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Abstract

The production of complex sequences like music or speech requires the rapid and temporally precise
production of events (e.g., notes and chords), often at fast rates. Memory retrieval in these circumstances
may rely on the simultaneous activation of both the current event and the surrounding context (Lashley,
1951). We describe an extension to a model of incremental retrieval in sequence production (Palmer &
Pfordresher, 2003) that incorporates this logic to predict overall error rates and speed–accuracy
trade-offs, as well as types of serial ordering errors. The model assumes that retrieval of the current event
is influenced by activations of surrounding events. Activations of surrounding events increase over time,
such that both the accessibility of distant events and overall accuracy increases at slower production
rates. The model’s predictions were tested in an experiment in which pianists performed unfamiliar mu-
sic at 8 different tempi. Model fits to speed–accuracy data and to serial ordering errors support model
predictions. Parameter fits to individual data further suggest that working memory contributes to the re-
trieval of serial order and overall accuracy is influenced in addition by motor dexterity and do-
main-specific skill.

Keywords: Sequence production; Memory; Motor control; Mathematical modeling; Speed–accuracy
trade-offs

1. Introduction

Two topics that have dominated research in sequence production are the relation between
accuracy and speed (the speed–accuracy trade-off; Woodworth, 1899) and the way in which
events are retrieved from memory in the correct order (the serial order problem; Lashley,
1951).1 Whereas accuracy and the speed–accuracy trade-off concern the overall likelihood of
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production errors, p(err), the problem of serial order concerns the likelihood of a given type of
error (x) when an error occurs, p(errx | err). Most research has focused exclusively on one of the
two issues, despite the fact that both involve a common data source and probably reflect a com-
mon processing constraint (cf. MacKay, 1982, 1987). We describe a model in which timing
functions as that common constraint (the range model; Palmer & Pfordresher, 2003).

The core assumption of the range model is that performers use information about the sur-
rounding context when retrieving events (notes and chords in music) during sequence produc-
tion. In other words, events are represented contextually via the pattern of activation strengths
across the entire sequence. Activation strengths vary as a function of the serial proximity and
similarity of surrounding events to the current event, with the most active surrounding events
being those that are proximal and similar. Time constrains the accessibility of events across
distances in the original model, and thereby influences predicted patterns of serial ordering er-
rors. Specifically, activations for distant events increase as production rate slows. Because
event retrieval is contextual in nature, the extended model predicts that the activation strength
of the current event results from the strengths of surrounding events. As a result of this contex-
tual dependence, described in detail later, the strength of the current event increases relative to
surrounding events as production rate slows. The extended model thus predicts a speed–accu-
racy trade-off that is tested in a new experiment reported here.

The range model, like other contextually based approaches, characterizes sequence produc-
tion as an incremental process in which the planning and execution of multiple events overlap
in time (Kempen & Hoenkamp, 1987; Smith & Wheeldon, 1999; Wheeldon, Meyer, & Smith,
2002; cf. McClelland, 1979). We consider planning (the preparation of to-be-produced events
prior to their production) to arise from a process of response preparation, during which a set of
possible events are activated. Response preparation may be (but is not necessarily) followed by
response selection, which is the selection and execution of an overt response.2 Whereas the
original range model was primarily interested in response preparation (i.e., which events are
activated at any given point in time), the extended model proposed here focuses on response se-
lection (the likelihood that the correct event is selected). The extended range model proposes
that response preparation and selection are mutually constrained by the rate at which se-
quences are produced.

Next we review models of serial order and of timing in accuracy (the speed–accuracy
trade-off), and compare these models to the range model of planning. We then review the origi-
nal range model (as in Palmer & Pfordresher, 2003) and introduce the extended model that ac-
counts for overall accuracy. Next we describe an experiment on pianists’performances of mel-
odies at different production rates and compare their accuracy and serial ordering errors to the
model’s predictions.

2. Constraints on serial order and accuracy

The retrieval of events in the correct serial order poses a particularly difficult challenge for
sequence production tasks, such as performing music or speaking, as pointed out some time
ago by Lashley (1951). First, actions must be generated rapidly in a series during sequence
production. Under such circumstances, preparation cannot be limited to the current event. Sec-
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ond, the meaning of an individual sequence event is often ambiguous when one fails to con-
sider the surrounding context. Music is perhaps the most extreme example of this observation,
in that individual events (notes or chords), which often repeat in multiple contexts, have mean-
ing that is defined relative to their context (L. B. Meyer, 1956). Thus, it is important that per-
formers associate individual events with the surrounding context during retrieval. In the range
model, this constraint is reflected in the activation strengths of events surrounding the current
event, which are used to predict patterns of serial ordering errors.

Serial ordering errors occur when people produce events intended for elsewhere in a se-
quence (e.g., slips of the tongue in speech [Bock, 1995; Dell, 1986; Garrett, 1980], slips of the
finger in music [Palmer & van de Sande, 1995], or ordering errors in serial recall [Healy,
1974]). Serial ordering errors often resemble the intended event and are thought to occur be-
cause multiple events are similarly accessible at the same time. For instance, the word bad is
likely to be replaced by sad rather than was when producing a statement like “the bad man was
sad,” due to phonological or syntactic similarity. Such patterns suggest that serial ordering er-
rors result from similarity-based interference among planned events. Serial ordering errors are
referred to as movement errors when an event produced in error matches an intended event at
another position.

The accessibility of surrounding context during response preparation can be measured by
analyses of movement errors as a function of distance, the separation, in number of events, be-
tween the current position and the position for which the error was intended. For instance, if a
performer begins the intended musical sequence G4–A4–B4 with the note B4, the error is said
to have a distance of 2. The relative frequency with which movement errors originate from var-
ious distances is displayed in terms of a movement gradient (Brown, Preece, & Hulme, 2000;
Vousden, Brown, & Harley, 2000), which the original range model was designed to predict.
Movement gradients plot the conditional probability of an error from a certain distance, given
that an error has occurred.

Error distances reflect a performer’s range of planning, the degree to which distant versus
proximal events are mentally accessible during retrieval (Palmer & van de Sande, 1995). Per-
formances characterized by errors from far distances represent a broad range of planning and
greater access to the surrounding context. Although research in the past has explored the role
of error distance in the retrieval of serial order (Drake & Palmer, 2000; Palmer & Drake, 1997;
Palmer & Pfordresher, 2003; Palmer & van de Sande, 1993, 1995; for similar results in speech
see García-Albea, del Viso, & Igoa, 1989), the range model is unique in considering the way in
which production rate may influence accessibility of the surrounding context.

Retrieval of serial order is clearly symbiotic with accuracy, in that correct retrieval denotes
perfect accuracy, although distributions of serial ordering errors (as in movement gradients)
are statistically independent of overall accuracy (provided that errors occur). The extended
model was developed to account for both accuracy and patterns of serial ordering errors. Be-
cause time is central to the range model framework, we incorporated temporal constraints to
predict overall accuracy in the context of the speed–accuracy trade-off.

The speed–accuracy trade-off is one of the benchmark findings of experimental psychol-
ogy: The possible accuracy with which a task can be performed diminishes as individuals per-
form the task more rapidly, and vice versa (first documented by Woodworth, 1899). Changes in
accuracy with speed, or vice versa, form a speed–accuracy function that can describe the per-
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formance of an individual or a sample. Speed–accuracy trade-offs are typically analyzed with
respect to the performance of individual participants under conditions in which requirements
for speed or accuracy are manipulated experimentally. Certain tasks focus on how fast partici-
pants can complete a task while maintaining a prescribed level of accuracy. For instance, in tar-
get acquisition tasks, participants are required to generate movements (i.e., of a stylus) to a tar-
get location as quickly as possible and the dependent measure is the time required to maintain
this level of accuracy (Fitts, 1954). Other paradigms, like that used in this study, focus on how
accuracy is influence by time constraints. Although speed–accuracy trade-offs have been ex-
amined in many single-response tasks such as target acquisition (e.g., Fitts, 1954), choice reac-
tion time (e.g., Ratcliff, 1978), and serial recall (e.g., McElree, 2001), fewer studies have ad-
dressed trade-offs in sequential tasks such as speech or music.

Interestingly, past research on music performance has not revealed the same speed–accu-
racy trade-off. Most studies have documented nonsignificant relations between error rates and
mean production rate (Palmer & Drake, 1997; Palmer & van de Sande, 1993, 1995; Sloboda,
Clarke, Parncutt, & Raekallio, 1998). One could infer from such null results that the temporal
flexibility acquired by expert musicians frees them from the speed–accuracy trade-off. Drake
and Palmer (2000) speculated that the absence of speed–accuracy trade-offs may reflect a
dominance of relative timing over global production rate in music production. However, the
range of prescribed rate conditions may have not been broad enough to elicit speed–accuracy
trade-offs in those studies. Palmer and Pfordresher (2003), by contrast, found higher error rates
in a fast tempo condition than in a more moderate tempo condition, but more than two tempo
conditions are necessary to clarify the shape of the speed–accuracy function. As it stands, we
know of no existing research that has systematically varied tempo in music performance across
a wide enough range of tempi to test whether speed–accuracy trade-offs occur in music perfor-
mance as well as the shape of the speed–accuracy function.

3. The range model of planning

3.1. The original range model

We focus here on aspects of the range model (Palmer & Pfordresher, 2003) that are central
to the extended model (other aspects of the original model are presented in the Appendix).
Readers familiar with that model may continue to the section 3.2, in which we describe new
predictions for overall accuracy and the speed–accuracy trade-off. The original range model
predicts patterns of movement errors and theoretically relates to the process of response prepa-
ration. The extended model predicts overall accuracy and the speed–accuracy trade-off, and
theoretically relates to response selection.

In the range model, event activations form a graded distribution across serial positions such
that activations surrounding the current position diminish with decreasing serial proximity and
similarity to the current event. Two examples are shown in Fig. 1. This framework differs from
one in which accessibility is all-or-none, such as a model that would propose a moving time
window around the current event or a chunking mechanism. An important implication of the
range model for this research is that the activation of distant events is greater at slower tempi
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(Fig. 1, top), than at faster tempi (Fig. 1, bottom). Bars showing activations for current events
are open at the top because the extended model (described later) proposes that the activation of
surrounding events alters the activation of the current event, whereas the original model pre-
dictions do not incorporate the current event’s activation (which was provisionally fixed at one
by Palmer & Pfordresher, 2003).

The original range model predictions emerge as the product of two components: serial prox-
imity and metrical similarity. The serial component of the range model is most central to the
predicted speed–accuracy trade-off because only the serial component explicitly involves tim-
ing (Palmer & Pfordresher, 2000). The serial proximity component predicts a decrease in event
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Fig. 1. Gradient of activations predicted by the range model of planning (Palmer & Pfordresher, 2003), for a slow
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light the current intended event. Both gradients use a = .92 and w2 = .5.



activations (Sx) as a function of the absolute distance of events from the current event (|x|,
where x < 0 for past events and x > 0 for future events), with the most active events being those
closest to the current event:

The t parameter, a fixed parameter, measures event durations (interonset intervals [IOIs], in
seconds) as specified by the performance tempo. Because of possible differences in the way in
which duration is processed as a function of time scale (Drake & Botte, 1993; Friberg &
Sundberg, 1995; Hibi, 1983; Peters, 1989), we limit the t parameter to those durations that are
typically associated with rhythmic sequences, 0.1 < t ≤ 2.0 sec. The a parameter, a free parame-
ter that is allowed to range from 0.8 < a ≤ 1.0 (the lower limit was imposed because activations
drop off precipitously for lower values of a), is fit to proportions of serial ordering errors as a
function of distance and may reflect the working memory capacity of the performer (Palmer &
Schendel, 2002). The value of t does not vary for events with different durations (e.g., in the
context of rhythms).

The serial proximity component always predicts decreases in event activation with distance
from the current event (unless a = 1, for which Sx = 1 for all x); lower values for either t or a en-
hance the rate of decrease. Thus, events surrounding the current event are less active overall
when an individual performs at a faster, as opposed to slower, tempo (lower t) or for performers
with smaller, as opposed to larger, short-term memory capacity (lower a). Fig. 1 demonstrates
the influence of tempo on the distribution of activations. Lower activations of surrounding
events result in a smaller range of planning: Fewer sequence events are accessible and move-
ment errors originate from nearby events. Activations of distant events are presumed to in-
crease as tempo slows because more time is available for performers to retrieve information
about the surrounding context during response preparation. The distribution of activations
across distance is the same for each sequence position, and is symmetric across positive and
negative distances. One necessary exception is that no activation is predicted for nonexistent
sequence events (e.g., when the current position is 1, no activation of past events is predicted).

Event activations at each distance and sequence position are estimated by the product of the
serial component and a metrical component (Sx * Mx) across all distances and at every sequence
position. Meter refers to the pattern of regularly alternating strong and weak accents that un-
derlie sequences like speech and music (Cooper & Meyer, 1960; Lerdahl & Jackendoff, 1983;
Liberman & Prince, 1977; Palmer & Krumhansl, 1990). The metrical component (M), which
measures similarity of surrounding events to the current event based on metrical accent
strengths, yields a second free parameter for fits of the original range model (w2) that repre-
sents the relative importance of different metrical levels. This parameter contributes substan-
tially to fits of the original model to movement gradients, but has negligible influence on ex-
tended model fits to speed and accuracy data. Thus the metrical component and w2 are
described in the Appendix. With respect to the predicted activations of the original model in
Fig. 1, the metrical component accounts for the periodic alternations in activation strengths,
whereas the serial component accounts for the degree to which activations spread to distant
events.
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The primary purpose of the original range model was to account for movement gradients,
the conditional probability of an error at distance x given that an error occurs, p(errx | err). Pre-
dicted movement gradients in the range model are generated by averaging activations across
sequence positions, as well as positive and negative error distances, and then dividing each
mean activation strength by the sum of mean activations across absolute distances. Model fits
were limited to errors with a source within a distance of 8 events (the dark bars in Fig. 1, which
includes most errors), because pitches typically repeat every 8 events in the stimuli used. Er-
rors with a distance of greater than 8 events could reflect the random probability of pitch repeti-
tion (more so than events within a window of 8 events). Palmer and Pfordresher (2003) re-
ported fits of predicted movement gradients to movement error data from adult and child
pianists, data from memorized performances and performances from notation, performances
from binary and ternary meters, and performances with differing metrical interpretations. In
this article, we extend this perspective to model the probability that an incorrect pitch event
will be selected in the first place, p(err).

3.2. The extended range model

The extended range model uses the same basic framework as the original model to predict
the probability of selecting an incorrect pitch event, p(err), by introducing a new assumption
regarding the activation strength of the current event. In the original range model, the activa-
tion of the current event is not used to generate predictions. Palmer and Pfordresher (2003)
kept the current event’s activation fixed at 1 by default. This assumption leads to counter-
intuitive predictions (described later) if response selection is based on event activations, as is
typically the case (e.g., Dell, 1986; MacKay, 1987). In addition, we introduce two new parame-
ters to the extended model to account for factors that may constrain the accuracy of response
selection, but may not constrain the preparation of multiple responses prior to selection. One
new parameter, t′, was designed to account for individual differences in motor dexterity
whereas the other, B, was designed to account for individual differences in domain-specific
skill.

Errors in the extended model occur when response selection results in the production of
some event other than the current event. Because activation strengths reflect accessibility, and
thus probability of retrieval, error probability becomes the ratio of summed activations for all
noncurrent events (i.e., all potential errors) relative to the summed activations for all events.
This relation can be expressed as follows:

where ~current refers to activations of events other than the current event, and current refers to
the activation of the current event. The numerator is thus the sum of all event activations sur-
rounding the current event, whereas the denominator includes the current event’s activation in
addition to the sum of surrounding event activations. Mean p(err) across all positions generates
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the estimated error rate for a performance. If the activation of the current event always equals
one, as was provisionally suggested by Palmer and Pfordresher (2003), then p(err) would in-
crease as production rate slowed, because the activation of surrounding events would increase
relative to the current event. The extended model alters this default assumption.

We introduce the assumption that the activation of the current event is altered by the activa-
tions of surrounding events. Specifically, we propose that the activation of the current event
grows in proportion to the squared sum of the surrounding events’ activations:

As a result, the extended model makes the following basic assumption:

Note that this new assumption regarding the current event’s activation does not alter the predic-
tions of the original model, which excludes the current event entirely.

Fig. 2a plots predicted error rates from the extended model for different values of a. Error
probabilities were generated for each position in a sequence (comprising 32 events, as in the
stimuli used for the experiment) and then averaged. We include values of t lower than .10,
which are below the limit that is applicable to the range model, to illustrate the fact that all
functions share maxima at p(err) = 1.00. The a parameter influences the predicted shape of
speed–accuracy functions, particularly in the range of tempi used for this experiment (see area
within dashed lines), which reflect tempi used often in music performance. For low values of a
(low working memory), predicted error rates decrease at a consistent rate as IOI increases, and
error rates are always high relative to functions resulting from other values of a. For higher val-
ues of a, speed–accuracy functions decrease with IOI rapidly at first and then approach an as-
ymptote. The distinction between the initial rapid descent in errors and the second, flatter
phase is enhanced as a increases. Note also that within the range of tempi used for this experi-
ment (see region within dashed lines), particularly high values of a can lead to a negligible
speed–accuracy trade-off with consistently high accuracy.

Fig. 2b illustrates how activations of current and surrounding events lead to predicted error
rates for a single representative value of a. Two important characteristics of the model can be
seen here. The first characteristic concerns the two phases of the speed–accuracy function; the
distinction between the initial rapid descent in error rates and the subsequent plateau. The por-
tion of the function in which errors decrease rapidly with IOI occurs when the activations of
both current and summed surrounding events increase with IOI. Recall that increases in activa-
tions across all events (current and surrounding) increase the denominator of Equation 3b. The
plateau then occurs when activations of both current and surrounding events reach their respec-
tive plateaus. The second characteristic concerns the way in which activations determine the
value of p(err) at any point along the speed–accuracy function. As can be seen, p(err) > .5 when
the activation of the current event is less than the sum of surrounding events. Asymptotic p(err)
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Fig. 2. (a) Predicted speed–accuracy functions from Equation 2, for six different values of a. (b) Predicted speed
accuracy function (left ordinate) plotted with component activations for the current event and summed surrounding
events (right ordinate) for a = .90. Dashed lines highlight model predictions for the prescribed tempi used in the re-
ported experiment.



is related to the difference in activations between the current and surrounding events when they
reach plateau.

We incorporated two additional parameters in the extended range model to account for fac-
tors that may contribute to response selection but not response preparation. The first parameter,
t′, was designed to address differences in motor skills. The introduction of t′ was motivated by
research suggesting that individual performers differ in the maximum possible speed of perfor-
mance (MacKenzie & Van Eerd, 1990; R. K. Meyer & Palmer, 2003; Palmer & Meyer, 2000),
and that noise in the motor system may contribute to speed–accuracy trade-offs in general
(Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979). We reasoned that differences in motor
abilities may be borne out in different error rates at the fastest tempi. Morever, examination of
obtained speed–accuracy functions from performers suggested that for some performers there
is a critical IOI at which decreases in IOI lead to steep increases in error rates. Thus, we hy-
pothesized that there may be an IOI that functions like a “motor threshold” for performers,
such that IOIs above the threshold (slower tempi) can be played relatively accurately but IOIs
below the threshold (faster tempi) lead to large error rates.

The t′ parameter influences the IOI associated with a motor timing threshold by shifting
speed–accuracy functions along the x axis. It is entered into the serial component of the range
model (cf. Equation 1):

for which 0 ≤ t′ < t. The t′ parameter decreases event durations in the model from their actual
produced values (t). We varied t′ in this way based on the logic that the difficulty of producing a
sequence of IOIs reflects the limitations of an individual’s motor system. A performer with
good motor dexterity should yield a t′ of zero, with higher values of t′ reflecting less
well-developed motor systems that reach their upper tempo limit at a somewhat slower rate. In
other words, a performer with a high t′ (e.g., t′ = .10) may produce IOIs of .30 sec with the same
ease as would a more adept motor system performing .20-sec IOIs (t = .30, t′ = .10, t – t′ = .20).

The effect of varying t′, shown in Fig. 3a for a = .80,3 implements the assumption given ear-
lier: t′ shifts the speed–accuracy function along the x axis, and as a result a particular IOI is pre-
dicted to elicit higher error rates for a participant with a high t ′ than for a participant with a low
t′. This can be seen by comparing p(err) across all functions for a particular IOI. Because Fig.
3a shows functions associated with a low value of a, speed–accuracy functions do not reach as-
ymptote within the range of IOIs shown.

Variations of t′ have no influence on the overall shape of the speed–accuracy function, as
can be seen by comparing variations of t′ in Fig. 3a with those in Fig. 3b (a = .99). In addition,
the high value of a in Fig. 3b demonstrates the effect of t′ on asymptotic behavior is illustrated.
As can be seen, t′ influences the IOI at which decreased IOIs cause steep increases in error
rates and increased IOIs lead to stable and highly accurate production.

The second new parameter was designed to address individual differences in do-
main-specific skill (cf. Ericsson, Krampe, & Tesch-Römer, 1993; Krampe & Ericsson, 1996).
Performers differ in the rapidity with which they can learn to perform musical sequences to
some criterion (Drake & Palmer, 2000). Such differences in skill may influence the way in
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Fig. 3. Predicted speed–accuracy functions that incorporate S′ from Equation 4, for five different values of t′ when
(a) a = .80 and (b) a = 0.99. Dashed lines highlight model predictions for the prescribed tempi used in the reported
experiment.



which surrounding events influence the activation level of the current event. The second new
parameter, B, models the way in which skill facilitates retrieval, by weighing the current
event’s activation. Combining this parameter with t′ yields a modified equation for the current
event’s activation strength (cf. Equation 3a):

Thus,

for which B ≥ 1, with no upper limit (as B → ∞, p(err) → 0).
Fig. 4a displays the influence of B on predicted speed–accuracy functions when a = .80 and

t′ = 0 for a range of production rates. B has some influence on the shape of the function (as does
a), primarily along the y axis, but has no influence on predictions for patterns of movement er-
rors. Furthermore, different values of a have a significant impact on predicted speed–accuracy
functions regardless of the value of B, which can be seen by comparing Figs. 4a (a = .80) and
4b (a = .99).

We conducted an experiment that was designed to elicit errors in music performance across
a broad range of performance tempi. Pianists performed unfamiliar sequences that were prac-
ticed throughly at the beginning of the session until they could be performed without errors at a
slow tempo; thus the task did not involve sight-reading. Sequences were always performed in
view of music notation at a tempo set by a metronome. The sequences were musically complex
finger exercises (also used in Palmer & Pfordresher, 2003), designed to be structurally similar
to tongue-twisters used to elicit errors in speech (cf. Dell, 1986; Dell, Burger, & Svec, 1997;
Rosenbaum, Weber, Hazelett, & Hindorff, 1986). We fit the original range model to distribu-
tions of movement error frequencies across error distance (movement gradients), and fit the ex-
tended range model to speed–accuracy data.

4. Method

4.1. Participants

Twelve adult pianists from the Ohio State University community (M age = 24.1 years) par-
ticipated in exchange for course credit in introductory psychology or payment. Participants
had between 7 and 32 years of private piano instruction (M = 14.1 years) and between 10 and
34 years of piano playing experience (M = 16.3). All participants reported playing piano regu-
larly and reported no hearing problems. Eleven of the 12 pianists were right-handed.
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Fig. 4. Predicted speed–accuracy functions from Equation 5b, for six different values of B when (a) a = .80 or (b) a
= .99. For both plots, t′ = 0. Dashed lines highlight model predictions for the prescribed tempi used in the reported
experiment.



4.2. Apparatus

Pianists performed on a computer-monitored Yamaha Disklavier MX100 acoustic upright
piano. Optical sensors detected key press velocities without affecting the touch or sound of the
acoustic piano. The pitch, timing, and hammer velocity values (correlated with intensity) for
each note event were recorded on an IBM PC-compatible computer in MIDI format. The tim-
ing resolution of MIDI data acquisition was 2 msec; this precision was equivalent to 0.8% of
the measured variability in produced timing (indexed by SD of IOIs in performances). Pitch er-
rors were detected by comparing performances with the contents of music notation (Large,
1993; Palmer & van de Sande, 1993, 1995).

4.3. Materials

The stimuli were four sequences taken from Palmer and Pfordresher (2003), adapted from
finger exercises by Czerny (Opus 299). Each sequence contained 32 sixteenth-note events
(event = a single note or a set of notes intended to sound simultaneously), notated with the
same time signature (4/4). Similar to phonemic repetitions in tongue-twisters, sequences ini-
tially established repeating pitch and duration patterns that were later violated. Two of the
stimuli had sixteenth-notes in both left and right hands and two had sixteenth-notes in the right
hand and quarter-notes in the left hand. There were no successive repeating pitches and pitches
repeated every 8 events on average.

4.4. Design and procedure

Eight tempi (.12, .15, .18, .21, .24, .27, .30, and .33 sec per sixteenth-note IOI) were crossed
with the four musical sequences for a total of 32 trials in a within-subjects design. Each trial
comprised two performances of a tempo/sequence combination in succession. The session
comprised 8 blocks of 4 trials; each trial within a block comprised a unique tempo–sequence
combination. Within these constraints, two random orders of trials were generated according
to a Latin square design. Each participant was randomly assigned to one of the two orders.

At the beginning of the session, each participant completed a musical background question-
naire. Then the participant was presented with a notated musical sequence and asked to per-
form each melody at a slow tempo of sixteenth-notes = .536-sec IOIs, indicated on a metro-
nome, until an error-free performance was obtained. These slow performances were designed
to ensure that errors at faster tempi did not result from incorrect learning of the sequences. The
8 experimental blocks followed the initial slow performance block.

In each trial, participants performed one of the musical sequences twice, pausing between
repetitions, with the notation in view. The metronome established tempo at the quarter-note
level (metronome IOI = 4× produced IOIs), and participants synchronized the first event in
each group of 4 with the metronome. The metronome was set at this slower rate because setting
the metronome at the sixteenth-note rate (the fastest of which would be 462 beats per minute)
would yield a distractingly fast pulse sequence and is not common musical practice. Partici-
pants were instructed not to stop if they made errors. Thus, instructions emphasized speed, in
terms of tempo, rather than accuracy (cf. Pew, 1969). At the conclusion of the experimental
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session, the participants performed each of the four musical sequences again at the slow rate
twice (536-msec IOIs) to ensure there were no learning errors that may have developed across
the session.

4.5. Error coding

Pitch error rates (number of errors relative to number of error opportunities) were averaged
across the two repetitions of the same sequence–tempo pair for all trials. Pitch error rates were
first calculated separately for single notes and chords (which occurred with different frequen-
cies in the musical pieces) and then summed for the overall error rate per performance. Move-
ment gradients for error distances were then computed from serial ordering (i.e., movement)
errors. Serial ordering errors are defined here as errors that match an event intended for else-
where in the sequence (i.e., the insertion of event i + x at position i). The assumption that
notated events were intended is based on pianists’ error-free performances at the initial slow
tempo. The nearest sequence event with the same pitch as the error is termed the error’s source,
and the absolute distance between the error and its source was computed. Corrections (inter-
rupted errors, in which an event was performed incorrectly and then corrected), were excluded
due to ambiguities in their coding (as in Dell, 1986; Garrett, 1980).

5. Results

Results are organized into four main sections. First we describe the empirical results of this
study. Then we describe model fits for the original and extended range models, respectively.

5.1. Obtained error data

5.1.1. Speed–accuracy trade-offs
There were a total of 4,586 pitch errors in all; the mean error rate per trial was 0.112. Fig. 5

shows mean error rates as a function of the mean IOIs (inverse of speed) produced by partici-
pants in each tempo condition. Error rates varied reliably as a function of tempo condition. A
one-way within-participants analysis of variance (ANOVA) on mean error rates revealed a
main effect of tempo condition, F(7, 77) = 24.08, MSE = .011, p < .01. No differences as a
function of stimulus melody or practice within the session emerged.

5.1.2. Movement gradients.
Analyses of movement errors were based on a subset of the error data used to analyze

speed–accuracy trade-offs. Deletions (23% of the data) are ambiguous with respect to the error
source and were excluded. Of the remaining errors, 81% had an identifiable source elsewhere
in the sequence and were serial-ordering errors. Of those errors, 71% had an identifiable source
within a distance of 8 events surrounding the current event (one metrical cycle, equivalent to
the chance estimate of how often pitches repeated in the stimuli), and were incorporated in
analyses of movement errors. Of movement errors, 44% were anticipatory (i.e., the source fol-
lowed the error; 1,057 errors) and 56% were perseveratory (1,342 errors).
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Movement gradients for each participant were calculated using the proportion of movement
errors with sources from distances of ±1 to 8 (error frequencies at each distance divided by to-
tal number of movement errors in this range). The mean movement gradient across participants
and tempo conditions is shown in Fig. 6a. An 8 (distance) × 8 (tempo) repeated measures
ANOVA on error proportions yielded a significant main effect of distance, F(7, 77) = 30.349,
MSE = .042, p < .01, but no Distance × Tempo interaction (p > .10). As predicted by the origi-
nal range model (Palmer & Pfordresher, 2003), errors associated with proximal events (shorter
distances) were more prevalent than errors associated with more distant events, and errors as-
sociated with metrically similar events (distances that are multiples of 2, see Appendix) were
more prevalent than errors at other distances. Fits of the original range model to the mean data,
shown as dots in Fig. 6, are discussed in the modeling section later.

We also examined patterns of movement errors at the extreme tempo conditions. An
ANOVA on the fastest and slowest tempo conditions yielded a significant Tempo × Distance
interaction, F(7, 77) = 2.25, MSE = 0.056, p < .05, in addition to the significant effect of dis-
tance, F(7, 77) = 25.54, MSE = 0.015, p < .01. Fig. 6b shows mean data (across participants)
from these tempo conditions. As can be seen, the frequency of errors from farther distances
was markedly increased in the slowest compared with the fastest condition.

Finally, we tested the range model’s prediction that the overall scope of planning increases
with tempo. Mean absolute range was calculated for each tempo condition from the mean of all
absolute error distances within 8 events. Fig. 7 displays mean range averaged across partici-
pants as a function of produced IOI (also averaged across participants) for each tempo condi-
tion. The influence of tempo on range approached significance, F(7, 77) = 1.90, MSE = 1.081,
p = .08. As with the analysis of error frequency by distance, we also examined the two extreme
tempo conditions. The difference between these two conditions was significant, F(1, 11) =
4.67, MSE = 1.96, p = .05. The correlation between produced IOI and mean absolute range was
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Fig. 5. Obtained and predicted speed–accuracy functions for mean data. For this function, a was fixed at .92 and w2

was fixed at .54. Other parameters were fit, B = 7.85, t′ = 0.08.



significant when the data were broken down by both tempo and individual (df = 94), r = .19, p <
.05 (r = .44 for the two extreme tempi).

5.2. Model fits to movement gradients: Original range model

The original range model was fit to movement gradients separately for each participant and
tempo condition. Fits were carried out in two steps, following the same procedure used by
Palmer and Pfordresher (2003). First, the range model was fit to each participant’s movement
gradient using one free parameter, a, which was allowed to vary between .8 and .99 (see Equa-
tion 1). The value of a was then fixed to the best fitting value from the first iteration and the
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Fig. 6. (a) Obtained movement gradient, averaged across participants and tempo conditions, with predictions from
the original range model and chance estimates. Mean a across participants was used for this fit, a = .92, w2 = .54. (b)
Corresponding fits for the fastest and slowest tempo conditions using same parameters.



model was fit again, allowing metrical weight on level 2 of the metrical grid (w2) to vary be-
tween .01 and .99 (see Appendix).

Fits of the original range model were generated in this way for each participant and tempo
condition. Goodness of fit was established through the metric variance accounted for (VAF).
VAF measures goodness of fit based on the ratio of squared error between model and data to
the squared error within the data.4 On average, predictions accounted for 73% of the variance
in movement gradients for each participant and tempo condition. In fact, 78 of the 89 fits (88%)
for each participant and tempo condition were significant (some cells were missing due to an
absence of errors). Table 1 shows VAF for model fits as well as model parameters for each indi-
vidual data, averaged across tempi. The model provided a good fit to the data based on VAF for
all but 2 participants. The participant with lowest VAF made very few errors (< 1%) resulting
in an anomalous movement gradient. Fig. 6a shows predicted values averaged across partici-
pants and tempi, which provided a good fit of mean obtained data (VAF = 93%) and for the ex-
treme tempo conditions (Fig. 6b; M VAF across the exteme conditions = 84%).

5.3. Model fits to speed–accuracy trade-offs: Extended range model

We then fit the extended range model, described earlier, to obtained speed–accuracy data.
All fits used values of a and w2 from previous fits to movement gradients. The two remaining
free parameters (B, t′) were fit simultaneously through the least squares optimization proce-
dure in MATLAB (The MathWorks, Natick, MA). Performed, rather than prescribed, mean
IOIs were used as input to all fits. Parameters were not allowed to vary with tempo condition;
values from fits of the original range model reflected average parameter values across tempi.

Fig. 5 shows the range model’s fit to the mean data across participants. This fit accounted for
almost all the variance in the error data (VAF = 99%, p < .01). Best fitting parameter values and
VAFs for individual fits are shown in Table 1. We do not include the w2 parameter (from the
metrical component of the original model), which yields negligible effects on predicted
speed–accuracy functions. Model fits accounted for 95% of the variance, on average, in indi-
vidual participants’ error data and all individual fits were statistically significant.
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5.3.1. Individual differences
The ability of the extended range model to account for individual differences is demon-

strated by examining pairs of participants who differ primarily along one of the three primary
model parameters (a, B, t′). For each parameter, two individuals were selected who primarily
differed in one parameter, while maintaining the highest possible similarity across the other
two parameters. Fig. 8 shows data from the participants who were selected. These plots verify
qualitatively that the different influences of parameters on speed–accuracy functions, shown in
Figs. 2 through 4, can be observed in individual participants. Each participant’s extended
model fit was extrapolated to range from 0 ≤ IOI ≤ .5, to allow comparisons with Figs. 2
through 4.

Fig. 8a demonstrates the influence of a on speed–accuracy functions using the data of Par-
ticipants 5 (low a) and 12 (high a) from Table 1 (cf. Fig. 2a). The function for the participant
with a high a (better performance) is more bowed than that of the participant with a low a
(worse performance). As a result, the high-a participant reaches asymptote more quickly.
However, both participants’ errors converge at the slowest tempi (largest IOIs). Otherwise,
both these performers exhibit relatively low values of B (M = 4.09, reflecting generally high er-
ror rates), as well as moderately high values of t′ (M = .065). Fig. 9 demonstrates how different
values of a relate to obtained movement gradients and fits of the original range model for each
of these participants. Note that the high-a participant committed more long-distance serial or-
dering errors than did the low-a participant.

Fig. 8b demonstrates the influence of t′ on speed–accuracy functions using the data of Par-
ticipant 2 (low t′) and 4 (high t′) from Table 1 (cf. Fig. 3). These participants are similar with re-
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Table 1
Performance measures, model parameters, and VAF for individual performers

Performance Measures Model Parameters VAF

Err-Rate Range Practice T-Err a B t´ Original (%) Extended (%)

Performer
1 0.11 3.60 2.50 0.000 0.935 9.79 0.087 88 95
2 0.07 2.86 2.31 0.004 0.917 12.45 0.064 76 74
3 0.02 1.93 2.50 –0.001 0.898 178.33 0.082 79 99
4 0.26 3.11 4.31 0.050 0.917 2.48 0.121 95 84
5 0.26 2.57 3.63 0.010 0.904 3.90 0.083 95 96
6 0.01 4.78 2.00 –0.001 0.945 245.30 0.092 <0 97
7 0.04 2.63 2.75 –0.001 0.916 45.38 0.073 81 96
8 0.03 2.65 2.75 0.000 0.893 97.48 0.080 73 >99
9 0.06 3.04 2.25 0.005 0.908 104.04 0.120 28 >99

10 0.24 3.44 5.38 0.013 0.935 1.00 0.000 95 91
11 0.14 2.86 6.00 0.016 0.912 4.96 0.073 92 60
12 0.11 4.16 3.63 0.001 0.954 4.28 0.068 82 96
Median 0.09 2.95 2.75 0.003 0.917 11.12 0.081 81 96

Note. VAF = variance accounted for; Err-rate = mean error rate across all trials for a participant; Range = mean
absolute error distance; Practice = mean number of repetitions in block 1; t-err = mean signed difference between
produced and prescribed IOI.
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Fig. 8. Speed–accuracy data from participants representative of differences in parameters for (a) a, (b) t′, and (c) B.



spect to the best fitting a parameter (a = .92 for each), but differed somewhat with respect to B
(B for Participant 2 = 12.48, for Participant 4 = 2.48). As a result the two functions differ with
respect to asymptotic performance. The t′ parameter influences the difference in offset along
the x axis between the two functions, which causes the function for Participant 4 to reach p(err)
= 1 at a larger (slower) IOI than the function for Participant 2. We suggest that this difference
happens because the high-t′ performer (Participant 2) reaches the upper limit of his or her pos-
sible speed at around .20 sec per IOI.

Finally, Fig. 8c demonstrates the influence of B using the data of Participants 3 (high B) and
5 (low B), also shown in Fig. 8a. As with manipulations of a, differences in B influences the
shape of the speed–accuracy function, but have a stronger influence than a does on the asymp-
totic level of accuracy, observed here in the separation between the lines. Both participants ex-
hibited similar values of the a and t′ parameters (M = 0.90 and M = 0.08, respectively).

5.3.2. Model complexity
Because we fit the two extended parameters, B and t′, simultaneously, our initial fits do not

establish the necessity of both parameters (Palmer & Pfordresher, 2003, established the impor-
tance of both original model parameters). Furthermore, the additional parameters add com-
plexity to the model that may undermine its generalizability (Pitt, Myung, & Zhang, 2002).
Are both parameters necessary? We addressed this issue by comparing the model fits with both
parameters to model fits with one or both of the extended model parameters (B, t′) fixed at its
default value. Default values are those that are consistent with the basic extended model frame-
work illustrated by Equation 3b, in which B = 1 and t′ = 0. We used the Akaike Information Cri-
terion (AIC; Akaike, 1973) to determine the best model.5 AIC is preferable to VAF as a good-
ness-of-fit measure when one compares models of different complexity, because AIC takes
into account number of parameters in the model in addition to its goodness of fit. Lower AIC
indicates a better fit. AIC is an ordinal measure that simply determines which model “wins,”
thus we did not calculate significance tests for different mean AIC values.

Table 2 shows mean AIC, VAF, and Pearson’s r for model fits to the mean data (see Fig. 5)
for models in which different numbers of parameters were allowed to vary. The full model,
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Fig. 9. Movement gradients for individual participants represented in Fig. 7a, who represent error proportions re-
flecting low (left) and high (right) values of a.



with two free parameters (B, t′, with values of a and w2 fixed) provided the best fit (lowest
AIC). Fits to models with reduced numbers of parameters according to AIC and VAF indicated
a hierarchy of importance across parameters. Although t′ improved fits, even when taking into
account complexity, B appeared to have a stronger influence on fits than did t′. We also fit the
models to individual data. Every participant’s AIC increased (indicating a poorer fit) relative to
the full model when B was fixed at 1 and only t′ was fit. Similarly, AICs for 10 of 12 partici-
pants increased (indicating a poorer fit) when t′ was fixed at 0, a significant margin (binomial
sign test, p = .016).

Perason’s r, in contrast to other goodness-of-fit measures, indicated good fits for all models.
In particular, a good correlation resulted even when both B and t′ were set to default values and
the model incorporated only those parameter values that were derived from fits of the original
range model to movement gradients. This result was observed for individual performances as
well; no correlations between the parameter-free model and error rates fell below r = .95 (p <
.01 for each). Why? Both VAF and AIC take into account how close in scale predicted values
are to obtained values. Pearson correlations, on the other hand, only consider whether pre-
dicted and obtained values covary. The fact that r shows good fits, even when no parameters are
allowed to vary, suggests that the basic shape of the speed–accuracy function (irrespective of
scale) can be predicted simply by using parameters that are derived from movement errors (i.e.,
the original range model). Thus, the additional parameters primarily scale the speed–accuracy
function. In the next section, we consider whether variability in best fitting parameters across
participants has any significance beyond scaling.

5.3.3. Construct validity of new parameters
We next examined whether the model parameters reflect underlying psychological mecha-

nisms proposed in the introduction by regressing measures of performance on the three model
parameters that most strongly influence predicted speed–accuracy functions (B, t′, and a). We
attempted to derive measures that relate to proposed mechanisms that were independent of
both speed and accuracy (Table 1 shows mean error rates for individual participants for pur-
poses of comparison). None of the best fitting model parameters correlated significantly with
each other (M r = –.01). Our analyses thus focus on simple correlations.

We measured domain-specific skill by using the number of repetitions participants per-
formed to reach the zero-error criterion for each piece during the learning phase of the experi-
ment. The number of repetitions that each participant performed is shown in Table 1, taking
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Table 2
Mean goodness-of-fit for extended model fits with differing numbers of parameters

Parameters AIC VAF (%) Pearson’s r

All (a, t´, B) –44.36 99 .99
t´ fixed (a, B) –25.92 72 .97
B fixed (a, t´) –1.88 < 0 .96
a only 0.12 < 0 .96

Note. AIC = Akaike Information Criterion; VAF = variance accounted for.



into account partial repetitions (e.g., 2.5 would indicate that a performer performed an entire
melody twice plus one half). We reasoned that participants who require fewer repetitions to
learn pieces have acquired higher skill levels, leading to a higher optimal B parameter, than
those who required more repetitions. The simple correlation between repetitions during prac-
tice and B was significantly negative, r = –.58, p < .05. Simple correlations of other parameters
with number of practice repetitions were not significant.

We measured individual differences in timing ability by examining tempo error: the mean
signed deviation of produced IOIs from prescribed (metronomic) IOIs across all conditions for
each performer. We reasoned that performers who produced tempi that were reliably slower
than the target tempo would have a higher intrinsic motor threshold than those who were accu-
rate or performed quicker than the produced tempo (suggesting motor dexterity). The correla-
tion between tempo error and participants’ optimal t′ parameters was significant, r = .57, p <
.05, whereas other parameters did not correlate significantly with tempo error.

Finally, we tested one of the central assumptions of the original range model: the relation
between a and overall planning scope. We measured planning scope using mean absolute
range, described earlier. Mean range significantly correlated with a, r = .89, p < .01, but was
not correlated with other parameters.

6. Discussion

This research introduces a number of new findings. Empirically, we demonstrate speed–ac-
curacy trade-offs in music performances by highly skilled pianists. Such trade-offs have not
been demonstrated previously in this population to our knowledge. Fits of the extended range
model to speed–accuracy data, tested here for the first time, suggest that changes in range of
planning with tempo (found here, as in Palmer & Pfordresher, 2003) facilitate retrieval of the
correct event. At the same time, the extended model suggests that accuracy is influenced by
other factors that vary across individuals (although not necessarily with tempo): motor dexter-
ity and domain-specific skill in music performance.

Timing was expected to influence accuracy, in keeping with the classic speed–accuracy
trade-off. Empirical data verified this claim. Among populations with expertise in sequence
production, trade-offs may only appear when individuals perform at the limits of their abili-
ties under strict temporal demands, as in the experiment reported here. In a more general
sense, the current data suggest that trained musicians performing music are subject to the
same constraints as are individuals from the broader population. This observation converges
with other research that suggests expertise in music performance results from the refinement
of skills through deliberate practice that are present in the general population, and do not
necessarily result from inherited “talents” that differ from the qualities present in the rest of
the population (Ericsson et al., 1993; Howe, Davidson, & Sloboda 1998; Krampe &
Ericsson, 1996).

In this section we discuss how the findings reported here support the basic assumptions of
our model. Then we compare our model to other models of sequence production and of the
speed–accuracy trade-off.
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6.1. The extended range model

The research reported here supports the hypothesis that the retrieval of serial order and over-
all performance accuracy share a common cause: timing. Timing in the original range model
allows the performer to access distant events during response preparation. The activation of the
surrounding context in the extended model facilitates activation of the current event, leading to
improved accuracy. How well do the data support these joint effects of timing?

The original range model proposed that slowed timing increases range of planning (Palmer
& Pfordresher, 2003). This prediction extends from the assumption that incorporating the sur-
rounding context helps performance, because musical events are defined by their context.
When more time is allocated to response preparation, a performer will be able to incorporate
more contextual information during planning (i.e., a broader range of planning). As a result, er-
rors are less frequent on the whole, but those errors that do occur tend to originate from rela-
tively distant sources. Palmer and Pfordresher (2003) supported this prediction in analyses of
errors during performances at two tempi. The experiment reported here incorporated a broader
range of tempi and again demonstrated increased range of planning with tempo. Change in
range of planning with tempo was gradual, as predicted by the model. Whereas differences
across all tempo conditions fell short of significance, differences at extreme tempi were robust.
Importantly, obtained mean range values were proximal to predicted values from the range
model.

The extended model introduced a further assumption about timing in both range of plan-
ning and accuracy. Specifically, increases in range of planning brought about by slowed tim-
ing were predicted to enhance the activation of the current (correct) sequence event. Fits of
the extended model supported this claim. Fits of the extended model, based entirely on pa-
rameters from the original model (Equation 3b) predicted the shape of obtained speed–accu-
racy trade-offs as measured by Pearson’s r. However, these predictions differed in scale from
obtained error rates. This difference in scale suggests that variables beyond range of plan-
ning influence the accuracy of response selection. We incorporated two new parameters in
the extended model to model the influence of variables beyond response preparation on
overall accuracy.

Parameters related to motor dexterity (t′) and domain-specific skill (B) were included in the
extended model of accuracy but not in the original range model fits. Neither parameter was al-
lowed to vary with production rate (IOI). Additional parameters therefore modulate the
speed–accuracy relation but are not integral parts of the predicted speed–accuracy trade-off.
Objectively, these parameters serve the purpose of scaling the speed–accuracy trade-off to fit
the data. However, correlations between parameters and measures of performance suggested
that they do relate to underlying mechanisms involved in accuracy. Whereas t′ correlated with
accuracy in produced tempo, but not the number of repetitions required to learn melodies, B
correlated with repetitions during learning but not tempo accuracy. Thus we consider the new
parameters to serve a purpose beyond curve fitting. Despite the contribution of extended range
model parameters to the model’s fit, the fact that extended model predictions correlated well
with obtained error rates even when additional parameters were fixed at their default values
suggests that the most fundamental source of speed–accuracy trade-offs in music performance
is the way in which planning constrains range of planning.
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6.2. Comparisons with other approaches

In this section, we compare the predictions of the extended range model to similar models
that have addressed speed–accuracy trade-offs or serial order. The range model accounts for
retrieval during the production of musical sequences. We know of no similar model in the do-
main of music performance. However, models of serial order in speech production address task
components that we consider fundamental to music production. Both behaviors concern re-
trieval during the production of auditory sequences in which both event timing and event con-
tents (e.g., pitches or syllables) are used to communicate an intended message. Importantly,
speech and music production differ from behaviors like typing, in which timing does not con-
tribute to the communicated message. Other models of the speed–accuracy trade-off focus on
single, rather than serially ordered, responses in contexts that focus specifically on motor con-
straints while minimizing memory load (e.g., Beilock, Bertenthal, McCoy, & Carr, 2004; Fitts,
1954; D. E. Meyer, Smith, & Wright, 1982; Plamondon & Alimi, 1997; Schmidt et al., 1979),
or focus on memory constraints while minimizing motoric factors (e.g., Boldini, Russo, &
Avons, 2004; McElree, 2001; Ratcliff, 1978; Sternberg, 1969).

6.3. Models of sequence production and errors

Table 3 compares the predictions made by the range model to other models of serial produc-
tion in speech. To review, the primary phenomena predicted by the range model are frequen-
cies of movement errors as a function of error distance (i.e., movement gradients), overall ac-
curacy, and the speed–accuracy trade-off. We thus focus on these properties of the models
summarized in Table 3. Note that the speech production models that we compare to the range
model were designed to make additional predictions that are not summarized in the table.

Dell (1986; see also Dell, 1985; Dell et al., 1997) proposed a model of speech production in
which activation spreads through a hierarchical network that represents the linguistic structure.
When an utterance is planned, activation begins at nodes representing the highest level of the
hierarchy (semantics). Frames establish the serial order of linguistic categories within each hi-
erarchical level across the utterance. Over time, activation spreads to different nodes in the
frame that are associated with specific categories, and speech errors can occur when random
fluctuations in activation lead to the production of an incorrect node (which represents a lin-
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Table 3
Comparisons of the range model with other sequence production models

Predictions
Dell
(1986)

MacKay
(1982)

Vousden et al.
(2000)

Extended
Range

Overall accuracy �a � � �
Speed–accuracy trade-off �a �a � �
Error distance � � � �

Note. Check marks (�) indicate that the model makes testable predictions for the behavioral phenomenon in
question, and an � indicates the absence of such a prediction.

aNot tested empirically.



guistic unit) from a given category. Thus, the activation of many different nodes, some but not
all of which are associated with correct events, increases over time. At slow speaking rates, the
likelihood that a correct node’s activation surpasses that of an incorrect node is greater than at
fast speaking rates, leading to a predicted speed–accuracy trade-off. This prediction has not
been tested quantitatively to our knowledge.

As can be seen in Table 3, Dell’s (1986) model predicts overall accuracy and speed–accu-
racy trade-offs, as does the extended range model, although not all of these effects are tested.
We, like others (Vousden et al., 2000) characterize Dell’s model as not accounting for move-
ment errors with respect to error distance. This claim warrants some discussion. Dell’s model
does predict different distances for phoneme versus word errors, based on the fact that these er-
rors originate at different levels of the linguistic hierarchy (cf. Garrett, 1980). However, it is not
clear whether the model would predict the kind of variations of error distance with speaking
rate as does the extended range model.

Another model that was designed to account for both serial ordering errors and error rates in
sequence production was node structure theory (MacKay, 1982, 1987). An account of
speed–accuracy trade-offs from node structure theory was detailed in MacKay (1982),
whereas the account for serial ordering errors was detailed in MacKay (1987). Like Dell’s
(1986) model, node structure theory has primarily been applied to speech, and incorporates
spreading of activation (termed priming) through a hierarchical representation, using “se-
quence nodes” in place of Dell’s frame-based representation. Oddly, the model makes slightly
different claims with respect to the basis of the speed–accuracy trade-off and serial ordering er-
rors. With respect to serial ordering errors, node structure theory presents a similar account to
that offered by Dell (1986): Activation of related nodes (some correct, some not) increases
over time, and with more time the activation of the correct node will exceed that of incorrect
nodes by a critical amount (MacKay, 1987). However, the proposed account of speed–accu-
racy trade-offs (MacKay, 1982) suggests that the activity of nodes associated with errors re-
mains at a constant level, whereas the activation of the correct node increases with time (a simi-
lar proposal was outlined by McClelland, 1979). Activity of incorrect nodes thus functions as a
background “noise” level that the correct node must exceed by a critical amount for the correct
event to be produced, which takes time. By contrast, the range model uses the same assump-
tions about the activations of events other than the current event in modeling serial ordering er-
rors and in modeling overall error rates. As with Dell (1986), we know of no formal test of node
structure theory’s predicted speed–accuracy trade-off (although we propose one later). More-
over, the model makes no quantitative predictions regarding overall accuracy and does not pre-
dict error distance beyond distinctions between phoneme and word errors (see Table 3).

The extended range model is similar in a number of ways to a model that does account for
distance relations but was not designed to account for speed–accuracy trade-offs, the oscillator
model of speech production proposed by Vousden and colleagues (2000; Brown et al., 2000;
for a similar approach see Church & Broadbent, 1990). This model includes two primary com-
ponents—a phoneme feature vector and a phonological context vector—with phoneme se-
quences arising from associations between the two over time. The phonological context vector
encodes the passage of time as a function of the products of many sinusoidal oscillators. Pat-
terns resulting from summed oscillator activity result in greater similarities for close points in
time than for distant points in time, like the range model’s serial component, and oscillations
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can be manipulated to create periodicities in temporal context that resemble the product of se-
rial and metrical components in the range model. Indeed, Palmer and Pfordresher (2003) sug-
gested that such an oscillatory mechanism may underlie metrical similarity (cf. Gasser, Eck, &
Port, 1999; Large & Jones, 1999; Large & Kolen, 1994; Large & Palmer, 2002; McAuley,
1995).

The oscillator model of Vousden et al. (2000), however, does not address production rate
and thus is not designed at present to predict a speed–accuracy trade-off, nor does it predict
overall accuracy (see Table 3). Nevertheless, increases in production rate may result in associa-
tions of events with more similar states of the context vector, assuming that the component os-
cillator periods do not vary with production rate. Thus, it is possible (although not verified) for
such an oscillator approach to predict speed–accuracy trade-offs. Unlike the models discussed
previously, this model was designed explicitly to account for error distances. Its predictions
differ in orientation from the range model, however. Rather than focus on the role of produc-
tion rate in error distance, Vousden and colleagues accounted for distances as a function of
whether errors are anticipatory and perseveratory, a distinction that appears not to influence er-
rors in music performance in the same way as in speech (Palmer & Pfordresher, 2003).

6.4. Test of an alternative model based on node structure theory

The account of speed–accuracy trade-offs developed in node structure theory (MacKay,
1982), although not quantitatively specified, is based on a related model that yields testable
predictions: the cascade model of McClelland (1979; cf. Wickelgren, 1977). The cascade
model, unlike node structure theory, was originally designed to account for single responses
rather than the production of sequences. Theoretically, the link between these models suggests
that constraints on the retrieval of single responses that lead to speed–accuracy trade-offs may
also lead to speed–accuracy trade-offs in the production of complex sequences. This implica-
tion is intuitively compelling and parsimonious, and response preparation and selection in mu-
sic performance may be related in a cascaded fashion (Palmer, 2005). However, we question
whether such a link is plausible given the need to plan multiple responses at once during se-
quence production. In this section we compare the predictions of the range model with an alter-
native based on the single-response approach as proposed by MacKay.

The cascade model is based on assumptions about multiple processes that overlap in time.
The full model is highly complex and involves a series of equations. However, the speed–accu-
racy trade-off that it predicts has been shown to reduce to a simple exponential activation func-
tion under certain conditions (cf. Equation 12, McClelland, 1979):

In which k establishes the rate of change (a free parameter), t is the duration of time that is al-
lowed to make a decision (a variable identical to t in the range model), and T is a temporal shift
caused by overlapping processes (a free parameter similar to our t′ parameter).

We adopted this framework in testing a plausible alternative to the range model of planning.
Because this equation relates to the activation of the correct event, it predicts accuracy, but the
inverse could obviously be used to predict error rates, given that 0 ≤ Y ′ 1. We also included an
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additional asymptote parameter (α), for two reasons. First, we wanted to give the alternative
model optimum flexibility. Second, the form of the model we use is identical to a descriptive
model proposed by Wickelgren (1977) that has frequently been applied to research in memory
retrieval that uses the “response signal” method to generate speed–accuracy functions (e.g.,
Boldini et al., 2004; McElree, 2001). Predicted accuracy from the cascade model (which re-
sults from a modification of the preceding equation that is less easily applicable to our data),
were shown to be very similar to the predictions of Wickelgren’s (1977) model. Thus the re-
sulting equation for error rates for the alternative model tested here is:

which is the inverse of the exponential approach to the limit, α. The form of this equation as-
sumes that the data set comprises proportions (0 < Y < 1). This alternative model constitutes a
viable contender to the extended range model, given its historical use in the speed–accuracy lit-
erature.

We fit all three parameters of the alternative model simultaneously through the least squares
optimization procedure in MATLAB. The fit of the alternative model to mean data is shown in
Fig. 10. As can be seen, the fit is good (VAF = 92%), although not as good as the fit of the ex-
tended range model (VAF = 99%). A t test on the associated Pearson correlations (r with data
for Wickelgren model = .96, for extended range model = .99) yielded a significant difference,
t(5) = –2.59, p < .05 (test for dependent rs; Cohen & Cohen, 1983). In contrast to the extended
range model, the alternative model tended to underestimate error rates at extreme tempi be-
cause it predicts a function that is less bowed than the function predicted by the extended range
model. Although the alternative model has one fewer free parameters than the extended range
model (given the conservative assumption that the extended range model uses four free param-
eters), the alternative model’s poorer fit was not an artifact of complexity according to AIC,
which was higher for the alternative model (AIC = –34.86) than for the extended range model
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Fig. 10. Best fitting speed–accuracy function based on an alternative model (Equation 7), with mean data. Best fit-
ting model parameters are α = 1.0261, k = 8.63, T = –0.01. Error bars represent ±1 SE.



(AIC = –45.34). Likewise, fits of the extended range model to individual data were superior to
fits of the alternative model in a majority of cases (7 of 12), which suggests that the superior fit
of the range model to mean data was not an artifact of averaging (cf. Anderson & Tweeney,
1997; Myung, Kim, & Pitt, 2000). Finally, we note that two of the best fitting parameter values
are counterintuitive: The asymptote is greater than 1 (suggesting accuracies of greater than
100%), and the offset is negative. We allowed such values (which do not deviate greatly from 1
and 0, respectively) to accommodate for the fact that the model was originally designed to fit d′
rather than p(err).6

6.5. Limitations and alternative approaches

The extended range model represents a new line of theorizing in a simple, easily testable
framework. The model makes minimal assumptions about the cognitive representation involved
and about item-specific information. The new model adds only two new parameters to the origi-
nal model. Given the complexity of the behavior being modeled, certain aspects of planning and
execution are not incorporated in the range model, some of which are discussed here.

It is possible that the limitation of skill and motor dexterity to response selection may be too
restrictive; range of planning may be influenced by motor dexterity or the ability of more
skilled performers to organize stimulus information into higher order units (e.g., Chase & Si-
mon, 1973; Ericsson & Kintsch, 1995). These limitations may account for the fact that the rela-
tion between tempo and range of planning was only marginally reliable when data were aver-
aged across participants. Even so, the range model does not appear to predict large differences
and the data conform to this prediction (Fig. 7).

The range model also does not account for possible contributions of motor movements to
serial ordering errors, instead linking errors to abstract sources of similarity and proximity
among sequence events in memory. By contrast a class of models not summarized in Table 3
relates sequencing errors directly to finger movements. For example, Rumelhart and Normal
(1981) produced an effector-based model of skilled typing that could, in principle, be adapted
to account for speed–accuracy trade-offs in music performance. Their model focuses on the
way in which finger movements constrain both speed and accuracy. Because typing is typically
produced as quickly as possible, they do not consider the role of rate and their model thus does
not predict speed–accuracy trade-offs, although it could be adapted to do so.

An important question for the range model therefore concerns whether confusions among
finger movements can account for errors in production. We allowed pianists to choose their
own fingering and therefore are not able to incorporate fingering explicitly in current model
fits. However, another recent study did address the possibility that fingering contributes to se-
rial ordering errors in music performance (Pfordresher & Palmer, 2006). That study incorpo-
rated simpler stimuli with prescribed fingering. Pfordresher and Palmer (2006) found patterns
of serial ordering errors across distances 1 through 3 that fit the assumptions of the range
model. However, an alternative model that replaced the metrical similarity metric with one
based on the proximity of fingers did not match obtained patterns of serial ordering errors. It is
likely that similar results would obtain for the current data.

The effector independence assumed by the range model converges with research demon-
strating that transfer of sequence learning occurs across effectors (e.g., Grafton, Hazeltine, &
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Ivry, 1998; Keele, Cohen, & Ivry, 1990; R. K. Meyer & Palmer, 2003; Palmer & R. K. Meyer,
2000). In such cases, transfer is governed by task similarity based on sequence structure rather
than the kinds of actions used to generate sequences (cf. MacKay & Bowman, 1969). Effector
independence is also supported by similarity in error patterns across domains that involve very
different actions: speech and music (viz. piano performance). Similar patterns of serial order-
ing errors have been found in different domains, such as speech production (e.g., Garrett,
1980), typing (e.g. Rumelhart & Norman, 1982), and piano performance (e.g., Palmer & van
de Sande, 1993, 1995), and similar patterns of serial ordering errors have been found when the
same participants produce speech or sequences of key presses (MacKay, 1971; Rosenbaum et
al., 1986).

7. Conclusions

The performance of music exemplifies a serial ordering task of the highest difficulty; se-
quences comprise events that recur in different contexts and must be produced with great ra-
pidity and temporal precision. Even so, musicians are capable of performing at very fast rates
with very low error rates, often circumventing the traditional speed–accuracy trade-off relation
(although not always, as our data demonstrate). We have described a model that accounts for
this behavior in terms of a contextual representation that predicts both error rates (accuracy)
and error types (serial order) with parameters that model working memory, domain-specific
skill, and motor dexterity among performers. The fundamental assumption of the extended
range model is that the errors in production originate in the incremental retrieval of events over
time. Thus serial order and accuracy may both share a common source: the time over which the
contextual representation of a sequence is updated during production.

The extended range model makes assumptions that are consistent with past work but do not
fully resemble any single model. An important issue for other models of speed–accuracy
trade-offs to consider is the role of the surrounding context, which may facilitate rather than in-
terfere with event retrieval. In addition, the approach presented here suggests that individual
differences in speed–accuracy trade-offs during complex tasks may emerge from multiple
sources, including both motoric and cognitive factors.

Notes

1. By event, we refer to a stimulus, or stimuli that cooccur in time; events in music are sin-
gle notes or chords. Although events are commonly considered to be perceptual, recent
research suggests that actions may be conceptualized with respect to the resulting per-
ceived stimulus (Hommel, Müsseler, Aschersleben, & Prinz, 2001). Based on this re-
search, we use the term event to refer interchangeably to actions and consequent sounds
in performance.

2. We note that this treatment differs slightly from the use of these terms in other research
(e.g., Osman, Moore, & Ulrich, 2003) in which preparation is exclusively motoric in or-
igin and follows response selection in time. Such research often incorporates a go–no
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go paradigm in which selection involves a decision regarding which effector to use
(e.g., left vs. right hand), and response preparation involves the initiation of that move-
ment. By contrast, the need to select multiple responses in a sequence may reverse the
temporal order of these processes.

3. Values for extended range model parameters (t′, B) used to generate model predictions
in Figs. 3 and 4 reflect the range of fitted values in the reported experiment and were
based on preliminary fits.

4. VAF was computed as VAF = 1 – (SSE / SST) = 1 – [Σ(data – model)2 / Σ(data – M)2],
where SSE = sum of squares–error, SST = sum of squares–total, and M = mean for ob-
tained data (Ruml & Caramazza, 2000). Note that it is mathematically possible to ob-
tain a negative VAF if SSE > SST, even though the interpretation of VAF is similar to r2,
which cannot result in a negative value.

5. We estimated AIC using sum of squared errors: AIC = n * ln SSE + 2 * k (Myung & Pitt,
1998), where n = number of observations (which is 8 for all fits reported here) and k =
number of parameters.

6. Measures of percentage correct and d′ often do not converge (MacMillan & Creelman,
1991). Nevertheless, we considered the extension of this model to error rates to be rea-
sonable. Wickelgren’s equation predicting d′ is highly similar to the “limiting case” ac-
tivation equation proposed by McClelland (1979; see Equation 6). This equation pre-
dicts activation of the correct event, a pattern that should converge with p(correct) and
by extension p(err). Conversely, limiting predicted activation functions to d′ seems
overly restrictive.
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Appendix

The range model combines the serial component with a metrical component that reflects
similarity between the metrical accent strength of the current event and surrounding events.
Metrical accents typically alternate between strong and weak (Cooper & Meyer, 1960; Lerdahl
& Jackendoff, 1983; Liberman & Prince, 1977). The similarity between the current event (i)
and an event at some distance (x) takes this form:

Where M is an array of similarity relations by position and distance (where distance x can be
positive for future events or negative for past events) and m is a variable that reflects metrical
accent strength in metrical grid notation (Lerdahl & Jackendoff, 1983; Liberman & Prince,
1977; Palmer & Pfordresher, 2003). According to Equation A1, metrical similarity is the in-
verse of the absolute difference in metrical accent strength between the two positions, divided
by the sum of accent strengths. This relative similarity metric is a generalized form of Weber’s
law, and was found by Palmer and Pfordresher (2003) to provide better fits to movement error
data than an absolute similarity metric based on the numerator alone. The result of applying
this equation to binary meters is that events separated from the current event by multiples of 2
are more similar to the current event, leading to higher activations for events at these distances
than for events at other distances. This general rule holds for each sequence position, although
the specific pattern of activation strengths across distance in the metrical component varies de-
pending on the metrical accent associated with the current position (see Palmer & Pfordresher,
2003, for details).

Finally, metrical weights (wj) increase the salience of one level in the metrical grid, and cor-
respond to the level at which people would clap or tap to the beat of a musical sequence (Duke,
1989; Parncutt, 1994). Such behaviors indicate that a certain level (j) in the metrical hierarchy
receives prominence; such levels are referred to as the tactus in music (e.g., R. K. Meyer &
Palmer, 2001). In the range model the tactus level may be weighted more highly than other
metrical levels through an additional free parameter wj, such that:

where g indicates the presence (g = 1) or absence (g = 0) of a metrical accent at each metrical
level (j) and k is the total number of levels (k = 4 in Fig. 1). In the metrical grid notation of Fig. 1
(shown below the music notation), g = 1 for positions and levels marked with an X. The weight
(w) for j = tactus is assumed to exceed 1/k (equal weights across levels), and the weights of re-
maining levels are equally divided from the quantity 1 – wj = tactus to ensure that weights across
all levels sum to 1. We chose to vary weights exclusively on Level 2 (wtactus = w2) in the fits re-
ported here, based on previous fits to performances with the same stimuli, which indicated that
Level 2 rather than other metrical levels is chosen as the tactus (Palmer & Pfordresher, 2003).
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Note that Fig. 1 shows event activations at a single point in time and at a single sequence po-
sition. However, the range model predicts that the distribution of activations changes across se-
quence positions, due to change in metrical similarity relations across position (i). Further-
more, although the range model predictions shown in Fig. 1 are symmetrical with respect to
past and figure events, this symmetry does not hold at each sequence position for the same rea-
son (although it does hold for average activations across all positions). Fits to different se-
quence positions are shown in Palmer and Pfordresher (2003).
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