Laup4£g - olIBjUQ ‘S[IIA UO(] - WEpINSWY

uopuo] - BIUIOHI[BY ‘}Ie] OJUSJN - §)IesNYIEssBY ‘Bulpeay
Auedwo) Suiysiiqng A3[89p\ -UOSIPPY

As

¢syl O

A)is10A1U() plojuslg
peidouipy A113],

XBJUAG :| SWN|OA

$S92014 IA1Iudo) e se agendue

34 INTRODUCTION

Exercises for Section 1.4

1.9 As we will see in later chapters, it is much more difficult for computers to
process ordinary colloquial language than to deal with carelully written
text. For what applications is it important to go beyond the limitations
of fully grammatical, well organized text?

1.10 What are some potentially undesirable effects of developing and using
computer systems for natural language?

1.11 What kinds of problems would a computer ‘text critiquing’ system be
able to detect most easily? What kinds would present more difficulty?

Chapter 2

Word Patterns and
Word Classes

Syntax is the part of linguistics that deals with how the words of a language
are arranged into phrases and sentences and how components (like prefixes and
suffixes) are combined to make words. In theory, it would not be necessary
for languages to have a systematic syntax. We could imagine, for example,
a language that was simply a list of all the things that could be said. The
linguist’s work would consist of compiling giant dictionaries of all the possible
phrases with the meaning of each. In fact, there are finite languages for which
such a dictionary exists, such as those of military and diplomatic code books.
Even in ordinary conversation, many of our utterances are copied whole from
a stock of phrases and cliches, including social formulas, such as How do you
do? and expressions, such as The more the merrier and It takes one to know
one.

Human language taken as a whole, though, is infinite. We can produce sen-
tences that we have never heard or spoken before, and they can be understood
by others for whom they are totally new. At the other extreme from a finite
language we could imagine a completely free language in which any sequence
of words that had a possible interpretation was in the language. The sentence
Language interesting is would be just as reasonable as Language i3 interesting,
since it would have a clear interpretation. But no human language is syntax-
free. Our freedom to create novel utterances operates within a framework of
grammar, which puts strong constraints on the patterns that are used in the
language.

35

MREAMR e
Y

36 WORD PATTERNS

Chapters 2 through 6 present a view of the knowledge needed by a language
user to interpret and produce syntactic structures, and some mechanisms are
given by which the processing can be accomplished. In this chapter, we will
look at some simple kinds of linguistic patterns and introduce some of the
computational mechanisms that will be used throughout the book. Section 2.1
describes the idea of patterns and pattern matching in an elementary form
and introduces the notation for describing objects and procedures. Section
2.2 describes the classification of words and its use in matching. Section 2.3
describes a more complex kind of pattern represented in a transition network,
and Section 2.4 gives some procedures for recognizing sentences of a language
using such networks.

2.1 Patterns and matching

The notion of pattern at its simplest is that of a physical object whose form
is identical to the form of a piece of material to be cut. It can be used to
determine the shape of an infinite variety of garments, differing in material,
color, and texture. A comparable idea of linguistic patterns can be used to
describe the possible forms of a language. Individual sentences such as Traveling
13 a pleasure can be viewed as being ‘cut out’ on the basis of more general forms
that have blanks in place of specific words, such as ‘. tsa ..

Some of the early computer programs that interacted with people in English
used these simple patterns. Figure 2-1 lists the entire set of patterns used by
SIR (Raphael, 1967). Of course, it was clear that this was an extremely limited
part of English, and the importance of the program lay not in its handling of

?

—is .. Is .7
w has _.. How many . . does __. have?
How many . . does __ own?
What is the _ of __.?

How many . are parts of __?

—. OWNS __.
Where is __?

Is _ part of _.?
Does . own __? How many __ are there on _.?
—is__, part of .. . has as a part one __.
There is one _ on __.

— is just to the left of __.
Is _ just to the left of __?
—_ is just to the right of __..

Is _ just to the right of __?

There are __on _..

. is to the left of __.
Is __ to the left of __.?
— i8 to the right of __.
Is . to the right of ._?

Figure 2-1. Patterns recognized by SIR.

21 I PATTERNS AND MATCHING 37

Search for a match in a set of patterns

Purpose: Test whether a sequence of words matches any pattern

Inputs: a sequence of words and a set of patterns 2-3
Basic Method: For each pattern in the set:

If the pattern matches the sequence of words, succeed. 2-3
Conditions:

If every element of the set is tested without a match, fail.

Figure 2 2. Search for a match in a set of patterns.

syntax, but in the reasoning mechanisms it used to answer questions (which
will be described in the volume on meaning).

The knowledge of syntax represented in such a program consists of a set
of alternative sentence patterns, each specifying a particular sequence of words
and places for words. A sequence of words is a sentence of the language if
there is some pattern in the set which matches it. The patterns are used
independently-—a single pattern matches a whole sentence. In later chapters we
will see more complex uses of patterns in which a sentence is described in terms
of several patterns applying jointly. For the simple mechanisms of this chapter,
we will deal only with sentences that can be matched by a single pattern.

A pattern matching procedure

As an introduction to the notation used for describing procedures and knowledge
structures in this book, we will explain the definition of a simple pattern
matcher in detail. The mechanism used here may seem overly complex for
the structures being described, since it is being introduced in a very simple case
to make clear just what the notations mean and how they are used.

Figure 2-2 describes how a set of patterns like those in Figure 2-1 could be
used in a recognition procedure. The procedure goes through the patterns one
at a time, stopping as soon as it finds one that fits. The input to the procedure
is a word sequence, and successful recognition of the sequence means that it is
a sentence of the language characterized by the set of patterns. We have not
described here just what a ‘word’ is, but the definition will be discussed later
in the chapter. In a full language understander, the input would be a sequence
of sounds or written characters, and some other part of the language analysis
process would divide it into words.

The definition is written in DL, a notation developed for this book and
explained in Appendix A. Each definition describes a procedure (as this one
does), a class of objects (as in the definition of ‘pattern’ in Figure 2-3), or a
predicate used in logical expressions. The numbers to the right of the box are the
figure numbers of definitions for classes of objects, procedures, and predicates

38 WORD PATTERNS

that are used in this definition. In each case, the term being cross-referenced
appears in italics somewhere in the line next to which the number appears. A
cross-reference is given only for the first appearance of a term in a particular
figure, and will not be given for terms related to standard entities (such as
words, characters, and sequences), which are used throughout the book and
defined in Section A.4.

Several features of the definition deserve note:

Undefined objects, steps, and expressions. In describing this basic match-
ing procedure, we have not said just what a pattern is or what it. means for a
pattern to match a word sequence. Any one of a number of different. definitions
for patiern could be ‘plugged in’ and the procedure would work in the same
way. A general feature of descriptions in DL (and programming languages in
general) is that we can write definitions that make use of objects, predicates, or
procedures that are defined independently. If we look at this definition alone,
it gives us an outline of what is to be done, but it is not detailed enough to
actually carry it out.

The ultimate goal in designing a procedure is to make it complete and
precise enough to be carried out by an interpreter, either a person or a program,
which has the basic ability to carry out a collection of primitive steps. Appendix
A describes the primitives of the DL interpreter. They include primitive objects
such as sets and characters, primitive procedures such as stepping through a
sequence, and primitive predicates such as equality. A procedure definition is
a fully defined algorithm if each step, object, or expression is either a primitive
of the language or refers to a definition that in turn is fully defined. We will
discuss later what it takes for an object or predicate to be fully defined. Careful
readers will note that this description of what it means for a procedure to be
fully defined does not deal with recursive definitions—those that include a step
making use of the definition in which it appears. For the moment, no such
problems arise. See Section A.3 for a more comprehensive discussion.

Unspecified order. In saying ‘For each pattern in the set...’ we have not
specified in what order to take them. For our purposes in this definition it does
not make any difference, as long as they are taken one by one until a match
succeeds or they have all been tried. One of the features of DL is that we
can avoid being specific about ordering when it is irrelevant. A definition that
includes a series of steps with an unspecified order is considered a fully defined
algorithm, since any interpreter that actually carried out these instructions
could choose some order arbitrarily. Of course, there are times when we want
to be more specific. For example, the pattern set might contain two patterns
that could apply to the same sequence of words, such as ‘X __’ and ‘_ Y’, which
both apply to ‘X Y’'. The procedure as we have described it would find one or
the other but does not determine which. If the procedure used an ordered
sequence of patterns instead of a set, we could determine which one would be
found by the order in which they appeared.

21 I PATTERNS AND MATCHING 39

Describes: a pattern to match a sequence of words

Kinds of Pattern: Simple, Variable 2-42-6

Basic Structure: a sequence, the class of each member depending
on the kind of pattern

Predicates:

ZRARMei={ >

A pattern matches a sequence of words
Depends on the kind of pattern

Figure 2-3. Pattern.

Success and failure. The description of what to do for each pattern indicates
that if it matches, the search will succeed. Once a successful pattern is found,
no more are tried, even though the instruction says ‘For each pattern....’
Similarly, at the end, if nothing has been found the procedure fails. A procedure
can include any number of steps that call for it to ‘Succeed’ or ‘Fail.” Whenever
such a step is reached in following the procedure, it has two consequences—the
immediate stopping of the procedure and the determination of its outcome as
success or failure.

Results. In many procedure descriptions, we want to describe some results that
are produced. In Figure 2-2 we have not—the only result is that the search
procedure succeeds or fails. It is an example of a program for recognition rather
than for parsing or understanding. In most real applications, we are not
interested in simply recognizing the fact that a sequence of words is a sentence
of a language. We want to determine its structure and use it in some other
procedure, such as question answering. A parsing procedure has as its result
a structure describing the organization of the sequence of words as a sentence,
while an understanding procedure produces an interpretation based on some
notion of meaning. In most of this volume, we will be dealing with parsing—
producing structures that are not interpreted for meaning, but which show
the internal organization of the sentence. However, it is often useful to explain
parsing procedures by first explaining the corresponding recognition procedures
and then adding the additional detail needed to produce a structure.

A formal definition of patterns

Figure 2--3 gives a formal definition of patterns that begins to fill in some of the
detail missing from Figure 2-2. It is still quite general, describing what is com-
mon to all patterns and indicating two specific kinds—simple patterns, in which

40 WORD PATTERNS

the elements are matched independently, and variable patterns, in which vari-
ables are used to keep track of what was matched for each element (explained

below).
This definition illustrates three additional features of the notation:

Classes and kinds. The definition describes objects of the class ‘Pattern.’
Class definitions are indicated by a label running down the left side. Figure
9_3 indicates that there are two specific kinds (or subclasses) of patterns, each
having its own definition (as indicated by the cross-reference numbers on the
right). Those properties common to all kinds of patterns are included in this
definition, while those specific to one kind appear in its definition.

Basic structure. Each pattern is in turn made up of a sequence of pattern
elements. Not every kind of object has such a simple structure. For example,
in Chapter 3 we will define a ‘phrase structure node’ as having ‘roles’ consisting
of a ‘label,’ a ‘parent,” and a set of ‘children.’ In the case of simple structures
like the one defined in Figure 2. 3, it is sufficient to indicate that it is a set or
sequence and to say what class the elements belong to.

Predicates. A definition of a predicate such as ‘A pattern matches a word
sequence’ is different from a procedure definition in that it describes the logical
conditions for something to be true rather than a procedure to be carried out.
There are primitive predicates in the language, such as equality of two objects
and membership of an object in a set. These can be combined using logical
operators such as ‘not,” ‘and,’ and ‘or.’ It is also possible to define a predicate
by giving the definition of a procedure that tests whether it is true or not, as is
done in Figure 2-4. A predicate is fully defined if: it is primitive; or there is a
fully defined algorithm for testing it; or it is defined as a combination of logical
operators and fully defined predicates. Predicate definitions are indicated by
underlining the phrase for the predicate. In Figure 2 4 we do not actually give
the definition, leaving it to be defined for each kind of pattern. However, it is
included here inside the definition of pattern to indieate that for every kind of
pattern such a predicate must be provided.

Figure 2-4 gives yet more detail, providing a procedure by which we can test
whether a pattern matches a sequence of words. This procedure is the obvious
one of running through the pattern and sequence in parallel (a primitive pro-
cedure of the DL interpreter), checking to see if the elements match. However,
the question of what it means for an element to match is once again left open
to allow for different kinds of elements in patterns. Other things to note are:

Class hierarchy. A simple pattern is a kind of pattern, and in turn there are
three kinds of simple patterns. We can describe a hierarchy of this sort to any
depth. Anything appearing in a definition applies Lo all of the subclasses to any
depth. A literal simple pattern is a kind of simple pattern and is therefore also
a kind of pattern. Everything appearing in the definition of pattern (Figure
2--3) applies to it as well.

21 l PATTERNS AND MATCHING 1

Describes: a pattern that matches a sequence of words with each
element independent of the others

A Kind of: Pattern 2-3
S | Kinds of Simple Pattern: Literal, Open, Lerical 2-52-9
1 | Basic Structure: a sequence, the class of each member depending
M on the kind of pattern
Ple
L rocedures:
E Test whether a pattern matches a sequence of words
P Inputs: a pattern and a sequence of words
A Basic Method: Step through the pattern and the sequence of
T words in parallel doing:
T u If the element of the pattern matches the word, then go on. Other- §
'E! wise fail.
N Conditions:

8 If either sequence runs out before the other, fail.
®If both sequences run out simultaneously, succeed.

Predicates:

An element of a pattern matches a word
Depends on the kind of pattern

Figure 2-4. Simple pattern.

Nested definitions. The box containing the definition of simple pattern
has within it a box defining the procedure ‘Test whether a pattern matches
a sequence of words.” This could have appeared in a separate figure, since it
is a full definition. However, by including it inside the definition of this kind
of pattern, we indicate that it constitutes a basic part of our understanding
of what a simple pattern is. Without some notion of what it means to match
a pattern, its definition as a sequence of elements would be uninteresting. In
carrying out the procedure defined in Figure 2 2, the interpreter needs to use
the appropriate definition of matching for the particular kind of pattern. In
general, we will include definitions inside other definitions to indicate this kind
of relevance. The character ‘§’ is used in place of a cross-reference number when
the definition being referred to appears in the same figure.

Procedures for testing predicates. The procedure defined within Figure
2-4 is the means of testing whether a pattern matches. It corresponds to the
predicate that was mentioned in Figure 2-3. If the procedure succeeds for
a given pattern and sequence, then it is true that the pattern matches the
sequence. If it fails, the corresponding expression is false.

42 WORD PATTERNS

L Describes: a pattern with every element specified
1'- P A Kind of: Simple pattern 2-4
E A] Basic Structure: a sequence of words
R T | Predicates:
AT
LE An element of a pattern matches a word

R if it is equal to the word.

N
O | Describes: A pattern including a ‘wildcard’ that matches anything
: A Kind of: Simple pattern 2-4

Basic Structure: a sequence, each member of which is either a
N
word or the character ‘__’

P The choice of ‘__’ i3 arbitrary. All that matters is that there be a
A recognizable symbol that is allowed to match any word.
} Predicates:
E An element of a pattern matches a word
R if it is equal to the word or is the character ‘.__’.
N

Figure 2-5. Two kinds of simple patterns.

Conditions. The procedure for matching a pattern includes conditions in-
dicating what is to happen when the sequences run out. One feature of DL that
is different from many programming languages is the ability to separate out spe-
cial conditions like these from the description of the basic method. Whenever
a condition is true of the current state of things, whatever it says to do is done,
which may involve the success or failure of the procedure as a whole. The
details of what can be included in such conditions are given in Section A.4.
Figure 2-5 defines two kinds of patterns, a literal pattern (a sequence to be
matched exactly) and an open pattern of the kind shown for SIR in Figure 2-1.
It fills in more details that were left open by the definition of simple patterns
in Figure 2-4, specifying what the pattern elements are and what it means for
an element to match a word. Comments appearing in italics are not part of
the formal definition but are included as explanation. With this definition, we
have a fully defined algorithm for searching for a match in a set of literal or
open patterns, since all of the objects, steps, and expressions for which we have
not given definitions are primitive. Note that the predicate ‘An element of a
pattern matches a word’ is defined not by giving a test procedure, but by a
logical expression built up out of primitive tests for equality and the logical

PATTERNS AND MATCHING 43

2.1 I

Describes: a pattern whose elements are words and variables

A Kind of: Pattern 2-3
Basic Structure: a sequence, each member of which is either a
word or an integer
Integers indicate the variables. If the same integer appears more than
once, it must match the same word in all occurrences.

\%
A | Procedures:
': Match a variable pattern against a sequence of words
g Purpose: Produce a table associating variables with words in
L the sequence
E Inputs: a pattern and a sequence of words
Working Structures:
P Bindings: a table whose keys are integers and whose entries
A are words; initially empty
T Results: The table of bindings when the match is done
: Basic Method: Step through the pattern and the sequence of
R words in parallel doing:
N If the pattern element is:

® a word, then:
s[f it is the same as the corresponding word in the se-
quence go on. Otherwise the match fails.
®an integer, then:
o]f there is an entry for that integer in the bindings, then:
*If the word in the sequence is equal to the entry, go
on. Otherwise the match fails.
s[f there is no entry, add the word as an entry in the
table with the integer as the key and go on.
Conditions:
If either sequence runs out before the other, the match fails.
If both sequences run out simultaneously then return the
bindings.

Figure 2-6. Variable pattern.

Patterns with variables

The matching procedure of Figure 2-2 applied to simple patterns as defined in
Figure 2-4 would not be very useful for a real language analyzer. Once it has
finished its work, all we know is whether it succeeded or failed. There is no
trace left of what words were matched against the pattern elements, or even of
which pattern the whole sequence matched.

In order to perform a task like question answering, the input analyzer must
not only see that the input is a real sentence, but it must also gather information

44 WORD PATTERNS

Pattern I Word Bindings Word Bindings

I
I row 1=row | please 1=please
2 | row l=row, 2=row I turn 1 =please, 2=turn
2 I row 1=row, 2=row I in FAIL
your I your l=row, 2=row | your
3 | boat l=row, 2=row, 3=boat I exam

Figure 2 7. Matching a pattern with variables.

on what was in it. The simplest mechanism for gathering information is to let
the blanks be associated with variables, and to keep a pairing of these variables
with the words that they matched. SIR in fact used variables of this kind.

Figure 2-6 defines a pattern with variables and its use in a more complex
matching procedure. To distinguish variables from English words in patterns,
we use integers. Figure 2--7 illustrates the sequence of steps in matching the
pattern ‘1 2 2 your 3’ against the sequences row row row your boat and please
turn in your exam.

The definition of Figure 2-6 introduces a number of other features of DL:

Results. The table produced in the process of matching is returned as a result
of the procedure. A procedure can have any number of results, which can be
any kinds of objects. Part of the definition is a statement of what kind of
things the results will be. If the procedure fails, no results are returned. A step
calling for a ‘Return’ causes an immediate stopping of the procedure, just like
a ‘Succeed’ or ‘Fail.’

Working structures. During the process of matching, the procedure makes
use of a table (one of the primitive objects of DL) to keep track of what word
has matched what variable. This is an example of a working structure. In this
case, it is returned as a result, but a procedure can define and make use of any
number of additional structures that are not returned.

Complex conditionals. The nesting of “If...then..." statements illustrates
how one logical expression can be used as part of another. The alignment of the
lines in an outline form, along with the little boxes, is DL's way of indicating
just how they are structured. Appendix A gives more details both on logical
expressions and on the use of outline form.

21 I PATTERNS AND MATCHING 45

Generate a sentence from a pattern and bindings

Purpose: Produce a sentence using the result of a match to fill in the
blanks of an output pattern
Inputs: a variable pattern and a table whose keys are integers and entries 2 6
are words
Working Structures:
Response: a sequence of words, initially empty
Results: the completed response
Basic Method:
8 Step through elements of the pattern, doing:
If the pattern element is:
®a word, then add it to the end of the response.
san integer, then:
If there is an entry for it in the table, add the entry to the
end of the response. Otherwise fail.
& Return the response.

Figure 2-8. Generate a sentence.

Patterns and generation

In addition to the procedure for recognizing sentences, we can also use pat-
terns and bindings to generate sentences. An early computer program called
ELIZA czarried on a dialog in which the program simulated a nondirective
psychiatrist talking to a patient. To produce the dialog, the program repeatedly
read an input sequence, matched it, and then generated and printed a reply
using pairs of patterns such as:

My 1 is 2 — How long has your 1 been 2 ?
1 thinks I am 2 — Do you think you are 2 ?

If the person typed My luck is down, the program would respond How long has
your luck been down? Given Everyone thinks I am crazy, it would reply Do you
think you are crazy? The program produced quite convincing dialogs using this
simple mechanism, as illustrated by the following dialog (from Weizenbaum,
1966). The computer’s responses are in italics:

Men are all alike.
In what way?
They're always bugging me about something or other.
Can you think of a specific example?
Well, my boyfriend made me come here.
Your boyfriend made you come here?
He says I'm depressed much of the time.
I am sorry to hear you are depressed.

46 WORD PATTERNS

Of course, ELIZA also produced blunders, since it had no analysis of
meaning beyond the recognition of simple patterns, and for many inputs it had
no matching patterns and responded with phrases like Tell me more and Please
go on. We could obtain a simplified version of the program by changing our
overall search procedure (Figure 2 2) to use a set of pairs, cach consisting of
a recognition pattern and a generation pattern. Responses would be generated
using the procedure of Figure 2 -8 on the preceding page. In the actual ELIZA
program, variables could be matched against sequences of words, rather than
just against single words. This further complexity is given as an exercise.

2.2 Word classes

The first thing to do in building a better pattern recognizer is to make it more
selective. The pattern I __ to _ matches many real sentences such as I want
to go, but it also matches [elephant to the, which is not a sentence. A person’s
knowledge of a language includes a more precise notion of what words can fill
in the blanks.

Much of what is taught in elementary school grammar is the identification
of lexical categories, often called word classes or parts of speech. Students
learn to assign words to categories like noun, verb, and adjective, based on
their intuitions about language structure. With these classes the sentences Fat
giraffes munch leaves and Brainy rabbits nibble carrots can both be described
by the single pattern ‘ADJECTIVE NOUN VERB NOUN.’

L

f | Describes: a pattern whose elements specify lexical categories, as

X well as specific words to match

(I: A Kind of: Simple pattern 2-4

A | Background: a dictionary 2-10

L | Basic Structure: a sequence, each member of which is either a
word, a lezical category, or the character ‘__’ 2-10

P | Predicates:

A

T 11 An element of a pattern matches a word If the element is:

T @ the character ‘', or

E ® the word, or

: ® a lexical category to which the word belongs. 210

Figure 2 9. Lexical pattern.

22 | WORD CLASSES 47

Figure 2-9 defines a lexical pattern as one whose elements can specify lexical
categories, and gives a definition of matching that assumes the language user
has a simple dictionary (defined in Figure 2-10) listing the classes to which
each word belongs. This is indicated as part of the ‘background’ rather than
as an input to the matching procedure, since structures like dictionaries and
grammars tend to serve as a fairly permanent common body of knowledge used
by many procedures. This is not a firm distinction—the choice of whether
to consider something as an input or a background depends on how we are
thinking of the structure of the overall system of definitions.

The dictionary

By putting the definition of lexical category inside a definition of dictionary,
we indicate that it makes sense for a word to be in a category only with respect
to some dictionary - - different dictionaries may have different sets of categories
that do not correspond to each other in a simple way. A number of problems
are ignored in this simplified notion of a dictionary. For example, we do not
deal with the relationships between words like gopher and gophers or go and
going. However, for many computer applications a dictionary not much more
complex than this one is sufficient.

One extension to this simple dictionary would be to use word endings to
identify the class to which a word belongs. For example, a word ending with
-ly is likely to be an adverb, while one ending with -ing is probably going to be

Describes: a table associating word classes with individual words
Basic Structure: a table: each key is a word and each entry is a
set of lezical categories §
We need to provide for the fact that many words are in more than one
category.

Classes:

Describes: a word class
Predicates:

<VPZO == =0

A word belongs to a lexical category if there is a pair
in the dictionary with the word as the key and the
category a member of the entry.

D =xmr
<ROOM=>MA

Background: a dictionary

Instances: Noun, Verb, Adjective, Preposition,. ..

Figure 2-10. Dictionary.

T

66 WORD PATTERNS

Stack Word Current Arc Actions

(1: aDety, pbAdjp pNoun)

the aDety, Match
(2: pAdjp, bNoung)(1: hbAdjp pNoung]

little bAdjp Match

(3: bAdjp pbNoung|[2: pNounc)(1: pbAdjp, pNoun]
orange bAdjp Match

[4: pAdjp pNoun](3: ,Noun|[2: ,Nounc|(1: pAdj}, ,Noun,]
ducks bAdjp No match

{4: pNoun|(3: yNoun}(2: ,Noun,){1: pAdjp, LNoun,]

ducks pNoun, Match and pop

[5: (Verbg (Verbg](3: pNounc][2: y,Noun,](1: pbAdjp, ,Noung]
swallow Verby Match

[6: gDete]{5: o Verbe][3: p,Noung](2: ,Nounc|[1: pAdjp, pLNoung]

flies dDete No match and pop

{5: ¢Verbg|[3: p,Noun,][2: ,Noung)[1: pAdjp, pNoung)

swallow . Verb,g Match and pop

(6: eAdje ¢Noung][3: p,Noung][2: ,Nounc](1: pbAdjp pNoun]
Sflies eAdje No match

{8: eNoung](3: ,Noun|[2: ,Noun|[1: ,bAdjp, pNoun]

flies eNoung Match and succeed

Figure 2-22. A backtracking recognition.

In fact, (as explored in the exercises) even relatively simple networks can
produce large amounts of backtracking. In particular, it is important to note
that when backtracking happens, there are no records left around about any
of the work that was done beyond that position, so it must be redone as the
process goes forward again.

w7
§ig EXERCISES 67

Further Reading for Chapter 2

Pattern-based computer programs. ELIZA is described in Weizenbaum
(1966). A program that later developed the pattern concept in a much more
elaborate way was Colby’s (1976) PARRY, which played the role of a paranoid
mental patient instead of a psychiatrist! Raphael's SIR program is described
along with several other early natural language programs in Semantic Informa-
tion Processing, edited by Minsky (1967).

Word classes. For more information on word classes from a traditional
linguistic point. of view, see any of the books listed in Chapter 1 as references
for the history of linguistics. In particular, Chapter 5 of Lyons’s Introduction
to Theoretical Linguistics deals with many of these issues. For an encyclopedic
account of word classes, see Quirk et al., A Grammar of Contemporary English.

Networks and regular languages. There are a number of texts describing
finite state machines (transition networks) and formal languages from a math-
ematical point of view. Minsky's Computation: Finite and Infinite Machines is
easy reading, while Hopcroft and Ullman’s Formal Languages and Their Relation
to Automata is more comprehensive and serves as a standard textbook for
many courses. For a discussion of algorithms in general that will serve as back-
ground for the formalization of computational processes, see Knuth, The Art
of Computer Programming, Volume 1.

Backtracking. Backtracking was proposed as a programming technique by
Golomb and Baumert (1965). It is a standard feature of programming languages
designed for use in artificial intelligence, as described in Bobrow and Raphael’s
1974 survey of ‘New programming languages for artificial intelligence research.’
For a discussion of the problems inherent in chronological backtracking and a
description of some more sophisticated alternatives, see Nilsson (1980).

Exercises for Chapter 2

Exercises for Section 2.1

2.1 It was pointed out in the text that the procedures described in Section 2.1
could be modified to use recognition-response pairs like those of ELIZA.
Write a new version of the procedure in Figure 2-2 which takes a sequence
of words and a set of ‘pairs,’ each containing two patterns with variables:
a recognition pattern and a response pattern. It should find a pair whose
recognition pattern matches the sequence and generate a response from
the response pattern using the same bindings.

o

68 WORD PATTERNS

2.2

In Exercise 2.13, we will create a procedure for matching a pattern with
variables that allows a single variable to match a sequence of words. For
example, applying the recognition-response pair: ‘My 1 is 2 — What
if your 1 were not 2’ to the sentence My left arm ts about to fall off
would produce What if your left arm were not about to fall off. Assuming
such an extension, analyze carefully what the responses would be to the
following inputs:

My head is on my shoulders

My problem is that you hate me

My problem is how to pay you

My brother said your car is bigger than mine
My job is working in the mine

Describe the changes to the procedure that would be needed to produce
responses that are syntactically appropriate (don’t worry about their
therapeutic appropriateness!). What kinds of problems stand in the way
of a general solution within the framework of pattern-matching? The
algorithm actually used by ELIZA gets three of these examples right and
two of them wrong.

Exercises for Section 2.2

2.3

24

Give some arguments on both sides of the issue as to whether the English
possessive ’s should be considered a separate word or not. Consider
sentences like I saw the man you met in Ankara last year’s brother.

Consider the three linguistic frames:

1) Miss Muffett _. to eat whey with curd.
2) Sybill _ her man to be a good cook.
3) Stu was . to be on time.

a) Classify the following verbs according to which of these frames they
can fill: asked, preferred, condescended, believed, promised, wanted, tried,
considered, accepted, forced, expected.

b) Find frames that show that no two of the above verbs have the
identical distribution.

¢) Can you find a verb which, as far as you can tell, has the same
distribution as 1) promise, 2) ask, 3) believe?

EXERCISES 69

2.5 Try to identify every word in the following paragraph by its traditional

word class.

It is of course true that quality is much more difficult to ‘handle’ than quan-
tity, just as the ezercise of judgment is @ higher function than the ability to
count and calculate. Quantitative differences can be more easily grasped and
certainly more easily defined than qualitative differences; their concreteness
is beguiling and gives them the appearance of scientific precision, even when
this precision has been purchased by the suppression of vital differences of
quality. The great majority of economists is still pursuing the absurd ideal of
making their ‘science’ as scientific and precise as physics, as if there were no
qualitative differences between mindless atoms and men made in the image
of God.

2.6 Explain how the concept of closed and open word classes relates to the fact

that it is relatively easy to deal with some of the sex biases of language
by creating new words such as repairperson and congressperson, but that
it is extremely difficult to find an appropriate word to use in the sentence
When the chairperson brings the meeting to order, . must pound the
gavel with vigor.

Exercises for Section 2.3

2.7 Which of the following sequences can be described (recognized or gene-

2.8

2.9

rated) by this transition network:

(1) ab (2) ca (3) cb (4) cabbb (5) ababa (6) bacb (7) cabcb (8) ababcbe

Write a regular expression corresponding to the transition network in the
previous exercise. Use the standard convention for regular languages that
an asterisk means zero or more repetitions and the superscript ‘+’ is used
to mean one or more. For example, ‘a*b’ matches the expressions ‘b, ab,
aab, aaab,...’ while ‘atb’ matches all but the first of them.

Draw a transition network corresponding to the regular expression:

(a v (bab))* (b*Va)

70

2.10

2.11

WORD PATTERNS

Draw a transition network that will match the expressions for time of
day in English, such as one thirty-two and twelve seconds, half past three,
and siz fifteen a.m.. The basic lexical categories will include things like:

Hour-Number: one, two,. .. , twelve
Minute-Number: one, two,. .. , fifty-nine
Fraction: quarter, half

There will also be arcs whose labels are specific words such as to, past,
after, till, o’clock, a.m., and p.m.

(For programmers) If the definitions of this chapter were implemented in
a straightforward way, there would be a data structure for a transition
network that contained structures for arcs and states. Networks can be
compiled into a more efficient form in which the states of the network
correspond to states of the program. Describe or demonstrate how a
transition network can be compiled so that a state corresponds to a
location (e.g., a GO TO label) in a program.

Exercises for Section 2.4

2.12

2.13

If we had chosen a different convention for ordering arcs, the backtracking
process described in Figure 2-22 would have gone differently. Assume
reverse alphabetical order on each arc’s starting vertex, label, and ending
vertex. That is, the arcs of the network in Figure 2 16 are ordered:
eNOUNy, (ADJ, 4DETe, (VERB,, VERBg, ,NOUN;, ,ADJp, 2DETp,.
Generate a trace like that of Figure 2-22 using the same input sentence.

If we want variables in a pattern to match sequences of words, there is
a problem in knowing what to do as we proceed from left to right. For
example, the pattern ‘1 X Y’ will match the sequence ‘YXY’ with the
variable matching the first ‘Y’ and will match ‘YXYXY' if the variable
matches ‘YXY'. If the procedure simply takes the element of the pattern
and sequence in order, it will not be able to decide whether the first
‘X’ should be included in the variable or matched against the ‘X’ in the
pattern.

a) Write a nondeterministic schema for matching a pattern with variables
to a sequence of words, which allows a variable to match any sequence of
one or more words in the input.

b) Write a backtracking procedure that deterministically matches the
same kinds of patterns.

T W i,
A S e s i

EXERCISES 71

2.14 In introducing the problem of dealing with choices in networks, we com-

2.15

mented that a network would be deterministic (involve no choices) if it
had a single initial state, if no two arcs with the same starting state had
the same label, and if no two arcs with different labels could match the
same word. In fact, any transition network of the kind defined in Figure
2-13 can be used to produce a deterministic network that is weakly equiv-
alent in that it will accept and reject exactly the same inputs. The new
network will have a state for each subset of the states in the original
and each of its ares will match a particular word, not a lexical category.
Describe how to derive this network {rom the original network and dic-
tionary. ’

(For programmers) In a recursive language such as LISP, it is possible
to use the internal stack on which variables are bound as the means
of keeping the stack for backtracking. Write a recursive procedure for
recognition with a transition network in which the stack is maintained
this way.

