pathlength actual no. of efficiency efficiency penetrance
nfiguration possible pathlength developments (%) (%) (%)
T 30 30 32 100 ' 94 94
28 30 156 93 ‘ 18 19
46 58 258 79 18 23
70 72 359 97 19 20

: €Xpress various features of a configuration, such as degree of right-left symmetry,
_Iutual proximity of the vertical rectangles, freedom of movement; of the horizontal
‘Jectangle, eto.
& The results of this limited trial, set out in table 4, show good performance on all
triteria for configuration 7. Thereafter we find path efficiency high but development
\ ficiency low——compare the abrupt increase in difficulty for human solvers at this
_ Doint (Hayes ef al. 1965)—indicating that the evaluation function is no longer fully
adequate for these configurations. With a fofally inadequate evaluation function
4eia constant function, the program is guaranteed to find the minimum path, at
1% cost of an abysmally low development efficiency. In such a case it is in effect
17-2

 JE.Doran and D. Michie

Vil SR S

empl, ying the well known, and Ié;Borious, 5lgorithm of locating first all nodes a3
distance 1 from the origin, then all at distance 2, etc. (see Berge 1962, pp. 67-68)%
At this extreme point the'heuristig element has disappeared. " 3 '

Taidy o

b Application to aljebraic manipulation 8
" The next application—algebraic manipulation—was chosen to be further afield§
The problem asstated here is to demonstrate equivalence between two expressions §

- i.e. to show that they can be connected by a sequence of legitimate operations. We
chose for the first experiments the very simple case of a single binary operation, ‘%’

' on a seb of elements {a,b,¢,d, ¢,f, g, b, 1, J} with associativity and commutativity. We
can’see that these properties imply that any well formed expression, howevé‘

L2

blem state —mme—p!
A (node) I

8

3

5

s :;s,., transformationS-—p.“)
s '_ (ares)

((b*a)*a)

N= 3
o N o
niwo

(a*(2*b))

R T

\ generated states

(descendant nodes)

Fieure 10. Diagrammatio representation of the relationship between the general graph:
traversal problem, the eight-puzzle, and a simple algebraic manipulation problem. '

bracketed, is equivalent to any other well formed expression containing, in an,
order, the same set of elements, but this is not known to the program, which seeks t
demonstrate equivalence from first principles. The analogy here with the eight-3
puzzle or fifteen-puzzle is that although we can see that the solubility of a give
configuration is determined by whether it is an even permutation of the goal con:
figuration, the program seeks to demonstrate solubility by constructing a path.
The way in which a correspondence was set up between the algebraic proble
and the graph traversal schema is shown in figure 10, with the correspondin,
identifications for the eight-puzzle shown for comparison. Just as the ¢ development
of an eight-puzzle configuration generates all the configurations of the puzzle which{§
can be reached by a single move from the state in question, so an algebraic expression;
is ‘developed’ by generating all expressions which can be derived from it by a single !
application of either the commutativity or the associativity rule. We adopted }
standard goal expressions of the type

(((a%b) % c) % d),
or (@ % a) % a) % k) % k), .
- ((d*e)xe),

where alphabetical order is required and where the ‘open brackets’ are concen ,
trated to the left of the expression. x

e\ to s—for example the weights 10,9,8,7, .
e i, J respectively—and where 2 isthe ordina.l number of the symbol in the

 solve the problem within a search tree of 500 nodes. "

1 0 might be ass1gned to

1t on the use of even the éimplest evaluation function (cf. tables 1 and 2), as
dJcatmg tha.tf the ﬁeld of symbol ma.mpula,tlon is open to the Graph

Starting expression: ((h#({a#f))#((ckd)kc)).
‘Goal’ expression: (((((a%0)¥c)d)4f)*h).

e parameter setting for evaluation function
. A

.7, 8 9 10 11 12 13 14 15 2,
L — 13 9 9 10 10 10 — — —,
~— 46 15 16 17 19 198 — @— @ =
— 268 112 117 124 132 132 —

LR A S N RS

115 283 600 - 563 588 526 526 182

((hx(a#f))*((cxd)xe))
(((cxd)kc)x(hx(axf)))
(({cxd)kc)x((axf)xh))
((((cxd)xe)x(axf))xh)
(((((cxd)xc)xa)xf)xh)
(((ax((cxd)xc))+f)4h)

+ (((ax(cx(ckd)))%f)xh)
" (((ax((cke)xd))*f)xh)

((((ask(cke))xd)%f)xh)
(((({ake)xc)xd)if yxh)

Discussion

, task is to convert the expression ((h+(asf))#((ckd)xc)) into (((((axc)*c)d)xf)xh) using
. jthe associativity and commutativity of the operation %. The solution on the left was
found by the Graph Traverser, and that on the right by hand.

shortest path found by program

(parameter setting = 9) shortest path known

((h(axf) ((cxd)*e))
(((cxd)kc)x(h(axf)))
(((cxd)xc)x((asf)xh))
((cx(cxd))*((a+f)xh))
(((cs(cxd))#(axf))xh)
((((c#(cxd)yra)+f 4h)
(((ax(ck(cxd)))%f yxh)
((((asc)x(cxd))4f y+h)
(((((axc)xc)xd)xf yxh)

13 6 103 |

he fact that over a range of problems the program was able to find solutions
ch could be called ‘good’ by human standards is not in itself of great significance
ot c6 in these experiments a ‘short term memory’ of some hundreds of problem

256 J. E. Doran and D. Michie

states was permitted—an order of magnitude greater than the span available
the human solver. What is significant is

(1) That this level of performance can be reached by a search method utilizin,
state evaluation only, of a fairly simple sort, before any prmclples of operato
selection have been built into the system.

(2) That the program proved fairly easy to adapt to problems as mutually
dissimilar as sliding block puzzles and algebraic manipulation.

(3) That the program showed itself an effective instrument not only for ¢
implementation of evaluation functions in ‘production’ runs, but also for thejd
initial development by trial and error.
. (4) That the ‘penetrance’ gave good indications of potential usefulness forjed
endowing the program with the facility of improving its given evaluation functio:
For this purpose, there must be some measure available to the program by which iy
can judge how well it is doing when in the midst of an attempt to solve some proble:
The penetrance, which is a function of the structure of the search tree, promises
serve this purpose. More generally, if the program is to ‘learn’, it can only do so byj
using the information it has stored about the problem, i.e. by using the information}
embedded in its search tree. ‘

Some analogies are offered here by the work of Samuel (1960) mentioned earlier]
in particular by his techniques of adjusting his scoring polynomial (evaluation
function) so as to tend to give equal values to configurations lying on the same
minimax chain within the stored search tree. The analogy would be strengthened if:
an attempt were made by the program to adjust the evaluation function so as to B
reflect the mefric properties (as compared with structural properties, such as
measured by the penetrance) of the stored search tree—i.e. assign suitably dliferent’%
values to nodes lying far apart on a branch and vice versa.

This idea is developed further in an article by Doran (1966) where there is al
a description of a new version of the program which uses a dynamic tree. By this ia
meant that the program, on reaching the growth limit, behavesless catastrophma]ly '_;
It no longer selects the most promising terminal node, and then commits itself t0
a path to that node before deleting the entire tree to create new working spa
Instead, the program commits itself only to a single ‘move’, and only that part
the tree thereby rendered valueless is erased.

In the detailed description of the graph traversal schema, a specific problem typ
was described, and the applications we have discussed have all fallen within t
type. In this context, we wish to make two points. First, our applications have all
had in common a particular limiting condition, namely that their problem graphs:
have been symmetric. This means that the search strategy has been inefficient to the
degree that a search tree could usefully have been grown from the goal no
simultaneously with growth from the start. To see this, consider the analogy With;
the case of a search conducted, not over a graph, but over an n-dimensional Eucli
ean space. Specifically we imagine in case 1 that a ‘search hypersphere’ is gro
from the origin until it touches the goal, while in case 2 hyperspheres are grown fro
both start and goal until they touch each other. Here it can easily be shown that thef:if
factor of economy (supposing cost to be represented by the total volume exploredb

Experiments with the Graph Traverser program 257

.As pointed out to us by D. G. Kendall, it is possible that this way of looking
ab the matter might lead to a useful definition of the effective dimensionality of a
4 5h. The second point is that although a problem type has been strictly specified,
actice fairly minor adjustments to the program will permit its application to a
wider. range of problem types, for example to a situation where some defining
froperty of a goal configuration is available, but where no particular goal is specified.
%" ‘tlassification of problem types may be obtained by distinguishing three pairs of
tives: (1) whether it is a path or a node that must be found; (2) whether the.,
go | node is fully specified, or specified up to some property it must have; and
3} whether the graph is symmetric or non-symmeiric. '

. Type A: path full‘ symmetmc N N
Sl dmg block puzzles are of this ‘demonstration of equivalence’ type. It seems
likely that search trees should be grown from ‘both ends’. Practical problems that
fall naturally into this category seem rather rare, although some problems in

Type B: path full nm-syﬁmetric
. C path property symmelric
oy ‘ path property mnon-symmelric

The Graph Traverser strategy is most appropriate to these situations, although
‘does not use the symmetry in the second. Sliding block puzzles with partially
¥ specified goal configuration are of this type, a solution consisting in a path from the
" starting configuration to a terminal configuration satisfying the goal condition.
"Again practical applications seem rare. ' ‘

Type C: mnode property symmetric
node property mnom-symmelric

Typically the graph structure is imposed as part of the strategy, rather than given
he terms of the problem. Operations, or ‘moves’, provided by the strategy for
-ansforming problem states define arcs in the abstract representation, and thus
onvert the initially given problem into a connected graph upon which the program
fgg can work. In particular, the symmetry or otherwise of the graph is likely to be a
.. matter of definition. A solution must merely satisfy the goal condition. The path
not of primary interest. The Graph Traverser strategy is applicable to this type
.of problem but it is not yet clear how efficient such an application would be. Many
Practical problems are of this type, for example allocation and timetabling problems.
;: 4 more general type of problem is that where a solution is a set of nodes. This
- Includes the above problem types, as special cases.
our work to date with the Graph Traverser we have avoided the use of operator
Selection, but such techniques can be inserted into the program schema. In its
Present form the procedure ‘develop’ produces all immediate descendants of a
iven node. However, there is no difficulty in constraining it to produce only a

258

only a subset of the avallable operators Thls tOplC is dlscussed in an artlcle b
Mlchle (1966)

G’enerahty versus speed - -

Thls paper has been about a general problem solving program. In the extrem ¥
case such a program embodies no more special knowledge about the problem in han
than is required to set in motion a search for solutions. It typically purchases a wid
range of application in exchange for speed. For example, the Graph Traverser
best takes about 20 s to solve a difficult eight-puzzle configuration on an Elliott 50
and takes about 15s to demonstrate that the two expressions given in table 6 ar
equivalent. Special-purpose programs for performing the same two tasks (Mic

' 1966; E. W. Elcock, personal communication) are an order of magnitude faster.
first sight this comparison seems so da.magmg as to prompt the questlon why bot
~ at all with general purpose programs? i ool

An immediate reply is that such programs could have a use When one-off
problem-solving is required, where the attraction of avoiding the labour of c
structing a special prograin may outweigh the defects of the general one. Fo
‘production runs’, however, the balance would normally be tipped in favour o
constructing an efficient, fast-running program for the particular problem. Th
possibility should be borne in mind here, that the construction of such a progran
may itself be aided by explora,tory work using a general purpose program such

. the Graph Traverser. =

CONCLUSIONS

The first stage of this design pro]ect has been successful, in the sense:
" (1) That the program, in its present restricted form, does solve problems. It has§:
in fact already been found to be a useful tool by a colleague working in a differen
field (automatic theorem-proving: see Popplestone 1966).
(2) That it seems to meet our criteria for usmg itas the platform on which to buil
the next, i.e. ‘learning’, stage. ‘

" The cost of this work was defrayed by a grant from the Science Research Council, ¥
which also provided a Junior Research Fellowship held by one of us (J.E.D.).
Our thanks are also due to Dr N.T.J. Bailey, Director of the Unit of Biometry
Oxford University, and to Dr M. H. Rogers, Director of the Computer Unit, Bristol
University, for generous provision of computing facilities, and to our colleague‘
R. M. Burstall for many helpful eriticisms and comments.

REFERENCES

Alexander, W. P. 1946 A performance scale for the measurement of practical ability. Instructio
book issued with ‘ Alexander Performance Scale’. London : Councils and Education Press

Berge, C. 1962 The theory of graphs. English translation by Alison Doig. London: Methuen

Burstall, R. M. 1966 Computer design of electricity supply networks by a heuristic method
Computer Journal (in press).

Doran, J. E. 1966 An approach to automatic problem-solving. In Machine intelligence,
(ed. N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)

Experiments with the Gmph Traverser program 259

r, M. 1964, 19658, b, ¢ Mathematical games. Scient. Am. 210, 122-30; 212, 112-17;
212, 120-4; 213, 222-36. -

E., Michie, D., Pole, K. E. & Schofield, P. D. A. 1965 A quantitative study of
blem-solving using sliding block puzzles: the ‘Eight-puzzle’ and & modified version
he Alexander Passalong Test. Bxperimental Programming Report, no. 7. Experimental
) ing Unit, University of Edinburgh.

n, W. W. & Story, W. E. 1879 Notes on the ‘15’ puzzle. Am. J. Math. 2, 397-404.
D: 1966 Game playing and game learning automata. Ch. 8 of Advances in program-
ning and non-numerical computation (ed. L. Fox), pp. 183-95. London: Pergamon.

, D. 1966 Strategy-building with the Graph Traverser. In Machine intelligence, 1 (ed.
y ‘L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)

; pa_.rt‘a,n, . SRR .
“A* Shaw, J. C. & Simon, H. A. 1960 A variety of intelligent learning in a general

‘problem solver. In Self-organising Systems (eds. Marshall C. Yovits and Scott Cameron)
‘pp; 153-89. London: Pergamon. ‘

f(ed: N. L. Collins & D. Michie). Edinburgh: Oliver and Boyd. (In press.)

:A.L. 1960 Programming computers to play games. In Advances in computers
(ed. Franz L. Alt.), pp. 165-92. London: Academic Press.

Y. Bowden), pp. 286-310. London: Pitman.

‘A. & Ernst, G. 1965 The search for generality. In Information processing 1965:
ceedings of IFIP Congress 1965, vol. 1 (ed. Wayne A. Kalenich), pp. 17-24. Baltimore: -

cstone, R. J. 1966 Theorem proving by Beth tree methods. In Machine intelligence,;

L@, 1880 Note on the theory of the ‘15 puzzle’. Proc. Royal Soc. Edinb. 10, 664-5.
ing, A. M. 1953 Digital computers applied to games, ch. 26 of Faster than thought (ed.

t

