
Assigned: 21 Feb 07
Topic: What is a computer? (Part II: Philosophy)

Required:

Searle, John R. (1990), "Is the Brain a Digital Computer?",
Proceedings and Addresses of the American Philosophical
Association 64(3) (November): 21-37.

Strongly recommended:

Shagrir, Oron (2006), "Why We View the Brain as a Computer",
Synthese 153(3) (December): 393-416.

Recommended:

Piccinini, Gualtiero (2003), "The Mind as Neural Software:
Functionalism, Computationalism, and Computational
Functionalism", paper read at the APA Pacific Division (March 2004).

Rapaport, William J. (in press), "Searle on Brains as Computers",
American Philosophical Association Newsletter on Computers and
Philosophy.

Synthese (2006) 153:393–416
DOI 10.1007/s11229-006-9099-8

O R I G I NA L PA P E R

Why we view the brain as a computer

Oron Shagrir

Received: 6 July 2006 / Accepted: 8 August 2006 /
Published online: 20 October 2006
© Springer Science+Business Media B.V. 2006

Abstract The view that the brain is a sort of computer has functioned as a theo-
retical guideline both in cognitive science and, more recently, in neuroscience. But
since we can view every physical system as a computer, it has been less than clear
what this view amounts to. By considering in some detail a seminal study in com-
putational neuroscience, I first suggest that neuroscientists invoke the computational
outlook to explain regularities that are formulated in terms of the information con-
tent of electrical signals. I then indicate why computational theories have explanatory
force with respect to these regularities: in a nutshell, they underscore correspon-
dence relations between formal/mathematical properties of the electrical signals and
formal/mathematical properties of the represented objects. I finally link my pro-
posal to the philosophical thesis that content plays an essential role in computational
taxonomy.

Keywords Computation · Content · Information · Explanation

A central working hypothesis in cognitive and brain sciences is that the brain is a sort
of a computer. But what, exactly, does it mean to say that an organ or a system such as
the brain is a computer? And why do scientists take a computational approach to brain
and cognitive function? In addressing these questions, I will put forward a revisionary
account of computation that makes two radical claims. First, that everything can be
conceived as a computer, and that to be a computer is not a matter of fact or discov-
ery, but a matter of perspective. And second, that representational content plays an
essential role in the individuation of states and processes into computational types.

As a friend of brain and cognitive science, and a proponent of the computational
approach, one of my objectives is to show that there is no conflict between the view

O. Shagrir (B)
Departments of Philosophy and Cognitive Science,
The Hebrew University of Jerusalem,
Jerusalem 91905, Israel
e-mail: shagrir@cc.huji.ac.il

394 Synthese (2006) 153:393–416

I advance here and the foundations of computational cognitive and brain science. If
anything, it helps explain why the computational approach has been fruitful.

The paper is organized as follows. In Sect. 1 I review the notorious problem of
physical computation, that is, the problem of distinguishing computing physical sys-
tems, such as desktops and brains, from physical systems, such as planetary systems,
digestive systems, and washing machines, that do not compute. After enumerating the
conditions for being a computer that have been adduced in the literature, I conclude
that some of the distinguishing features have to do with the way we conceive the
systems in question. In this sense, being a computer is, at least in part, a matter of
perspective.

Why do we assume the computational outlook when we study the brain, but not
when we study other systems? In seeking an answer to this question I examine
(in Sect. 2) a study in computational neuroscience (Shadmehr & Wise, 2005). I observe
that we apply computational theories when we want to explain how the brain performs
a semantic task, i.e., a task specified in terms of representational content, and the (com-
putational) explanation consists in postulating an information-processing mechanism.
From this I conclude that we adopt the computational approach because we seek to
explain how a semantic task can be carried out, and computational explanations are
able to do this. But what is the source of this explanatory force? Why are computing
mechanisms able to explain semantic tasks? I suggest (in Sect. 3) that the explanatory
force of a computing mechanism derives from its correspondence to mathematical
relations between the represented objects and states. In the last section (Sect. 4), I
discuss several objections to my account, and argue that the individuation of a com-
puting mechanism makes an essential reference to these mathematical relations, and,
hence, to certain aspects of representational content.

1 The problem of physical computation: what does distinguish computers
from other physical systems?

Computer models are often used to study, simulate, and predict the behavior of
dynamical systems. In most cases, we do not view the modeled system, e.g., the solar
system, as a computer. When studying the brain, however, our approach is different.
In this case, in addition to using a computer model to simulate the system under inves-
tigation, i.e., the brain, we also take the modeled system itself to compute, viewing
its dynamical processes as computing processes. Why is this so? What is it about the
brain that makes us consider it, along with desktops and pocket calculators, a species
of computer, when it doesn’t even occur to us to accord that status to solar systems,
stomachs and washing machines?

When we talk about computation in the context of mind and brain, we have to dis-
tinguish between two categories of computing. One is associated with certain everyday
activities, e.g., multiplying 345 by 872. This sort of calculation is done “in-the-head,”
often with the aid of a pencil and paper. I call it mental calculation to signify that the
computing agent is largely aware of the process and “controls” it. In characterizing
mental calculation, we take the contrast class to be other mental processes, such as
dreaming, mental imagery, deliberating, falling in love, and so forth, and demarcating
calculation here does not raise any particular problem. The other category is that of
cerebral computation. When we say that the brain is a computer, we are assuming that
the processes underlying many mental phenomena—mental calculation, dreaming,

Synthese (2006) 153:393–416 395

and so on—are themselves computations. In characterizing cerebral computation, the
contrast class is different. Since we take brain processes to be electrical, chemical and
biological, the question we should be asking is what makes them computational. What
distinguishes these processes from all the other physical, chemical and biological pro-
cesses, e.g., planetary movements, digestive processes and wash cycles, which are not
conceived as computations? And, more generally, what is it that makes some physical
processes, but not others, computations?

It should be emphasized that I do not seek a precise and definitive answer to the
question of what it is that makes us deem a physical process computation. There are,
undeniably, fuzzy cases such as look-up tables and infinite-time machines. The puzzle
about physical computation does not arise merely because we do not have a precise
definition of physical computation, but because we have a hard time coming up with
a definition that distinguishes even the most obvious cases of computation from non-
computation. There are conditions deemed—correctly, in my opinion—necessary for
something to be considered a computer. But astonishingly, these conditions, individ-
ually and jointly, fail to differentiate even a single clear-cut case of a computer from
a clear-cut case of a non-computer.

Two conditions are often invoked in characterizing computation. The first is that
computation is a species of information-processing, or as the saying goes, “no com-
putation without representation” (Fodor, 1981, p. 122; Pylyshyn, 1984, p. 62). What is
meant by ‘information’ or ‘representation’ here? Our first reaction is that the notion
of representation assumed by computation must be restricted. After all, every phys-
ical system can be interpreted as representing something. We can, for instance, take
planetary systems, stomachs and washing machines to compute the solutions of the
mathematical equations that describe their operations; that is, we can construe their
states as representing certain numerical values. The question, then, is whether there
is a kind of representation that unequivocally distinguishes computing systems from
at least some non-computing systems.

One proposal is that suitable representations are those whose content is observer-
independent. On this criterion, representations whose content is “derived” are ex-
cluded from the computational domain.1 Our cognitive states are usually classified as
representations of the former sort: whether I believe that Bush is a good president
is said to be independent of what others think or what they take me to believe.2

By contrast, the aforementioned construal of states of washing machines as repre-
senting numbers does not seem to satisfy the criterion, since this interpretation is
observer-dependent: it is we who ascribe to them this representational force.

But this proposal draws the line in the wrong place. On the one hand, it is by
no means implausible that planetary systems, stomachs and washing machines have
observer-independent representational powers. Planetary systems might carry infor-
mation about the Big Bang, stomachs about what one has eaten recently, and washing
machines about what one has worn recently.3 On the other hand, digital electronic
systems, e.g., desktops, the paradigm cases of computing systems, operate on symbols
whose content is, indisputably, observer-dependent. That the states of Deep Junior

1 The distinction is suggested, e.g., by Dretske (1988), who uses the terms ‘natural’ and ‘conventional,’
and Searle (1992), who speaks of the ‘intrinsic’ and ‘non-intrinsic.’
2 But see Davidson (1990) and Dennett (1971) for a different view.
3 See Dretske (1988, Chapter 3). Dretske further distinguishes information from (natural) represen-
tation, which might improve things somewhat, but cannot account for computing systems that operate
on conventional signs.

396 Synthese (2006) 153:393–416

represent possible states of chessboards is an interpretation we have ascribed to them;
we could just as well have ascribed to them very different content.

Another proposal starts from the premise that a computation operates solely on
a symbol system, i.e., a system of representations with combinatorial syntax and
semantics.4 Hence, representations that can differentiate computations from non-
computations are those that constitute such systems. This criterion seems more
plausible than the preceding one, since it appears applicable to all digital electronics,
and, arguably, to mental representations as well. But it is far too strict. First, there are
all sorts of analog computers that range over representations that are not symbolic.
Second, the current trend in brain and cognitive science is to view the brain as a
computer whose computational processes operate on representations that have no
combinatorial structure. This approach is now widespread in the fields of connection-
ism, neural computation, and computational neuroscience.5 Whether it is empirically
adequate is not at issue here: we are not inquiring into whether the computational
architecture of the brain is “classical” or “connectionist.” We are, rather, inquiring
into whether we can describe the brain as a computer even if it turns out that it does
not operate on a combinatorial system of representations.

Thus the no-computation-without-representation condition does not advance our
investigation at this point. Every system can be seen as representing something.
Attempting to distinguish between different sorts of representations turns out to
be irrelevant in the computational context. Some computations range over repre-
sentations whose content is observer-independent, some over representations whose
content is observer-dependent. Some computations range over representations whose
structure is combinatorial, some over other sorts of representations.

An oft-invoked constraint is what Fodor (1980) calls the “formality condition”: a
process is computational only if it is formal. But what does formality entail? It has been
associated with a number of features, particularly mechanicalness, abstractness, and
algorithmicity. Mechanicalness is generally understood in one of two ways. The sense
more common in the philosophy of science is that of a mechanism, namely, a causal
process underlying a certain phenomenon or behavior: “Mechanisms are entities and
activities organized such that they realize of regular changes from start or setup condi-
tions to finish or termination conditions” (Craver, 2002, p. 68). Physical computation
is surely mechanical in this sense: it is a causal process that involves changes in entities
from initial conditions (inputs) to termination conditions (outputs). But so are the
other physical processes, such as planetary movements, digestive processes and wash
cycles, which are non-computing.

Another sense of mechanicalness is the logical sense. A process is mechanical in
this sense if it is blind to the specific content of the symbols over which it operates.
The way the rules of inference function in axiomatic systems is, perhaps, the paradigm
case, “the outstanding feature of the rules of inference being that they are purely
formal, i.e., refer only to the outward structure of the formulas, not to their meaning,
so that they could be applied by someone who knew nothing about mathematics, or by

4 See, e.g., Newell and Simon (1976), Chomsky (1980), and Fodor and Pylyshyn (1988).
5 See, e.g., Rumelhart, McLelland, and PDP Research Group (1986), Smolensky (1988), Churchland
and Sejnowski (1992), and Churchland and Grush (1999). A specific example is considered in the next
section, a propos discussion of the work of Shadmehr and Wise.

Synthese (2006) 153:393–416 397

a machine” (Gödel, 1933, p. 45).6 Mechanicalness in this sense is often associated with
mental calculation, and is indeed central to the definition of a formal system.7 But in
the context of physical computation, the condition, though satisfied, is not helpful: it
does not distinguish computing from non-computing systems. Almost every physical
process is mechanical in this sense. Planetary movements, digestive processes and
wash cycles proceed regardless of the content one might ascribe to their intermediate
states.

A second feature of formality is abstractness. This feature refers to a description
of the system, that is formulated in terms of an abstract—i.e., mathematical, logi-
cal, or “syntactical”—language, and often called a “program.”8 It is often further
required that the physical system implement this abstract description, which means,
roughly, that its physical states and operations “mirror” the states and operations of
the abstract description.9 Now I agree that the computational description of a sys-
tem is formulated in terms of some logical or mathematical language, and I have no
quarrel with the fact that we can view the system as implementing this program. The
problem is that this condition does not advance our goal of distinguishing computing
from non-computing systems. After all, planetary movements, digestive processes,
and wash cycles are also described by a set of mathematical equations, known as the
laws of nature. And, much like digital computers, they can be seen as “implementing”
these equations, in the sense that their physical states mirror or otherwise correspond
to the states of the describing equations.

A third feature of formality is algorithmicity. This feature can be understood as
amounting to no more than the combination of the features of mechanicalness and
abstractness.10 But it can also be understood in a stronger sense, as a structural
constraint on computing. So understood, a physical computing system is formal in
that it does not implement just any abstract structure, for instance, a set of differ-
ential equations, but rather, the implemented structure must be of a special sort: a
Turing machine, a finite-state automaton, or perhaps some other kind of “digital” or
“discrete” process.11

6 This sense of being mechanical is stressed by Fodor: “Formal operations are the ones that are speci-
fied without reference to such semantic properties of representations as, for example, truth, reference
and meaning” (1980, p. 309).
7 Cf. Gödel: “Turing’s work gives an analysis of the concept of ‘mechanical procedure’ (alias ‘algo-
rithm’ or ‘computation procedure’ or ‘finite combinatorial procedure’). This concept is shown to be
equivalent with that of a ‘Turing machine’. A formal system can simply be defined to be any mechan-
ical procedure for producing formulas, called provable formulas” (in his Postscript to Gödel, 1934,
Collected Works, vol. 1, pp. 369–370).
8 The appeal to abstraction is hinted at in Gödel’s reference to the “outward structure of the formu-
las.” It is made more explicit by Fodor, who defines computation as “mappings from symbols under
syntactic description to symbols under syntactic description” (1994, p. 8).
9 The notion of implementation is controversial. Roughly, a physical system implements an abstract
structure if its physical states “mirror” the operations of the abstract structure in the sense that there
is some correspondence between the physical states and the abstract states. For example, if a physical
state P corresponds to an abstract state A, and a physical state Q corresponds to an abstract state B,
and if P always brings about Q, i.e., the conditional is counterfactual supportive, then A always brings
about B. For refinements of this idea see Chalmers (1996) and Scheutz (2001).
10 In my opinion, computational neuroscientists, e.g., Shadmehr and Wise (see next section), tend to
take algorithmicity in this weaker sense.
11 This feature of formality is stressed in Haugeland (1981). The claim that algorithms are captured
by Turing machines is also made in Gödel’s comment (note 7 above), and is generally referred to as the
Church–Turing thesis. Note, however, that what I am calling “algorithmicity” is close to Gödel’s notion

398 Synthese (2006) 153:393–416

But the algorithmicity condition faces two major difficulties. For one thing,
appearances to the contrary, it is satisfied by any physical system. At some level
of description, everything is algorithmic: every physical process can be seen as a dis-
crete state-transition process. This point is argued for compellingly by Putnam (1988)
and Searle (1992), who further maintain that any physical system implements any
“algorithm” whatsoever.12 It may well be that Putnam and Searle rely on an exces-
sively liberal notion of implementation.13 But even if they do, their point is well
taken. As I have suggested elsewhere (Shagrir, 2001), even under the stricter under-
standings of implementation, very simple physical devices simultaneously implement
very different automata. This indicates, at the very least, that every physical system
simultaneously implements several algorithms, even if not every algorithm.

A more serious difficulty is that the algorithmicity condition seems to be inade-
quate: it draws the line between computing and non-computing descriptions in the
wrong place. As we noted, there are analog computers whose processes are considered
to be non-algorithmic.14 It is also possible to conceive of ideal physical systems that
are in some sense “digital,” yet compute non-recursive functions, i.e., functions that
cannot be computed by means of an algorithm.15 And thirdly, there is the important
class of neural networks, artificial and biological, that can be viewed as computing,
even though their dynamics are not “digital” in any obvious sense. These dynamics
are described by “energy” equations, of the sort that describe many other dynamical
systems, including spin glass systems whose particles align in the same direction.16 Of
course, we can count these neural computations as algorithmic, but then, the other
such systems must also be deemed algorithmic.

We find ourselves in a conundrum: any physical system computes something, or
even many things, and every physical process can be seen as computation. The familiar
constraints fail to differentiate computing processes from non-computing processes.
While computing is information-processing, and is mechanical and abstract, these
features can just as well be said to characterize any physical process. And while some
computing processes are algorithmic, in the structural sense outlined above, some
computing processes are non-algorithmic.

What are we to make of this? Churchland, Koch, and Sejnowski (1990) state,
correctly I think, that “whether something is a computer has an interest-relative

Footnote 11 continued
of a finite procedure. On the relationship between the notions of “finite procedure” and “mechanical
procedure,” see my “Gödel on Turing on Computability” (2006).
12 Putnam provides a proof for the claim that every physical system that satisfies certain minimal
conditions implements every finite state automaton. Searle claims that every physical process can be
seen as executing any computer program.
13 See Chalmers (1996) and Scheutz (2001).
14 These machines are algorithmic in the sense that their processes can be approximated by a Turing
machine. The problem with this sense of algorithmicity is that it encompasses every physical system,
including planetary systems, stomachs and washing machines. But see also the well-known exception
presented in Pour-El and Richards (1981).
15 See Hogarth (1992, 1994). Shagrir and Pitowsky (2003) argue that while the postulated computing
machine is digital, in that it consists of two communicating Turing machines, it is not “finite,” since it can
carry out infinitely many steps in a finite time span. Hence, it does not refute the Church–Turing thesis.
16 For an extensive discussion of this point, see my “Two Dogmas of Computationalism” (Shagrir,
1997). An artificial network whose dynamics are given by “energy equations” is described in Shagrir
(1992). On network models of the brain, see the next section. For a detailed discussion of the relations
between the theory of neural networks and statistical mechanics, see Amit (1989).

Synthese (2006) 153:393–416 399

component, in the sense that it depends on whether someone has an interest in the
device’s abstract properties and in interpreting its states as representing states of
something else” (p. 48). But I wouldn’t go as far as Searle (1992) who argues that
“computation is not discovered in the physics” (p. 225), that “syntax is not intrinsic
to physics” (p. 208), and that “there is no way that computational cognitive science
could ever be a natural science, because computation is not an intrinsic feature of
the world. It is assigned relative to observers” (p. 212). True, we do not discover
that the brain is a computer, but decide to so describe it.17 But it does not follow,
without additional assumptions, that there is nothing here to discover. First, the claim
that computation is observer-relative does not imply that what the mind/brain repre-
sents is observer-relative. All we have said is that some computations, e.g., desktops,
are defined over representations whose content is observer-relative—not that all are.
Second, the claim that computing is observer-relative does not entail that the truth-
value of the syntactic descriptions is observer-relative. Syntactic descriptions are true
(or false) abstract descriptions of what the system does; in this sense, the physical sys-
tem really implements these abstract structures. The “interest-relative component” is
our decision to describe a system in these terms.

Searle’s conclusion is, therefore, premature. That being a computer is a matter
of perspective does not entail that computational cognitive science (neuroscience)
has no empirical content. In particular, it is consistent with their discovering (a) the
representational contents of the brain—which entities it represents, and (b) the oper-
ations that are performed over these representations. It might well be, therefore, that
cognitive (and brain) science seeks to discover “the computational structure of the
brain”: the implemented abstract structure that is defined over the mental (or cere-
bral) representations.18

Searle arrives at his daring conclusion because he thinks that if being a computer
is a matter of perspective, then the claim that the brain is a computer “does not get
up to the level of falsehood. It does not have a clear sense” (p. 225). Indeed, we have
described the brain as a computer without a clear sense of what we are talking about.
But it does not follow that our talk is meaningless, just that we still have to unpack
the notion of cerebral computation. Given that applying the computational outlook
involves some interest-relative component, our task is to clarify what motivates us to
apply the computational approach when studying brain and cognitive functions. We
have to figure out why we apply it to some systems, e.g., the brain, and not others,
e.g., planets or washing machines. The next step in our investigation is to consider this
question in the context of a seminal study of computation.

2 Why to apply the computational approach: a case study

The Computational Neurobiology of Reaching and Pointing, by Shadmehr and Wise,
offers a comprehensive treatment of the motor-control problem.19 I will focus on part
II (Chapters 9–14), where Shadmehr and Wise theorize about how the brain might

17 See also Smith (Smith, 1996, 75 ff.).
18 Whether computational cognitive science/neuroscience is a natural science in the “naturalistic”
sense that computational types make no essential reference to “mental” or “semantic” items is
discussed in length in Sect. 4.
19 I learned about Shadmehr’s work at the 2004 Washington University Computational Model-
ing and Explanation in Neuroscience workshop, both from Frances Egan, who discussed it from a

400 Synthese (2006) 153:393–416

compute the vector difference between the location of the end-effector (i.e., the hand
and objects it controls) and the target location. The discussion is divided into three
parts: computing the end-effector location (Chapters 9–10), computing the target
location (Chapter 11), and computing the difference vector between the end-effector
and target locations (Chapters 12–14). I will not go into the empirical content of the
theory in any detail; my aim is to see what we can learn about the philosophical issues
at hand from this scientific study.

Like many scientists, Shadmehr and Wise do not provide a comprehensive account
of what they mean by “computation.” In a section of the introductory chapter entitled
“Why a Computational Theory?,” they rely mainly on Marr’s framework:20

In his often-quoted work on vision, David Marr described three levels of under-
standing CNS [central nervous system] functions: the level of a computational
theory, which clarifies the problem to be solved as well as the constraints that
physics imposes on the solution; the level of an algorithm, which describes a
systematic procedure that solves the problem; and the level of implementation,
which involves the physical realization of the algorithm by a neural network. A
computational-level theory thus explains some of what a complex system does
and how it might work. (pp. 3–4)

There are, however, striking differences between the approach advocated by Marr
and the approach taken by Shadmehr and Wise, both with respect to the methodology
of investigation and to the characterization of the three levels. Marr’s methodology,
famously, is top-down, moving from the computational level to the algorithmic, and
ultimately, implementation. Computational theory “clarifies the problem” by identi-
fying “the constraints that physics imposes on the solution”, where “physics” denotes
the physical environment. Shadmehr and Wise, on the other hand, rarely appeal to
constraints from the physical environment.21 In imposing constraints on the prob-
lem and its solution, they appeal, more often, to data from evolutionary biology,
experimental psychology, robotics, and most of all, neuroscience.22 Let me bring two
examples to illustrate the role played by neurobiological constraints in computational
theories.

Shadmehr and Wise’s theory about the computation of the target location relies on
the three-layer neural net model presented in Zipser and Andersen (1988). The inputs
in the model are two sets of cells, one encoding information about eye position (ori-
entation) relative to the head, another encoding the location of the stimulus (target)
on the retina, i.e., its retinotopic location. The output is the location of the target in

Footnote 19 continued
philosophical viewpoint, and from Shadmehr’s former student, Kurt Thoroughman, who discussed it
from an empirical viewpoint.
20 See Marr (1982), Chapter 1.
21 It should be noted, however, that Marr’s focus on the physical environment is not exclusive, and
he also invokes neurobiological data as a constraint on solutions, and that Shadmehr and Wise do, to
some extent, take the agent’s environment into account. But there is a significant difference in the
weight they give these factors.
22 Evolutionary constraints are addressed in the first part of the book; see also the discussion of
the evolutionary advantages of fixation-centered coordinates (p. 185). For behavioral data, see, e.g.,
Sect. 10.1.2 (pp. 160–162), where the results from behavioral experiments are taken to suggest that
the CNS aligns visual and proprioceptive cues to produce an estimate of hand location. For cues from
virtual robotics, e.g., in computing the forward kinematics problem, see Sect. 9.6 (pp. 148–151).

Synthese (2006) 153:393–416 401

a head-centered set of coordinates.23 The model rests on earlier electrophysiological
results by Andersen, Essick, and Siegel (1985), who found three classes of cells in the
PPC (in area 7a) of the monkey: (1) cells that respond to eye position only (15% of the
sampled cells); (2) cells that are not sensitive to eye orientation (21%), but have an
activity field in retinotopic coordinates; and (3) cells that combine information from
retinotopic coordinates with information about eye orientation (57%).24 Based on
these constraints, Zipser and Andersen constructed the aforementioned three-layer
model so as to have the two sets of inputs in the model correspond to the first two
classes of PPC cells, and the hidden layer of the (trained) network correspond to the
third class of PPC cells.

The second example pertains to the coordinate system relative to which the com-
putation is carried out: it can be either body-centered, e.g., relative to the head or
shoulder, or fixation-centered. These different systems become relevant with respect
to the coordinate system in which the CNS represents the end-effector location.25

The assumption underlying the Zipser and Andersen model is that the CNS uses a
head-centered coordinate system. However, more recent data collected by Buneo,
Jarvis, Batista, and Andersen (2002) suggests that in area 5d of the PPC, neuronal
activity encodes target and hand locations in fixation-centered coordinates.26 Based
on this data, Shadmehr and Wise adjusted their computational theory, adopting visual
coordinates, with the fovea as the point of origin.

It is also notable that Shadmehr and Wise differ from Marr in the way they char-
acterize and distinguish between the three levels. Consider the distinction between
the computational and algorithmic levels. For Marr, the computational theory “clari-
fies the problem to be solved,” whereas the algorithmic level “describes a systematic
procedure that solves the problem.” For Shadmehr and Wise, the objective of the
computational theory is to explain how the system might solve the problem, which,
they say, amounts to ascertaining the “systematic procedure that solves the problem,”
namely, the “the process of computing” (p. 147). This is, of course, precisely what Marr
sees as the objective of the algorithmic level. It would thus seem that Shadmehr and
Wise do not recognize any significant difference between the levels. As far as they are
concerned, to theorize at the computational level is to conjecture, on the basis of all
available data, as to how the problem might be solved, whereas the ‘algorithmic level’
refers to way it is solved.27

Or consider the distinction between the algorithmic and implementation levels.
Marr reserves the terms ‘computation’ and ‘algorithm’ for a cognitive, e.g., visual,
system, and the term ‘implementation’ for their realization in the brain. Shadmehr
and Wise draw no such distinction. On the one hand, it is clear that Shadmehr and
Wise take the brain itself to be a computer. Indeed, the phrase “the CNS computes”
occurs dozens, if not hundreds, of times throughout the book, for example, in the
general thesis that “according to the model presented in this book, in order to control

23 Shadmehr and Wise, pp. 193–197. Shadmehr and Wise diverge from Zipser and Andersen mainly
in locating the outputs in a fixation-centered coordinate system, i.e., a visual frame with the fovea as
its point of origin (see below).
24 Shadmehr and Wise, pp. 188–192.
25 See Shadmehr and Wise, pp. 209–212.
26 See Shadmehr and Wise, pp. 212–216.
27 Shadmehr and Wise thus conclude the section “Why a Computational Theory?” with the state-
ment that the book “presents one plausible, if incomplete, framework for understanding reaching and
pointing movements” (p. 4).

402 Synthese (2006) 153:393–416

a reaching movement, the CNS computes the difference between the location of a
target and the current location of the end effector” (p. 143). On the other hand, by
“algorithm,” Shadmehr and Wise do not refer to a sequential, digital, discrete, or
controlled process, but to something altogether different. They almost always refer
to a multi-directional, parallel, spontaneous, and often analog process, and always
describe it by means of a neural network model.28

Keeping these differences in mind, let us focus on the objectives of computational
theories. According to Shadmehr and Wise, the aim of a computational theory is to
explain “some of what a complex system does and how it might work.” This statement
raises two questions: (a) What exactly is the explanandum of a computational theory:
what are the computational problems that the brain solves? And (b) What exactly
is a computational explanation: how does a computational theory explain how these
problems are—or might be—solved? I address them in turn.

Two observations about the nature of computational problems come to mind imme-
diately. First, the problem is formulated in terms of regularities: what is being com-
puted is an input–output function. Thus in Chapter 9 Shadmehr and Wise consider “the
problem of computing end-effector location from sensors that measure muscle lengths
or joint angles, a computation called forward kinematics” (p. 143). In Chapter 11 they
advance a theory, based on the Zipser–Andersen model, that seeks to explain how the
CNS computes the target location from information about eye orientation and the
target’s retinotopic location. And in Chapter 12 they consider the problem of com-
puting the vector difference from information about the locations of the end-effector
and the target.

The second observation I want to make is that these regularities are specified in
semantic terms. By this I mean more than that the inputs and outputs are represen-
tational states. I mean, in addition, that the function being computed is specified in
terms of the content of these representations: information about joint angles, hand
and target location, eye orientation and so forth. For example, information about the
“end-effector location” is computed from information about “muscle lengths or joint
angles”: “the CNS computes the difference between the location of a target and the
current location of the end effector” (p. 143). However, in calling these terms semantic
I do not imply that they are intentional. In computational neuroscience, it is far from
clear that the semantic concepts that scientists invoke, e.g., representation, informa-
tion and encoding, refer to much more than stimuli–response causal relations, i.e., a
way to interpret neural activity in cells as a response to certain environmental stimuli.
The point is simply that regularities in the brain are formulated in these semantic
terms.

I also do not suggest that the semantic terms are introduced once we apply the
computational approach. To the contrary, assigning content and information to brain/
mental states is often prior to taking the computational outlook. This is perhaps obvi-
ous in the case of computational models of “higher-level” cognitive phenomena. But
it is also the case in computational neuroscience. To see this, let us take a closer look
at the electrophysiological studies of Andersen et al. (1985). In these experiments

28 Shadmehr and Wise also advocate a “non-classical,” neural network approach in robotics. They
write, e.g., that “rather than a symbolic computer program to align “proprioception” with “vision,”
the imaginary engineer might use one neural network based on feedforwarded connections to map
proprioception to vision (forward kinematics) and another network to map vision to proprioception
(inverse kinematics). Both of these networks would perform what is called a function-approximation
computation” (p. 150).

Synthese (2006) 153:393–416 403

Andersen and his colleagues record PPC neuronal activity from awake monkeys
trained in various visuospatial tasks, e.g., fixating on a small point at different eye
positions. They then label one group of neurons as “eye-position cells” interpreting
their activity as “coding” a range of horizontal or vertical eye positions. They state,
more generally, that the “brain receives visual information” and that “at least nine
visual cortical fields . . . contain orderly representations of the contralateral visual
field” (p. 456). Undertaking their computational model, Zipser and Andersen (1988)
do not introduce new semantic concepts but build on the interpretation and terminol-
ogy of the prior electrophysiological studies.29

Taken together, we can say that the problems the brain computes are certain regu-
larities or functions that are specified in terms of the representational content of the
arguments (inputs) and values (outputs). I call these problems semantic tasks. The
assertion that it is semantic tasks that are being computed is consistent with other
computational studies of the brain.30 It is also consistent with the computing tech-
nology tradition that calculators compute mathematical functions such as addition
and multiplication, chess machines compute the next move on the chess-board, and
robots compute motor-commands.31 And it is consistent with much of the philosoph-
ical tradition.32

Let us now turn to the explanation itself. Perusal of Shadmehr and Wise suggests
two features that are associated with computational explanations. First, explanation of
a semantic task consists in revealing the (computing) process that mediates between
the “initial conditions” (e.g., states that represent the joint angles) and the “termi-
nation conditions” (e.g., states that represent the hand location). In this sense, a
computational explanation is a sort of mechanistic explanation: it explains how the
computational problem is solved by revealing the mechanism, or at least a potential
mechanism, that solves the problem. The second feature is that the computing process
invoked by the explanation satisfies the conditions on computation mentioned in the
first section: it is both information-processing and formal, whether the latter is taken
to connote mechanicalness or abstractness.

The information-processing character of the process is evident throughout the
book. On a single page, we find several statements to this effect: “the process of com-
puting motor commands depends crucially on information provided by sensory sys-
tems”; “the coordinate frame used by the CNS for representing hand location reflects
this dominance” ; “the idea that your CNS encodes hand location in a vision-based
coordinates intuitive enough” (p. 147, emphasis added). The mechanical character of
computing processes is also abundantly evident in the book, particularly in descrip-
tions of computing processes in engineered robots. And the abstractness of computing

29 I am grateful to an anonymous referee who encouraged me to add these comments.
30 See, e.g., Marr (1982), and Lehky and Sejnowski (1988), whose computational theories seek to
explain, e.g., how the brain extracts information about an object’s shape from information about
shading.
31 E.g., Shadmehr and Wise’s discussion of how to approach the problem of forward kinematics
in robotics engineering (pp. 148–151): “the engineer’s computer program can be said to align the
mappings of gripper location in visual and proprioceptive coordinates” (pp. 148–149).
32 E.g., Fodor (1994, Chapter 1) states that computational mechanisms are invoked to explain
intentional regularities.

404 Synthese (2006) 153:393–416

processes is manifest in the fact that mathematical language and neural net models
are used to describe them.33

To gain insight into computational explanation, let us examine a real computational
theory, the computational theory at the center of part II of Shadmehr and Wise, which
seeks to explain how the brain computes the difference between the target and the
current location of the hand. The first step is to divide the problem into sub-problems,
each of which is also a semantic task that calls for explanation.34 Shadmehr and Wise
divide the problem into three parts: computing hand location from information about
joint-angles; computing target location from information about eye-orientation and
the retinotopic location of the target, and computing the difference vector from the
locations of the hand and target.

The second step is to characterize the sub-tasks in abstract terms, that is, to describe
input–output relations by means of, say, mathematical equations. I will focus on the
computational problem of the second phase—computing target location from infor-
mation about eye-orientation and the retinotopic location of the target. This problem
is described by the vectorial transformation [R] + [xR] → [Cr], where [R] is a vector
of the numerical activation values of cells that encode the stimulus (target) location
in terms of a retinotopic coordinate system, [xR] stands for the values of electrical
discharges that encode eye-location in head-centered coordinates, and [Cr] stands for
those that encode the target location in head-centered coordinates.35

The third step is to clarify the relations between the abstract inputs, in our case, [R]
and [xR], and the output [Cr]. To do this, Shadmehr and Wise appeal to the Zipser–
Andersen model, which is a three-layer neural network trained to accomplish the task.
The network consists of 64 input units that stand for the visual input [R] and another
32 input units that stand for the eye-position [xR]. Two output representations were
used, both of which are meant to represent the stimulus location in head-centered
position [Cr]. The number of units in the hidden layer is not specified. The discharge pj

of each cell j in the second and third layers, is a logistic function 1/(1 + e−net).36 After

33 In the “Why a Computational Theory?” section, Shadmehr and Wise repeatedly associate com-
putational theories with mathematical terms and entities, declaring, e.g., that numbers “enable
computations and, therefore, computational theories” (p. 3).
34 Obviously, the “steps” here serve to highlight the logical structure of the explanation; I am not
claiming that the explanation actually proceeds by means of these “steps.”
35 Shadmehr and Wise, p. 194. Two points should be noted. First, this vectorial transformation fits the
Zipser–Andersen model, and does not reflect Shadmehr and Wise’s preference for fixation-centered
coordinates. Second, [R] + [xR] signifies a vectorial combination that is, in fact, non-linear.

As to the computational problems tackled in the other phases, the forward kinematic problem is
described in terms of a vector that represents the trigonometric relations between the joint angles
and the end-effector location in a shoulder-based coordinate system; see pp. 151–157, and the sup-
plementary information on Shadmehr’s website: http://www.bme.jhu.edu/∼reza/book/kinematics.pdf.
The computational problem tackled in the last phase, computing the difference vector, is described
by the equation Xdv = Xt − Xee, where Xdv is the difference vector (target location with respect to
end-effector), Xt is the vector representing the target location in fixation-centered coordinates, and
Xee is the vector representing the end-effector location in fixation-centered coordinates.
36 Net = !wij · pi, where pi is the discharge of cell i, and wij is the weight from i to j. Since the network
is feed-forward, for each cell, j, wij is defined only for (all) cells in the preceding layer. The initial
weights are arbitrary: Zipser and Andersen train the net to find the exact mathematical relations
between the input [R] + [xR] and the output [Cr] “by itself.”

Synthese (2006) 153:393–416 405

a training period, in which the weights are modified by means of back-propagation,
the network exhibits the behavior [R] + [xR] → [Cr].37

The fourth and crucial step is to make use of the model to explain the semantic task.
The Zipser–Andersen model is meant to explain two semantic features. It explains,
first, the pattern of behavior in area 7a, i.e., how cells of the “third group” combine
information from retinotopic coordinates with information about eye orientation.
These cells are represented in the model by the units in the hidden layer. Analyzing
the behavior of the hidden units, Zipser and Andersen found that these cells com-
bine information about the inputs, much like the cells in area 7a. In particular, they
behave in accordance with the equation pi = (kT

i e + bi) exp(−(r − ri)
T(r − ri)/2σ 2),

where e stands for eye-orientation with respect to two angular components, ki and
bi represent the cell’s gain and bias parameters, ri is the center of the activity field
in retinotopic coordinates, and σ describes the width of the Gaussian.38 A second
explanatory goal of the model is to show that there can be, at least in principle, cells
coding eye-position-independent location of the stimulus. This goal is achieved by
demonstrating that the output units extract from the information in the hidden units
a coding of the target location in head-centered coordinates. The existence of such
“output” cells in the brain, however, is debatable and has not been unequivocally
demonstrated.

The last stage in the explanation is to combine the three “local” computational
theories into an “integrated” computational theory that explains how the more gen-
eral problem is solved. This is done via a neural net model that combines the three
networks that describe how the sub-tasks are carried out.39

We are now in a better position to say why we apply the computational approach
to some systems, e.g., brains, but not others, e.g., planetary systems, stomachs and
washing machines. One reason is that computational theories seek to explain seman-
tic tasks. We apply the computational approach when our goal is to explain a semantic
pattern manifested by the system in question: to explain how the CNS produces cer-
tain motor commands, how the visual system extracts information about shape from
information about shading, and how Deep Junior generates the command “move
the queen to D-5.” We do not view planetary systems, stomachs and washing mac-
hines as computers because the tasks they perform—moving in orbits, digesting and
cleaning—are not defined in terms of representational content. Again, we could view
them as computing semantic tasks, in which case we might have applied the compu-
tational approach. But we don’t: we aim to explain the semantic tasks that desktops,
robots and brains perform, but not the semantic tasks that planetary systems, stomachs
and washing machines might have performed.40

37 For Zipser and Andersen’s presentation of the model, see Zipser and Andersen (1988), Fig. 4,
p. 681. For a sketch of a model for forward kinematics, see see Shadmehr and Wise (2005) Fig. 9.3 on
p. 149. For a sketch of a model for the third phase (computing the difference vector), see Fig. 12.5
on p. 212. For a detailed mathematical description, see Sect. 12.4 (p. 216 ff.) and Shadmehr’s website:
http://www.bme.jhu.edu/∼reza/book/recurrent_networks.pdf
38 For further details, see Shadmehr and Wise, pp. 193–197.
39 A sketch of the network is provided by Shadmehr and Wise in Fig. 12.11 on p. 223.
40 There is the question of why we view the mind/brain as performing semantic tasks. Answering this
question is beyond the analysis of computation: assigning semantic tasks is not part of the computa-
tional explanation, but is made prior to taking the computational approach (though the computational
study might reveal that the semantic task being solved is not the one we initially attributed to the
mind/brain).

406 Synthese (2006) 153:393–416

A second reason is that computational theories do explain the pertinent semantic
tasks that these systems perform. When we look at the Zipser–Andersen model, we
understand, at least in principle, how the semantic task is carried out. We understand
how the CNS might solve the semantic task of converting information about eye-
orientation and the target’s retinotopic location into information about the target’s
location in body-centered coordinates. This is not a trivial achievement. It is far from
clear that other sorts of explanation, e.g., physical, chemical or biological, have this
or any explanatory force with respect to semantic tasks.

So we have made some progress, but our analysis is not yet complete. To better
understand why we apply the computational approach we should clarify what is the
source of its explanatory force with respect to semantic tasks: we have to better under-
stand the contribution of computational theories in explaining how semantic tasks are
carried out.

3 On the explanatory force of computational theories

Where do we stand? We noted in the first section that to view something as a com-
puter is to describe its processes as operating on representations, and as being formal,
understood as both mechanistic and abstract. But since everything can be described
this way, we concluded that computation is a matter of perspective, at least in part.
We then asked why we adopt the computational attitude to some systems and not
others. Why do we take brains and desktops, but not planetary systems, stomachs
and washing machines, to be computers? Surveying the work of Shadmehr and Wise
has provided at least a partial answer. The computational approach is an explanatory
strategy that seeks to explain a system’s execution of semantic tasks. Computational
theories in neuroscience explain how the CNS accomplishes tasks such as solving the
forward kinematics problem of extracting the end-effector location from information
about muscle lengths and joint angles.

We now need to account for the fact that the computational approach gives us
what we want, that is, they can explain how semantic tasks are carried out. Let me
sharpen the point in need of clarification a bit more. Consider a semantic task of the
type F → G, e.g., converting information about eye-orientation and the retinotopic
location of the target (F) into information about the target location in body-centered
coordinates (G).

Let [R] + [xR] → [Cr] signify the computing mechanism described in the Zipser–
Andersen model, where [R] + [xR] is the computational description of the state
F, and [Cr] that of G. Let us also assume that N0 → Nn is a “low-level” neural
mechanism underlying the semantic task, where N0 is, e.g., the electric discharge
of certain cells in area 7a correlated with F, and Nn that which is correlated
with G.

Now, when we look at the electrophysiological studies of Andersen et al. (1985) we
see that they not only point to the pertinent neurological properties, Ni. They already
formulate, at least partly, the semantic task F → G that is being performed: “many of
the neurons can be largely described by the product of a gain factor that is a function
of the eye position and the response profile of the visual receptive field. This operation
produces an eye position-dependent tuning for locations in head-centered coordinate

Synthese (2006) 153:393–416 407

space” (p. 456).41 Nevertheless, Andersen et al. (1985) do not provide an explanation
for how this semantic operation is produced. A possible explanation is provided only
later on by Zipser and Andersen (1988), and, following them, by Shadmehr and Wise
(2005), in terms of the computational model.

So what is it about computational models that makes them explanatory with respect
to semantic tasks? And what is the explanatory force of the computational mechanism
above and beyond its neurobiological counterpart? Before I present my own answers,
let me address, very briefly, some answers that have been suggested by others.

One answer cites multiple realization. The claim here is that a semantic task can be
implemented in different physical mechanisms, some of which are non-biological.42

But this answer is not satisfying. First, it is far from obvious that with respect to multiple
realization there is any difference between the computational and the neurological.
On the one hand, it might well be that different species apply different computational
mechanisms in performing a given semantic task. On the other, there is no evidence
that the semantic tasks we seek to explain are multiply-realizable in creatures of the
same species, e.g., humans.43 Second, multiple realization does not seem to account
for the explanatory force of computational models, e.g., the Zipser–Andersen model,
in neuroscience. The explanatory force of the model does not stem from the possibility
of being applied to other remote creatures. Its force is in explaining even particular
cases of semantic regularities, e.g., how my CNS comes to represent the location of a
target—that keyboard, say.

Fodor has argued that computational processes, which he views as “mappings from
symbols under syntactic description to symbols under syntactic description” (1994,
p. 8), are truth-preserving: “It is characteristic of mental processes they [psychological
laws] govern that they tend to preserve semantic properties like truth. Roughly, if
you start out with a true thought, and you proceed to do some thinking, it is very
often the case that the thoughts that the thinking leads you to will also be true” (1994,
p. 9). I agree with Fodor that computational processes “preserve semantic proper-
ties,” but I do not think that he correctly accounts for the explanatory import of
this feature. First, if the syntactic processes are truth-preserving, their neural imple-
mentations must be truth-preserving too. But this leaves open the question of why
these processes, under neural descriptions, do not suffice for explanatory purposes,
even though they are truth-preserving. Second, Fodor’s account is confined to “classi-
cal” processes, whereas we are interested in the explanatory power of computational
models in general. For the question we seek to answer is not that of the empirical
adequacy of the classical model of mind.44 Rather, we are trying to understand why
computational models, classical or non-classical, have explanatory power with respect
to semantic tasks.

41 I note again that the task described by Andersen et al. (1985) parallels the transformation between
the input and hidden units in Zipser and Andersen (1988).
42 See, e.g., Fodor (1974) and Putnam (1975). For a version of this argument that highlights complex-
ity considerations see Putnam (1973); in particular, the peg-hole example. For a response, see Sober
(1999).
43 For a detailed discussion of these points with reference to Zipser and Andersen (1988), see Shagrir
(1998).
44 This is, however, the question Fodor addresses. He thus writes: “This emphasis upon the syntac-
tical character of thought suggests a view of cognitive processes in general—including, for example,
perception, memory and learning—as occurring in a languagelike medium, a sort of ‘language of
thought’ ” (p. 9).

408 Synthese (2006) 153:393–416

According to Sejnowski, Koch, and Churchland, “mechanical and causal explana-
tions of chemical and electrical signals in the brain are different from computational
explanations. The chief difference is that a computational explanation refers to the
information content of the physical signals and how they are used to accomplish a
task” (1988, p. 1300). Indeed, Zipser and Andersen explain the semantic task F → G
by referring to F, that is, they explain how cells in state Nn encode information,
G, about the target location in head-centered coordinates, by referring to the infor-
mation content, F, of cells in state N0 in area 7a, i.e., that the electrical signals of
some of these cells encode information about stimulus retinotopic-location and that
the electrical signals of other cells encode information about eye-orientation. Thus
referring to the information content of electrical signals is a central ingredient of com-
putational explanations. The question, still, is why invoke, in addition, the computing
mechanism to explain the semantic transformation. Why describing the mediating
mechanism between N0 and Nn in terms of the computational model, and not in
terms of chemical and electrical signals in the brain?

Shadmehr and Wise suggest that a computational theory is an incomplete frame-
work for how the brain “might solve these and other problems”. A computational
theory simply “helps to understand–in some detail—at least one way that a system
could solve the same problem” (p. 4). In doing this, they serve to bridge between
neuroscientists, who study brain function, and engineers, who design and construct
mechanical devices,45 and they promote further research, e.g., additional electrophysi-
ological experiments, by pointing to a set of alternative hypotheses as to how the brain
might accomplish the task.46 On this picture, the explanatory advantage of computa-
tional theories is similar to that of mathematical models in other sciences: being more
abstract, they underscore regularities that neurological, not to mention molecular,
descriptions obscure.47 But this does not mean that computational descriptions have
extra explanatory qualities with respect to semantic tasks that strict neurobiological
descriptions lack.

I do not underestimate the role of mathematical models in science in general, and
in neuroscience in particular. But I want to insist that computational models have
additional and unique explanatory role with respect to semantic tasks. Let me sketch
what I take this explanatory role to be. A computational theory in neuroscience aims
to explain how the brain extracts information content G from another, F. We know
from electrophysiological experiments that G is encoded in the electrical signals of a
neural state Nn, and F in those of N0. Let us also assume that we can track chemical
and electrical processes that mediate between N0 and Nn. What we still want to know
is why the information content of the electrical signals of Nn is G, e.g., target location
in head-centered coordinates, and not, say, the target’s color. The question arises since
the encoded information G are not “directly” related to the target, but is mediated
through a representational state that encodes F. The question, in other words, is why
a chemical and electrical process that starts in a brain state N0 that encodes F, and
terminates in another brain state, Nn, yields the information content G. After all, this
causal process N0 → Nn is not sensitive to what is being represented, but to chemical
and electrical properties in the brain.

45 Shadmehr and Wise, pp. 2–3.
46 This was suggested by a referee of this article.
47 A more sophisticated version of this picture, in terms of levels of organization in the nervous
system, is presented in Churchland and Sejnowski (1992).

Synthese (2006) 153:393–416 409

A computational theory explains why it is G that is extracted from F by pointing
to correspondence relations between mathematical or formal properties of the rep-
resenting states—what we call computational structure—and mathematical or formal
properties of the represented states. The idea is that by showing that N0 encodes F,
and that the mathematical relations between N0 and Nn correspond to those of the
“worldly” represented states that are encoded as F and G, we have shown that Nn
encodes G.

Let me explicate this point by means of three examples. The first is fictional. The
brown–cow cell transforms information about brown things and about cow things
into information about brown–cow things. The cell receives electrical inputs from
two channels: it receives 50–100 mV from the “brown-channel” just in case there is a
brown thing in the visual field and 0–50 mV otherwise, and it receives 50–100 mV from
the “cow-channel” just in case there is a cow thing out there and 0–50 mV otherwise
(I assume that the information is about the same object). The cell emits 50–100 mV
whenever there is a brown cow in the visual field, and 0–50 mV otherwise. How does
this cell encode information about brown cows: how does it extract information about
brown cows from information about brown things and information about cow things?

The computational explanation is obvious enough. First, we describe the cell as an
AND-gate that receives and emits 1’s and 0’s; these abstracts from emission/reception
of 50–100 mV and 0–50 mV. This is the computational structure of the cell. Second,
we refer to the information content of the inputs, which are brown things and cow
things. And, third, we note that the AND-gate corresponds to a mathematical relation
between the represented objects, that is, it corresponds to the intersection of the set
of brown things and the set of cow things. Taken together, we understand why the
information content of emission 50–100 mV is brown-cows: emitting 50–100 mV is an
AND result of receiving 50–100 mV, and the AND-operation corresponds to the inter-
section of the sets of represented objects. Thus given that receiving 50–100 mV from
each output channel represents brown things and cow things, emitting 50–100 mV
must represent brown–cow things.

Marr’s computational theory of early visual processes explains how cells extract
information about object-boundaries from retinal photoreceptors that measure light
intensities.48 Marr and Hildreth suggest that the activity of the former cells, known
as edge-detectors, can be described in terms of zero crossings in the mathematical
formula (∇2G) ∗ I(x, y), where I(x, y) is the array of light intensities (retinal image), ∗
is a convolution operator, G is a Gaussian that blurs the image, and ∇2 the Laplacian
operator (∂2/∂x2 + ∂2/∂y2) that is sensitive to sudden intensity changes in the image.
Thus at one level, this formula describes a certain mathematical relation between the
electrical signals of the edge-detectors and those of the photoreceptors that consti-
tute the retinal image, I(x, y). But this alone does not explain why the activity of the
edge-detectors corresponds to object boundaries and other discontinuities in surface
properties.49 The explanation is completed when we note that these mathematical
properties correspond to certain mathematical properties of the represented states,
for example, of sudden changes in light reflection along boundaries of objects. Had
the reflection laws been very different, the mathematical formula would still have

48 Marr (1982, Chapter 2).
49 Thus Marr (1982, p. 68) states that, at this point, it is better not to use the word ‘edge’, since it
“has a partly physical meaning—it makes us think of a real physical boundary, for example—and all
we have discussed so far are the zero values of a set of roughly band-pass second-derivative filters”
(p. 68).

410 Synthese (2006) 153:393–416

described the same cellular activity, but the cells would no longer carry information
about object boundaries.50

Let us return to the Zipser–Andersen model. Analyzing the activity of the units in
the intermediate layer, Zipser and Andersen found that these units behave like cells
in area 7a that combine information about the target’s retinotopic location with infor-
mation about eye-orientation. It was then found that the mathematical description of
the activity is (kT

i e + bi) exp(−(r − ri)
T(r − ri)/2σ 2), which might explain how these

cells encode the combined information. The explanation refers to the content of the
first two groups of cells in area 7a, and, in particular, that the parameter e stands for
eye-orientation with respect to two angular components, and ri is the center of the
activity field in retinotopic coordinates. But it also establishes the findings of the ear-
lier electrophysiological studies: that the described mathematical relations between
the electrical signals correspond to certain mathematical relations between the repre-
sented states: for example, that the described mathematical relation (r− ri) of cellular
activity (in the second group) corresponds (roughly) to the distance (“in numbers”)
of the retinotopic location of the stimulus from the receptive field.51 Without this
and the other correspondence relations between mathematical properties, we could
have not explained why the cellular activity described by the mathematical formula
conveys combined information about eye-orientation and the retinotopic location of
the target.

The gist of my account, then, is as follows. When we describe something as a com-
puter we apply a certain explanatory strategy. We apply this strategy when we seek to
explain how a complex system performs a semantic task. The explanatory force of this
strategy arises from identifying correspondence relation between the computational
structure of the system and certain mathematical properties of the states and objects
that are being represented.

4 Discussion

The following discussion, in the form of objections and replies, will further elaborate
on my position, and situate it in the context of the philosophical discussion about
computation and content.

Objection #1: It seems that you uphold some version of a “semantic” view of
computation, but it is not clear what it amounts to.

Reply: Piccinini (2004) has recently characterized the semantic view of compu-
tation in terms of the no computation without representation condition. My view
is certainly “semantic” in this sense, and as I said, this condition has been widely
adopted.52 But I think that there is another, more significant distinction to be made.

50 As Marr (p. 68) puts it, if we want to use the word ‘edges’, we have to say why we have the right
to do so. The computational theory justifies this use since it underscores the relations between the
structure of the image and the structure of the real world outside.
51 See also Grush (2001, pp. 160–162) who highlights, in his analysis of Zipser and Andersen (1988)
the relations between what he calls the algorithm-semantic interpretation (which I take to be the
mathematical properties of the cells) and the environmental-semantic interpretation (which I take to
be the objects/states/properties that are being represented).
52 Thus Piccinini rightly says that “the received view” is that there is no computation without repre-
sentation. A notable exception is Stich (1983). I discuss Piccinini’s objection to the no-computation-
without representation condition in objection 6.

Synthese (2006) 153:393–416 411

Because some—many, in fact—of those who accept that there is no computation
without representation also hold computation to be “non-semantic” in the sense that
the specification of states and processes as computational types makes no essential
reference to semantic properties, including representational content. Indeed, this is, I
would say, a more accurate statement of the received view about computation. That is,
on the received view, computation is formal, in virtue of which it is—notwithstanding
the no computation without representation constraint—non-semantic.53 There are,
however, those who maintain that computation is “semantic” in the sense that com-
putational individuation does make essential reference to representational content.
This view has been advanced by Burge (1986) and others with respect to computa-
tional theories in cognitive science.54 I belong to this latter “semantic” camp, though
my view is distinctive in crucial respects (see below).

Objection #2: You seem to be contradicting yourself. On the one hand, you say
that computation is “semantic” in the stronger, individuative, sense. On the other,
you uphold the view that computational structure is formal. You thus have to clarify
how computational individuation that makes essential reference to content can be
compatible with the formality condition.

Reply: I accept the idea that computation is formal, in the senses of mechanicalness
and abstractness. A computational description is formulated in abstract terms, and
what it describes is a causal process that is insensitive to representational content.
However, it does not follow from these features that computation is non-semantic.
It is consistent with mechanicalness and abstractness that semantic elements play an
essential role in the individuation of the system’s processes and states into computa-
tional types. They play an essential role in picking out “the” computational structure
from the set of the abstract structures that a mechanism implements.

To better understand how content constrains computational identity, consider again
the brown–cow cell. Assume that receiving/emitting 0–50 mV can be further analyzed:
the cell emits 50–100 mV when it receives over 50 mV from each input channel, but it
turns out that it emits 0–25 mV when it receives under 25 mV from each input chan-
nel, and 25–50 mV otherwise. Now assign “1” to receiving/emitting 25–100 mV and
“0” to receiving/emitting 0–25 mV. Under this assignment the cell is an OR-gate. This
means that the brown–cow cell simultaneously implements, at the very same time,
and by means of the very same electrical activity, two different formal structures. One
structure is given by the AND-gate and another by the OR-gate.55

Now, each of these abstract structures is, potentially, computational. But only the
AND-gate is the computational structure of the system with respect to its being
a brown-cow cell, namely, performing the semantic task of converting information
about brown things and cow things into information about brown cow things. What
determines this, that is, picks out this AND-structure as the system’s computational
structure, given that OR-structure abstract from the very same discharge? I have

53 Fodor is the most explicit advocate of this view: “I take it that computational processes are
both symbolic and formal. They are symbolic because they are defined over representations, and
they are formal because they apply to representations, in virtue of (roughly) the syntax of the
representations. . . . Formal operations are the ones that are specified without reference to such
semantic properties of representations as, for example, truth, reference and meaning” (1980, p. 64).
54 See also Kitcher (1988), Segal (1989, 1991), Davies (1991), Morton (1993), Peacocke (1994, 1999),
Shagrir (2001). I have also argued for this “semantic” view in the context of computer science (Shagrir,
1999).
55 A more complex example is presented in detail in Shagrir (2001).

412 Synthese (2006) 153:393–416

suggested that it is content that makes the difference: discharges that are greater
than 50mV correspond to certain types of content (of cows, browns, and brown cows)
and the discharges that are less than 50 mV corresponds to another (their absence).
Thus the identity conditions of the process, when conceived as computational, are
determined, at least partly, by the content of the states over which it is defined.

Objection #3: This semantic account of computation cannot be correct. We know
that we can assign many different interpretations to the same computational (abstract)
structure, e.g., a computer program. This demonstrates that differences in content do
not determine computational identity, for the computational identity can be the same
even where there is a difference in content.

Reply: I am not saying that computational taxonomy takes every aspect of content
into account; in fact, I do not think it takes specific content into account at all. Rather,
it takes into account only mathematical properties of the represented objects; these
features of content that have been called ‘mathematical content’ by Egan (1995) and
‘formal content’ by Sher (1996).56 Take the brown–cow cell whose computational
structure is given by the AND-gate. It is apparent that the computational identity
of the cell would have been the same had the ‘1’ and ‘0’ has been given a different
interpretation, e.g., that it is a black-dog cell. Still, these interpretations do have some-
thing in common. Their mathematical content is the same: the AND-gate corresponds
to the same set-theoretic property in the visual field, i.e., that of the intersection of
two sets.

Objection #4: But why should we care about how the computational structure is
picked out? What matters is that we can identify this formal structure without appeal-
ing to semantic properties at all, i.e., identify it as an abstraction from the physical
properties of the system.

Reply: I agree that the computational structure of a physical system is an abstrac-
tion from its physical or neurological properties, and as such, is “non-semantic.” It is
evident that the AND-operation describing the behavior of the brown–cow cell is an
abstraction from the cell’s electrical activity, viz., that its discharge is 50–100 mV if the
stimulus in each input channel exceeds 50 mV, and 0–50 mV otherwise. I also agree
that we can arrive at this very same formal description by abstracting from physi-
cal properties. I have emphasized, moreover, that Shadmehr and Wise often arrive
at computational structure via constraints from the neurobiological level. My point
about computation being semantic, therefore, is not methodological or epistemic; it
is not about the way we arrive at the computational structure, about top-down versus
bottom-up.

I am claiming, rather, that (a) we take an abstract (formal) structure to be com-
putational when it plays a role in explaining how a system carries out a pertinent
semantic task, and that (b) the explanatory role of this abstract structure consists
in its being identified by reference to certain semantic features, i.e., mathematical
content. We may find out, one way or another, that a certain mathematical descrip-
tion of a cell’s behavior is an AND-operation, which is an abstraction from the cell’s
electrical activity. However, this mathematical description, on its own, is not compu-
tational. Physicists often describe systems in mathematical terms, but no one takes

56 Sher presents the notion of formal content in her analysis of logical consequence. She argues that
it is the formal, e.g., set-theoretic, features of the objects they denote, that make certain relations
“logical” ; for a full account, see Sher (1991). Egan introduces the notion of mathematical content in
the context of computational theories of vision. I follow her in this regard, but emphasize, like Sher,
that formal properties are higher-order mathematical structures.

Synthese (2006) 153:393–416 413

such descriptions to be computational. We take the description to be computational
only in the context of explaining a semantic task, in this case, explaining the behav-
ior of the cell as a brown–cow cell. The explanatory power of the AND-operation
is due to its satisfying certain semantic constraints, viz., that it correlates with the
intersection of two sets. And having satisfied these constraints is essential for its being
identified as the computational structure of this cell. The OR-operation, which is
simultaneously implemented by the cell, is not identified as the computational struc-
ture of the brown–cow cell; for, unlike the AND-operation, the OR-operation does
not satisfy the relevant semantic constraints, and thus cannot serve to explain the
behavior of the cell as a brown–cows detector.

Objection #5: Your semantic account cannot be correct simply because there can be
computation without representation. In his “Computation without Representation”
(forthcoming), Piccinini argues that “although for practical purposes the internal
states of computers are usually ascribed content by an external semantics, this need
not be the case and is unnecessary to individuate their computational states and
explain their behavior.”

Reply: In this paper I have focused on the computational approach in neurosci-
ence and cognitive science. In these disciplines, even a glimpse at ongoing research
suffices to make apparent the intimate connection between computation and repre-
sentation. In other contexts, the connection may be less obvious, but I believe that
careful scrutiny of any process described as computation will reveal the centrality of
representations. I agree with Piccinini’s assertion that the “mathematical theory of
computation can be formulated without assigning any interpretation to the strings
of symbols being computed.” But while this means that the mathematical properties
of computations can be studied without reference to semantic values, it does not entail
that the processes themselves, qua computations, are not identified by their semantic
values.

Objection #6: A semantic view of computation undermines the whole objective
of computational theories of cognition, which is to explain content in non-seman-
tic terms. As Piccinini puts it, an important motivation for many supporters of the
computational theory of mind [CTM] is that “it offers (a step towards) a naturalis-
tic explanation of mental content” (2004: 376). This objective is incompatible with a
semantic view of computation, for “one problem with naturalistic theories of content
that appeal to computational properties of mechanisms is that, when conjoined with
the semantic view of computational individuation, they become circular” (Piccinini,
forthcoming). By adopting the semantic view of computation, in other words, “we
are back to explaining contents, which is what we were hoping to explain in the first
place” (2004, p. 377).

Reply: I agree that CTM is entrenched in our philosophical landscape: many phi-
losophers maintain that computational theories explain in non-semantic terms phe-
nomena that are formulated in semantic terms. But in my opinion this philosophical
outlook is flawed. Computational explanations are “semantic” in two ways: they refer
to the specific content of the initial states, and they invoke a computing mechanism
(structure) which is individuated by reference to (mathematical) content. I thus also
agree that “naturalistic theories of content that appeal to computational properties
of mechanisms . . . become circular.” But I also note that a semantic view of compu-
tation is consistent with a naturalistic approach to content. A theory of content that
does not appeal to computation, namely, a causal or teleological theory, might well

414 Synthese (2006) 153:393–416

“naturalize” computation-in-the-brain, e.g., by accounting for the pertinent contents
in non-semantic terms.57

Objection #7: Your semantic notion is only one way of accounting for computation.
But there could be others that do not appeal to semantic features. You considered only
non-semantic accounts, according to which computations are abstractions from inter-
nal physical properties. But there could be other, broader accounts, which take into
consideration not only internal physical properties, but distal stimuli and responses as
well.58

Reply: I have provided an analysis of the concept of computation as it is applied to
physical systems, and as it functions in neuroscience. The analysis, if correct, reveals
that when we apply the computational strategy, we individuate states and processes
by taking certain aspects of content into account. This insight helps to explain why
we apply the computational strategy to brains but not to washing machines, and why
we apply the computational strategy, rather than other strategies, in studying how
the brain functions. Other accounts of computation did not suggest themselves in the
course of the analysis, certainly not broader accounts: Shadmehr and Wise construe
computations as processes that take place within the brain, and explicate the relations
between the brain and the external environment via the notion of representation.
As I just mentioned, I do not rule out the possibility that the pertinent semantic
relations can be reduced, e.g., to certain causal relations involving distal stimuli and
responses. And, admittedly, I cannot rule out the possibility that this reduction might
give rise to a broader, non-semantic, account of computation. I doubt such an account
will be forthcoming, but my reasons for this pessimism will have to wait for another
occasion.

Acknowledgements Thanks to Arnon Levy, Gualtiero Piccinini, Haim Sompolinsky, Jonathan Yaari
and two anonymous referees for many insightful comments. This research was supported by The Israel
Science Foundation (Grant No. 857/03).

References

Amit, D. J. (1989). Modelling brain function. Cambridge: Cambridge University Press.
Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior

parietal neurons. Science, 230(4724), 456–458.
Buneo, C. A., Jarvis, M. R., Batista, A. P., & Andersen, R. A. (2002). Direct visuomotor transforma-

tions for reaching. Nature, 416, 632–636.
Burge, T. (1986). Individualism and psychology. Philosophical Review 95, 3–45.
Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108, 309–333.
Chomsky, N. (1980). Rules and representations. New York: Columbia University Press.
Churchland, P. S., & Grush, R. (1999). Computation and the brain. In R. A. Wilson, & F. C. Keil

(Eds.), The MIT Encyclopedia of the cognitive sciences (pp. 155–158). Cambridge, MA: MIT
Press.

Churchland, P. S., Koch, C., & Sejnowski T. J. (1990). What is computational neuroscience? In
E. L. Schwartz (Ed.), Computational neuroscience (pp. 46–55.) Cambridge, MA: MIT Press.

Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.
Craver, C. F. (2002). Structures of scientific theories. In P. Machamer, & M. Silberstein (Eds.), The

Blackwell Guide to the Philosophy of Science. (pp. 55–79.) Oxford: Blackwell.

57 See Piccinini (2004). This would not mean, however, that this alleged naturalistic account
can be applied to all computers, for there are other computers that operate over “non-mental”
representations.
58 See, e.g., Wilson (1994) and Piccinini (forthcoming).

Synthese (2006) 153:393–416 415

Davidson, D. (1990). Turing’s Test. In K. A. Mohyeldin Said, W. H. Newton-Smith, R. Viale, &
K. V. Wilkes (Eds.), Modeling the mind (pp. 1–11.) Oxford: Oxford University Press.

Davies, M. (1991). Individualism and perceptual content. Mind, 100, 461–484.
Dennett, D. C. (1971). Intentional systems. Journal of Philosophy, 68, 87–106.
Dretske, F. (1988). Explaining behavior. Cambridge, MA: MIT Press.
Egan, F. (1995). Computation and content. Philosophical Review, 104, 181–203.
Fodor, J. A. (1974). Special sciences, or the disunity of science as a working hypothesis. Synthese, 28,

97–115.
Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychol-

ogy. Behavioral and Brain Sciences, 3, 63–73.
Fodor, J. A. (1981). The mind-body problem. Scientific American, 244, 114–123.
Fodor, J. A. (1994). The elm and the expert. Cambridge, MA: MIT Press.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis.

Cognition, 28, 3–71.
Gödel, K. (1933). The present situation in the foundations of mathematics. In S. Feferman,

J. W. Dawson, W. Goldfarb, C. Parsons, & R. M. Solovay (Eds.), Kurt Gödel collected works, Vol.
III (pp. 45–53). New York: Oxford University Press (1995).

Gödel, K. (1934). On undecidable propositions of formal mathematical systems. In S. Feferman,
J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, & J. van Heijenoort (Eds.), Kurt Gödel
collected works, Vol. I (pp. 346–371). New York: Oxford University Press (1986).

Grush, R. (2001). The semantic challenge to computational neuroscience. In P. Machamer, R. Grush,
& P. McLaughlin (Eds.), Theory and method in the neurosciences (pp. 155–172). Pittsburgh, PA:
University of Pittsburgh Press.

Haugeland, J. (1981). Semantic engines. In J. Haugeland (Ed.), Mind design (pp. 1–34). Cambridge,
MA: MIT Press.

Hogarth, M. L. (1992). Does General Relativity allow an observer to view an eternity in a finite time?
Foundations of Physics Letters, 5, 173–181.

Hogarth, M. (1994). Non-Turing computers and non-Turing computability. Proceedings of the Phi-
losophy of Science Association, 1, 126–138.

Kitcher, P. (1988). Marr’s computational theory of vision. Philosophy of Science, 55, 1–24.
Lehky, S. R., & Sejnowski, T. J. (1988). Network model of shape-from-shading: Neural function arises

from both receptive and projective fields. Nature, 333, 452–454.
Marr, D. (1982). Vision. San Francisco: W. H. Freeman.
Morton, P. (1993). Supervenience and computational explanation in vision theory. Philosophy of

Science, 60, 86–99.
Newell, A., & Simon, H. (1976). Computer science as empirical inquiry: Symbols and search. Com-

munications of the Association for Computing Machinery, 19, 113–126.
Peacocke, C. (1994). Content, computation, and externalism. Mind and Language, 9, 303–335.
Peacocke, C. (1999). Computation as involving content: A response to Egan. Mind and Language,

14, 195–202.
Piccinini, G. (2004). Functionalism, computationalism, and mental contents. Canadian Journal of

Philosophy, 34, 375–410.
Piccinini, G. (forthcoming). Computation without representation. Philosophical Studies.
Pour-El, M. B., & Richards, I. (1981). The wave equation with computable initial data such that its

unique solution is not computable. Advances in Mathematics, 39, 215–239.
Putnam, H. (1973). Reductionism and the nature of psychology. Cognition, 2, 131–146.
Putnam, H. (1975). Philosophy and our mental life. In H. Putnam (Ed.), Mind, language and reality,

philosophical papers, volume 2 (pp. 291–303). Cambridge: Cambridge University Press.
Putnam, H. (1988). Representations and reality. Cambridge, MA: MIT Press.
Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.
Rumelhart, D. E., McLelland, J. L., & the PDP Research Group (1986). Parallel distributed processing,

Vol. 1–2. Cambridge, MA: MIT Press.
Scheutz, M. (2001). Computational versus causal complexity. Minds and Machines, 11, 543–566.
Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT Press.
Segal, G. (1989). Seeing what is not there. Philosophical Review, 98, 189–214.
Segal, G. (1991). Defense of a reasonable individualism. Mind, 100, 485–494.
Sejnowski T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science, 241(4871),

1299–1306.
Shadmehr, R., & Wise, S. P. (2005). The computational neurobiology of reaching and pointing: A

foundation for motor learning. Cambridge, MA: MIT Press.

416 Synthese (2006) 153:393–416

Shagrir, O. (1992). A neural net with self-inhibiting units for the n-queens problem. International
Journal of Neural Systems, 3, 249–252.

Shagrir, O. (1997). Two dogmas of computationalism. Minds and Machines, 7, 321–344.
Shagrir, O. (1998). Multiple realization, computation and the taxonomy of psychological states. Syn-

these, 114, 445–461.
Shagrir, O. (1999). What is computer science about? Monist, 82, 131–149.
Shagrir, O. (2001). Content, computation and externalism. Mind, 110, 369–400.
Shagrir, O. (2006). Gödel on turing on computability. In A. Olszewski, J. Wolenski, & R. Janusz

(Eds.), Church’s thesis after 70 years (pp. 393–419). Frankfurt: Ontos Verlag.
Shagrir, O., and Pitowsky, I. (2003). Physical hypercomputation and the Church–Turing thesis. Minds

and Machines, 13, 87–101.
Sher, G. Y. (1991). The bounds of logic: A generalized viewpoint. Cambridge, MA: MIT Press.
Sher, G. Y. (1996). Did Tarski commit “Tarski’s Fallacy”? Journal of Symbolic Logic, 61, 653–686.
Smith, B. C. (1996). On the origin of objects. Cambridge, MA: MIT Press.
Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11,

1–23.
Sober, E. (1999). The multiple realizability argument against reductionism. Philosophy of Science,

66, 542–564.
Stich, S. P. (1983). From folk psychology to cognitive science. Cambridge, MA: MIT Press.
Wilson, R. A. (1994). Wide computationalism. Mind, 103, 351–372.
Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that simulates

response properties of a subset of posterior parietal neurons. Nature, 331, 679–684.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

1 of 38 2/22/07 7:26 PM

The Mind as Neural Software?

Revisiting Functionalism, Computationalism, and Computational Functionalism
[1]

Gualtiero Piccinini

Department of Philosophy

University of Missouri – St. Louis

599 Lucas Hall (MC 73)

One University Blvd.

St. Louis, MO 63121-4499 USA

Email: piccininig@umsl.edu

12/20/2006

Abstract

Defending or attacking either functionalism or computationalism requires clarity on what they amount to

and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My

goal is to formulate them and their relationship clearly enough that we can determine which type of

evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and

computationalism, recruit recent philosophical work on mechanisms and computation to shed light on

them, and clarify how functionalism and computationalism may or may not legitimately come together.

1 Introduction

Functionalism is forty years old, computationalism is over sixty, and philosophers often conjoin them.

Yet their relationship remains obscure. With Jerry Fodor, I am struck by “the widespread failure to

distinguish the computational program in psychology from the functionalist program in metaphysics”

(Fodor 2000, 104). A recent paper by Paul Churchland (2005) epitomizes such a failure. Churchland

argues that functionalism is false, because the brain is not a classical (i.e., more or less

Turing-machine-like) computing mechanism but a connectionist one. His argument presupposes that

functionalism entails computationalism, and that the computationalism thus entailed belongs to the

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

2 of 38 2/22/07 7:26 PM

classical variety. But functionalism—properly understood—does not entail computationalism, either

classical or non-classical.

 Defending or attacking either functionalism or computationalism requires clarity on what they

amount to and what evidence counts for or against them. My goal here is not to evaluate their

plausibility. My goal is to formulate them and their relationship clearly enough that we can determine

which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround

functionalism and computationalism, recruit recent philosophical work on mechanisms and computation

to shed light on them, and clarify how functionalism and computationalism may or may not legitimately

come together.

 I will frame the discussion in terms of functionalism, because functionalism is the metaphysical

doctrine most closely associated (and conflated) with computationalism.
[2]

 But one upshot of this paper

is that functionalism and computationalism need not go together. Functionalism may be combined with

a non-computationalist theory of mind, and computationalism may be combined with a non-functionalist

metaphysics. Once we understand how functionalism and computationalism may or may not be

combined, we can generalize our picture to understand how metaphysical doctrines other than

functionalism may be combined with computationalism as well as how theories other than

computationalism may be combined with functionalism.

To a first approximation, functionalism is the view that the mind is the functional organization of

the brain, or any other system that is functionally equivalent to the brain. Sometimes functionalism is

expressed by saying that mental states are functional states.
[3]

 Stronger or weaker versions of

functionalism may be formulated depending on how much of the mind is deemed to be functional—how

many mental states, or which aspects thereof, are functional. Are all mental states functional, or only

some? Are all aspects of mental states functional, or only, say, their non-phenomenal aspects? How

these questions are answered makes no difference here, because I’m not concerned with the plausibility

of functionalism in general. I’m concerned with what functionalism amounts to. One question I will

address is, what is functional organization? In due course, I will examine different notions of functional

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

3 of 38 2/22/07 7:26 PM

organization and search for the pertinent one.

 Computationalism, for present purposes, is the view that the functional organization of the brain

is computational, or that neural states are computational states. Again, stronger or weaker versions of

computationalism may be formulated depending on how much of the functional organization of the brain

is deemed to be computational. But again, I will not assess the plausibility of computationalism here.

Functionalism plus computationalism equals computational functionalism. In a well-known

slogan, computational functionalism says that the mind is the software of the brain. Taken at face value,

this slogan draws an analogy between the mind and the software of ordinary digital computers. But the

same slogan is often understood to suggest, more modestly, that the mind is the computational

organization of the brain—or equivalently, that mental states are computational states—without the

implication that such a computational organization is analogous to that of a digital computer. As we

shall see, the ambiguity between the strong and the weak reading is one source of confusion in this area.

Computational functionalism has been popular among functionalists who are sympathetic to

computationalist research programs in artificial intelligence, psychology, and neuroscience. It has also

generated a fierce opposition.
[4]

 The present goal, however, is not to determine whether the mind is the

software of the brain. It is to understand what this means and what counts as evidence for or against it.

2 The Analogy between Minds and Computers

Computational functionalism stems from an analogy between minds and computers. But there is more

than one analogy, and different analogies pull towards different versions of the view.

 Hilary Putnam, the chief founder of computational functionalism, drew an analogy between the

individuation conditions of mental states and those of Turing machine states (Putnam 1960, 1967a,

1967b).
[5]

 Putnam noticed that the states of Turing machines are individuated in terms of the way they

affect and are affected by other Turing machine states, inputs, and outputs. By the same token, he

thought, mental states are individuated by the way they affect and are affected by other mental states,

stimuli, and behavior. At first, Putnam did not conclude from this analogy that mental states are Turing

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

4 of 38 2/22/07 7:26 PM

machine states, because—he said—the mind is not a causally closed system (Putnam 1960). A bit later,

though, Putnam reckoned that mental states can be fully characterized functionally, like those of Turing

machines, though he added that the mind might be something “quite different and more complicated”

than a Turing machine (Putnam 1967a). Finally, Putnam went all the way to computational

functionalism: mental states are (probabilistic) Turing machine states (Putnam 1967b).

 As Putnam’s trajectory illustrates, the analogy between the individuation of mental states and

that of Turing machine states does not entail computational functionalism. The latter conclusion was

reached by Putnam some time after drawing his analogy, on independent grounds. What grounds?

 It’s hard to know for sure, but the relevant papers by Putnam contain references to the

plausibility and success of computational models of mental phenomena, including Warren McCulloch

and Walter Pitts’s theory of the brain. In 1943, McCulloch and Pitts proposed a mathematical theory of

neurons and their signals to the effect that, in essence, the brain is a Turing machine (without tape).
[6]

A few years later, John von Neumann interpreted McCulloch and Pitts’s work as proof that “anything

that can be exhaustively and unambiguously described, anything that can be exhaustively and

unambiguously put into words, is ipso facto realizable by a suitable finite neural network” of the

McCulloch and Pitts type (von Neumann 1951, 23).

It is now clear that McCulloch and Pitts proved nothing of the sort. For one thing, the nervous

system described by their theory is only a simplified and idealized version of the real thing. More

importantly, von Neumann’s statement implicitly abuses the Church-Turing thesis. The Church-Turing

thesis says that anything that is computable in an informal sense, which is intuitively familiar to

mathematicians, is computable by Turing machines. From this, it doesn’t follow that anything that can

be exhaustively and unambiguously described is computable by Turing machines. Nor does it follow,

as many would soon conclude, that everything can be simulated by Turing machines or that everything

is computational. Alas, neither von Neumann nor his early readers were especially careful about these

matters. After von Neumann, fallacious arguments from the Church-Turing thesis—sometimes in

conjunction with McCulloch and Pitts’s actual or purported results—to the conclusion that the mind is

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

5 of 38 2/22/07 7:26 PM

computational began to proliferate.
[7]

Since McCulloch and Pitts’s networks can be simulated by digital computers, von Neumann’s

(unwarranted) statement entails that anything that can be exhaustively and unambiguously described can

be simulated by a digital computer. If you add to this a dose of faith in scientists’ ability to describe

phenomena—“exhaustively and unambiguously”—you obtain pancomputationalism: at a suitable level

of description, everything is computational. Thus, pancomputationalism made its way into the

literature. As Putnam put it, “everything is a Probabilistic Automaton [i.e., a kind of Turing machine]

under some Description” (Putnam 1967b, 31). Together with Putnam’s analogy between minds and

Turing machines and the alleged plausibility of computational psychology, pancomputationalism is the

most likely ground for Putnam’s endorsement of computational functionalism.

 For present purposes, the most important thing to notice is that the resulting version of

computational functionalism is quite a weak thesis. This remains true if computational functionalism is

disengaged from Putnam’s appeal to Turing machine states in favor of the thesis that mental states are,

more generally, computational states (Block and Fodor 1972). If mental states are computational simply

because at some level, everything is computational, then computational functionalism tells us nothing

specific about the mind. It is a trivial consequence of the purported general applicability of

computational descriptions to the natural world. This version of computational functionalism does not

tell us how the mind works or what is special about it. Such a weak thesis stands in sharp contrast with

another, which derives from different analogies between minds and computers.
[8]

 Digital computers, unlike other artifacts, have an endless versatility in manipulating strings of

digits.
[9]

 Strings of digits may be systematically interpreted, so computers’ activities are often

characterized by semantic descriptions. For example, we say that computers do arithmetic calculations,

which is an activity individuated in terms of operations on numbers, which are possible referents of

digits. This interpretability of the digits manipulated by computers has often been seen as part of the

analogy between computers and minds, because mental states are also typically seen as endowed with

content. This, in turn, has contributed to making computational theories of mind attractive.
[10]

 But

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

6 of 38 2/22/07 7:26 PM

matters of mental content are controversial, and without agreement on mental content, the putative

semantic analogy between minds and computers gives us no firm ground on which to explicate

computational functionalism. In the next section, I will argue that the semantic properties of computers

make no difference for our purposes. Fortunately, we can find firmer ground on which to proceed in

yet another analogy.

Computers are versatile because they can store and execute programs. To a first approximation,

a program is a list of instructions for executing a task defined over strings of digits. An instruction is

also a string of digits, which affects a computer in a special way. Most computers can execute many

different (appropriately written) programs—typically, within certain limits of time and memory, they can

execute any program. Because of this, computers can acquire any number of new capacities simply by

acquiring programs. They can also refine their capacities by altering their programs. Just as minds can

learn to execute a seemingly endless number of tasks, computers can execute any task, defined over

strings of digits, for which they are given an appropriate program.

 This special property of computers—their capacity to store and execute programs—gives rise to

the special form of explanation that we employ to account for their behavior. How is my desktop letting

me write this paper? By executing a word-processing program. How does it allow me to search the

web? By executing an Internet browsing program. And so on for the myriad capacities of my

computer. These are explanations by program execution:

An explanation by program execution of a capacity C possessed by a system X is a description

that postulates a program P for C and says that X possesses C because X executes P.

Explanation by program execution applies only to systems, such as computers, that have the

meta-capacity to execute programs. Other relevant systems include certain kinds of looms and music

boxes. Even though computers are not the only class of systems subject to explanation by program

execution, computers have other interesting properties that they do not share with other

program-executing mechanisms. The main difference is that the processes generated by computer

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

7 of 38 2/22/07 7:26 PM

programs depend on the precise configuration of the input data (viz., the input strings of digits) for their

application: to each string of input data there corresponds a different computation. Furthermore, typical

computers have an internal memory in which they can store and manipulate their own data and

programs, and they can perform any computation for as long as they have time and memory space.

 These remarkable meta-capacities of computers—to manipulate strings of digits and to store and

execute programs—suggest a bold hypothesis. Perhaps brains are computers, and perhaps minds are

nothing but the programs running on neural computers. If so, then we can explain the multiple

capacities that minds exhibit by postulating specific programs for exhibiting those capacities. The

versatility of minds would then be explained by assuming that brains have the same special power that

computers have: the power to store and execute programs on strings of digits.
[11]

 This is the true

source of the computational functionalist slogan: the mind is the software of the brain.

 Compare this version of computational functionalism to Putnam’s weaker version. Here we

have a putative explanation of human behavior, based on an analogy with what explains computers’

behavior. This version tells us how the mind works and what’s special about it: the brain has the

capacity of storing and executing different programs, and the brain’s switching between programs

explains its versatility. This is quite a strong thesis: of all the things we observe, only brains and

computers exhibit such seemingly endless ability to switch between tasks and acquire new skills.

Presumably, there are few if any other systems whose behavior is explained in terms of (this type of)

program execution.

 If we take this formulation of computational functionalism seriously, we ought to find an

adequate explication of explanation by program execution. We ought to make explicit what

differentiates systems that compute by executing programs from other kinds of system. For if minds are

to be interestingly analogous to computers, there must be something that minds and computers share and

other systems lack—something that accounts for the versatility of minds and computers as well as the

fact that this versatility is explained by program execution. Unfortunately, the received view of software

implementation, which is behind the standard view of program execution, does not satisfy this condition

of adequacy.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

8 of 38 2/22/07 7:26 PM

3 Troubles with Program Execution

Ever since Putnam (1967b) formulated computational functionalism, the received view of software

implementation has been as follows. If there are two descriptions of a system, a physical description

and a computational description, and if the computational description maps onto the physical description,

then the system is a physical implementation of the computational description and the computational

description is the system’s software.
[12]

The problem with this view is that it turns everything into a computer. As was mentioned in the

previous section, everything can be given computational descriptions. For instance, some cosmologists

study the evolution of galaxies using cellular automata. According to the received view of software

implementation, this turns galaxies into hardware running the relevant cellular automata programs. If

satisfying computational descriptions is sufficient for implementing them in the sense in which ordinary

computers execute their programs, then everything is a computer executing its computational

descriptions. This is not only counterintuitive—it also trivializes the notion of computer as well as the

analogy at the origin of computational functionalism. If the mind is the software of the brain in the

sense in which certain cellular automata are the software of galaxies, then the analogy between minds

and computers becomes an analogy between minds and everything else. As a consequence, the strong

version of computational functionalism collapses into something very much like the weak one.

 This problem is worsened by the fact that the same system satisfies many computational

descriptions. An indefinite number of cellular automata—using cells that represent regions of different

sizes, or different time steps, or different state transition rules—map onto the same physical dynamics.

Furthermore, an indefinite number of formalisms different from cellular automata, such as Turing

machines or C++ programs, can be used to compute the same functions computed by cellular automata.

Given the received view of software implementation, it follows that galaxies are running all of these

programs at once.
[13]

By the same token, brains implement all of their indefinitely many computational descriptions. If

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

9 of 38 2/22/07 7:26 PM

the mind is the software of the brain, as computational functionalism maintains, then given the standard

view of software implementation, we obtain either indeterminacy as to what the mind is, or that the mind

is a collection of indefinitely many computational organizations. This is not a promising metaphysics of

mind, nor is it a way of explaining how minds operate by appealing to the programs they execute.
[14]

 The problem under discussion should not be confused with a superficially similar problem

described by Putnam (1988) and Searle (1992). They argue that any physical system implements a large

number of computations, or perhaps every computation, because a large number of (or perhaps all) state

transitions between computational states can be freely mapped onto the state transitions between the

physical states of a system. For example, I can take the state transitions my web browser is going

through and map them onto the state transitions my desk is going through, and as a result, my desk

implements my web browser. I can establish the same mapping relation between a large number of (or

perhaps all) computations and physical systems. From this, Putnam and Searle conclude that the notion

of computation is observer-relative in a way that makes it useless to the philosophy of mind. Their

argument is based on the received view of software implementation, and we might avoid its conclusion

by abandoning the received view.

But even under the received view of software implementation, Putnam and Searle’s problem is

not very serious. As many authors have noted (e.g., Chrisley 1995, Copeland 1996, Chalmers 1996a,

Bontly 1998, Scheutz 2001), the computational descriptions employed by Putnam and Searle are

anomalous. In the case of kosher computational descriptions—the kind normally used in scientific

modeling
[15]

—the work of generating successive descriptions of a system’s behavior is done by a

computer running an appropriate program (e.g., a weather forecasting program), not by the mapping

relation. In the sort of descriptions employed in Putnam and Searle’s argument, instead, the descriptive

work is done by the mapping relation.

In our example, my web browser does not generate successive descriptions of the state of my

desk. If I want a genuine computational description of my desk, I have to identify states and state

transitions of the desk, represent them by a computational description (thereby fixing the mapping

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

10 of 38 2/22/07 7:26 PM

relation between the computational description and the desk), and then use a computer to generate

subsequent representations of the state of the desk, while the mapping relation stays fixed. So, Putnam

and Searle’s alleged problem is irrelevant to genuine computational descriptions. Still, the problem

under discussion remains: everything can be given an indefinite number of bona fide computational

descriptions.

To solve this problem, we must conclude that being described computationally is not sufficient

for implementing software, which is to say, we must abandon the received view of software

implementation. The same point is supported by independent considerations. We normally apply the

word ‘software’ to specific mechanisms, i.e. computers, which perform activities that are different from

the activities performed by other mechanisms such as drills or valves—let alone galaxies. We say that

the invention of computers in the 1940s was a major intellectual breakthrough. We have specific

disciplines—computer science and computer engineering—that study the peculiar activities and

characteristics of computers and only computers. For all these reasons, a good account of software

implementation must draw a principled distinction between computers and other systems.

Philosophers have largely ignored this problem, and the charitable reader may legitimately

wonder why. A first part of the answer is that philosophers interested in computationalism have

devoted most of their attention to explaining mental phenomena, leaving computation per se largely

unanalyzed.

A second part of the answer is that computationalist philosophers typically endorse the semantic

view of computation, according to which computational states are individuated, at least in part, by their

content (for a recent example, see Shagrir 2001, 2006). The semantic view appears to offer protection to

the received view of software implementation, because independently of the semantic view, it is

plausible that only some things, such as mental states, are individuated by their content. If

computational states are individuated by their content and content is present only in few things, then

explanation by program execution will apply at most to things that have content, and the trivialization of

the notion of software is thereby avoided. Unfortunately, the protection offered by the semantic view is

illusory. Here, there is no room for the in-depth treatment the semantic view of computation deserves. I

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

11 of 38 2/22/07 7:26 PM

have given such a treatment elsewhere (Piccinini 2004c, 2006), and I will only reiterate its results.

First, even the conjunction of the received view of software implementation and the semantic

view of computation does not capture the notion of program execution that applies to ordinary

computers. Computers (and some automatic looms, for that matter) can execute programs whether or

not the digits they manipulate have content, and there are mechanisms that perform computations defined

over interpreted strings of digits just like those manipulated by computers but do so without executing

programs (e.g. non-programmable calculators). Second, there are computationalists who maintain that

content plays no explanatory or individuative role in a computational theory of mind (Stich 1983, Egan

1992, 2003). Conjoining computationalism with the semantic view of computation begs the question of

whether computational states are individuated by their content. Finally, and most seriously, the semantic

view of computational states is incorrect, because computability theorists and computer designers—i.e.,

those to whom we should defer in individuating computational states—individuate computational states

without appealing to their semantic properties. For these reasons, the semantic view of computation

needs to be rejected, and cannot restore to health the received view of software implementation.

To a first approximation, the distinction between computers and other systems can be drawn in

terms of explanation by program execution. Computers are among the few systems whose behavior we

normally explain by invoking the programs they execute.
[16]

 When we do so, we explain each activity

of a computer by appealing to the unique program being executed. A program may be described in

many different ways: instructions, subroutines, whole program in machine language, assembly

language, or higher level programming language. But modulo the compositional and functional relations

between programs and their components at different levels of description, a computer runs one and only

one program at any given time. An expert can actually retrieve the unique program run by a computer

and write it down, instruction by instruction.

True, modern computers can run more than one program “at once,” but this has nothing to do

with applying different computational descriptions to them at the same time. It has to do with

computers’ capacity to devote some time to running one program, quickly switch to another program,

quickly switch back, and so forth, creating the impression that they are running several programs at the

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

12 of 38 2/22/07 7:26 PM

same time. (Some so-called supercomputers can execute many programs in parallel. This is because

they have many different processors, i.e., program-executing components. Each processor executes one

and only one program at any given time.) A good account of software implementation must say why

explanation by program execution applies only to computers and not to other systems, and hence what

minds need to have in order for that explanatory strategy to apply to them. To prepare for that, it’s time

to clarify the relationship between functionalism and computationalism.

4 Mechanistic Functionalism

According to functionalism, the mind is the functional organization of the brain. According to

computationalism, the functional organization of the brain is computational. These theses are prima facie

logically independent—it should be possible to accept one of them while rejecting the other. But

according to a popular construal, functional organizations are specified by computational descriptions

connecting a system’s inputs, internal states, and outputs (Putnam 1967b, Block and Fodor 1972).

Under this construal, functional organizations are ipso facto computational, and hence functionalism

entails computationalism. This consequence makes it impossible to reject computationalism without also

rejecting functionalism, which may explain why attempts at refuting functionalism often address

explicitly only its computational variety (e.g., Block 1978, Churchland 2005). The same consequence

has led to Fodor’s recent admission that he and others conflated functionalism and computationalism

(2000, 104).

 To avoid conflating functionalism and computationalism, we need a notion of functional

organization that doesn’t beg the question of computationalism. The broadest notion of functional

organization is the purely causal one, according to which functional organization includes all causal

relations between a system’s internal states, inputs, and outputs. Given this notion, functionalism

amounts to the thesis that the mind is the causal organization of the brain, or that mental states are

individuated by their causal properties. Indeed, this is how functionalism is often formulated. The good

news is, this version of functionalism is not obviously committed to computationalism, because prima

facie, causal properties are not ipso facto computational. The bad news is, this version of functionalism

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

13 of 38 2/22/07 7:26 PM

is too weak to underwrite a theory of mind.

The causal notion of functional organization applies to all systems with inputs, outputs, and

internal states. A liberal notion of input and output generates an especially broad causal notion of

functional organization, which applies to all physical systems. For instance, every physical system may

be said to take its state at time t
0
 as input, go through a series of internal states between t

0
 and t

n
, and

yield its state at t
n
 as output. A more restrictive notion of input and output generates more interesting

functional descriptions. For instance, opaque bodies may be said to take light of all wavelengths as

input and yield light of only some wavelengths plus thermal radiation as output. Still, the purely causal

notion of functional organization is too vague and broad to do useful work in the philosophy of mind

(and computation, for that matter). How should the notions of input and output be applied? Which of

the many causal properties of a system are relevant to explaining its capacities? Does this purely causal

version of functionalism entail computationalism? To answer these questions, we need to restrict our

attention to the causal properties of organisms and artifacts that are relevant to explaining their specific

capacities.

To fulfill this purpose, we turn to the notion of functional analysis. Functional analysis was

introduced in modern philosophy of mind by Jerry Fodor (1965, 1968a). To illustrate functional

analysis, he used examples like the camshaft, whose function is to lift an engine’s valve so as to let fuel

into the piston. The camshaft has many causal properties, but only some of them, such as its capacity to

lift valves, are functionally relevant—relevant to explaining an engine’s capacity to generate motive

power. Fodor argued that psychological theories are functional analyses, like our analysis of the

engine’s capacity in terms of the functions of its components.

When Fodor defined psychological functional analysis in general, however, he departed from his

examples and assimilated psychological functional analyses to computational descriptions.
[17]

 Several

other authors developed a similar notion of functional analysis, retaining Fodor’s assimilation of

functional analyses to computational descriptions (Cummins 1975, 1983, 2002, Dennett 1978,

Haugeland 1978, Block 1995). If functional organizations are specified by functional analyses and

functional analyses are computational descriptions, then functional organizations are ipso facto

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

14 of 38 2/22/07 7:26 PM

computational. The mongrel of functional analysis and computational description is another source of

the conflation between functionalism and computationalism.

To avoid this conflation, we need a notion of functional organization that is explanatory—like

Fodor et al’s—without committing us to the view that every functionally organized system is

computational. The recent revival of mechanistic explanation offers us just what we need. Not only

does mechanistic explanation fulfill our purposes—it is independently motivated. For an important

lesson of recent philosophy of science is that (the relevant kind of) explanation in the special sciences,

such as psychology and neuroscience, takes a mechanistic form
[18]

:

A mechanistic explanation of a capacity C possessed by a system X is a description that

postulates spatiotemporal components A
1
, …, A

n
 of X, their functions F, and F’s relevant causal

and spatiotemporal relations R, and says that X possesses C because (i) X contains A
1
, …, A

n
,

(ii) A
1
, …, A

n
 have functions F organized in way R, and (iii) F, when organized in way R,

constitute C.

A mechanistic explanation in the present sense explains the capacities of a system in terms of its

components’ functions and the way they are organized. Biologists ascribe functions to types of

biological traits (e.g., the digestive function of stomachs) and engineers ascribe them to types of artifacts

and their components (e.g., the cooling function of refrigerators). The functions ascribed to traits and

artifacts are distinct from their accidental effects (e.g., making noise or breaking under pressure), and

hence are only a subset of their causal powers. As a consequence, tokens of organs and artifacts that do

not perform their functions may be said to malfunction or be defective.

Different variants of mechanistic explanation may be generated by employing different notions

of function.
[19]

 Drawing from William Wimsatt’s helpful taxonomy, we find three especially pertinent

notions (Wimsatt 1972, 4-5). Perspectival functions are causal powers that are relevant according to a

view or perspective of what the system is doing. Evaluative functions are causal powers that contribute

to a system’s proper functioning. And teleological functions are causal powers that contribute to

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

15 of 38 2/22/07 7:26 PM

fulfilling the goal(s) of the system or its users.

These three notions are related. Fulfilling goals is one way of functioning properly, especially if

proper functioning is defined as fulfilling one’s goals, though something may function properly without

fulfilling its goals. Functioning properly may be all that is needed to fulfill one’s goals, especially if

one’s goal is to function properly, though something may fulfill its goals without functioning properly.

So evaluative and teleological functions may or may not go together. Furthermore, goals and standards

of proper functioning define perspectives that we may take towards a system. Thus, as Wimsatt points

out, evaluative and teleological functions are special cases of perspectival functions. But the notion of

perspectival function is broader than the others: there are perspectives towards a system that have

nothing to do with proper functioning or goals.

The above notions of function can be further elaborated and explicated. There is no shortage of

literature devoted to that, and I cannot hope to resolve the debate on functions here.
[20]

 For present

purposes, I will limit myself to the following caveats.

First, different authors offer slightly different explications of mechanistic explanation, and not all

of them employ the word ‘function’. But those differences are irrelevant here. All explications of

mechanistic explanation can be subsumed under the above template by using the broad notion of

perspectival function.

Second, there may be several legitimate notions of mechanistic explanation, corresponding to

different legitimate notions of function and different legitimate explanatory practices. Any notion of

function that aspires to be relevant here, however, must be naturalistic, in the sense of playing a

legitimate role in scientific explanation. Which of the more precise notions of mechanistic explanation is

most adequate to account for the explanatory practices that are relevant to the science and metaphysics of

mind is a question that need not be resolved here.

Third, any further explication of the notion of function or mechanistic explanation cannot rely on

the notion of computation in such a way as to turn all functionally or mechanistically analyzed systems

into computing mechanisms, on pain of begging the question of computationalism again. Fortunately,

computation plays no such role in current explications of these notions. As a result, mechanistic

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

16 of 38 2/22/07 7:26 PM

explanation does not beg the question of computationalism.

This shows that we need not fasten together functions and computations as Fodor and his

followers did. When we appeal to the function of camshafts to explain the capacities of engines, our

function ascription is part of a mechanistic explanation of the engine’s capacities in terms of its

components, their functions, and their organization. We do not appeal to programs executed by engines,

nor do we employ any kind of computational language. In fact, most people would consider engines

good examples of systems that do not work by executing programs (or more generally, by performing

computations). The same point applies to the vast majority of mechanisms, with the notable exception

of computers and other computing mechanisms (including, perhaps, minds).

Fourth and finally, we should not confuse the teleological notion of function with the etiological

account of teleology. The etiological account of teleology in terms of evolutionary history is perhaps the

most popular one, but it may not suit our present purposes.
[21]

 What matters here is that teleological

functions support a robust notion of functional organization and explanation without relying on the

notion of computation. The question of how teleological functions ought to be explicated is surely

important, but I can remain neutral about it.
[22]

Mechanistic explanations are the primary way of understanding mechanisms in the biological

sciences, including neuroscience and psychology, and in engineering, including computer engineering.

Investigators in these disciplines analyze systems (e.g., trees) by breaking them down into component

parts (e.g., roots) and discovering (or in engineering, designing) the functions of those parts (e.g.,

supporting the tree and absorbing water from the soil). Neuroscientists and psychologists elaborate

their theories in the same way: they partition the brain or mind into components (e.g., the

suprachiasmatic nuclei or episodic memory) and they ascribe them functions (respectively, regulating

circadian rhythms and storing records of events). Mutatis mutandis, computer engineers do the same

thing: they partition a computer into components (e.g., the memory and the processor) and ascribe them

functions (respectively, storing data as well as instructions and executing instructions on the data).

Since mechanistic explanation gives us the notion of functional organization that is relevant to

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

17 of 38 2/22/07 7:26 PM

understanding theories in psychology, neuroscience, and computer engineering, we should adopt this

notion of functional organization in our formulation of functionalism. With mechanistic explanation in

place, we can give a novel and improved formulation of functionalism, which does justice to the original

motivations of functionalism without begging the question of computationalism. Functionalism about a

system S should be construed as the thesis that S is individuated in terms of a functional organization

specified by a mechanistic explanation.

S’s mechanistic explanation may or may not attribute computational properties to S. Under this

mechanistic version of functionalism, a system is individuated by its component parts, their functions,

and their relevant causal and spatiotemporal relations. The functional states of the system are

individuated by their role within the mechanistic explanation of the system. When a mechanistic

explanation of a system is available, the states of the system are not only individuated by their relevant

causal relations to other states, inputs, and outputs, but also by the component to which they belong and

the function performed by that component when it is in that state. This applies to all mechanisms,

including computing mechanisms. For example, ordinary Turing machine states are individuated not

only as having the function of generating certain outputs and other internal states on the basis of certain

inputs and states, but also as being states of the tape or of the active device, which are the components of

the Turing machine.
[23]

 Mechanistic functionalism has a further great advantage, which is especially relevant to the

concerns of this paper: it is based on a notion of mechanistic explanation that offers us the materials for

explicating the notion of explanation by program execution, and more generally, computational

explanation.

5 Mechanistic explanation, Computation, and Program Execution

A system subject to mechanistic explanation may or may not perform computations, and a system that

performs computations—a computing mechanism—may or may not do so by executing programs. For

example, Turing machines are made out of a tape of unbounded length, an active device that can take a

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

18 of 38 2/22/07 7:26 PM

number of states, letters from a finite alphabet, and relations between tape, active device, states, and

letters that are specified by a machine table. Of course, Turing machines are usually thought of as

abstract objects, operating on abstract inputs and outputs. But Turing machines can be physically

realized, in which case they would operate on concrete counterparts of strings of letters, which I call

strings of digits. Whether abstract or concrete, Turing machines are mechanisms, subject to mechanistic

explanation no more and no less than other mechanisms.
[24]

Some Turing machines can compute only one function. Other Turing machines, called

universal, can compute any computable functions. The difference between universal and non-universal

machines has a mechanistic explanation. Non-universal Turing machines manipulate the digits on their

tape in accordance with their machine table, without executing any program. Universal Turing

machines, by contrast, have such a special machine table of their own that they treat some of the digits

on their tape as programs and others as data, so as to manipulate their data by appropriately responding

to the programs. Because of this, universal Turing machines—unlike non-universal ones—may be said

to execute the programs written on their tape. The behavior of all Turing machines is explained by the

computations they perform on their data, but only the behavior of universal Turing machines is

explained by invoking the execution of programs.

Like Turing machines, most biological systems and artifacts are mechanistically explained in

terms of their components and functions (Bechtel and Richardson 1993, Craver and Darden 2001). But

unlike Turing machines, the capacities of most biological systems are not explained by appealing to

putative computations they perform, let alone programs that they execute (except, of course, in the case

of brains and other putative computing mechanisms).

 So, explaining a capacity by program execution is not the same as providing a mechanistic

explanation of a system. Rather, it is to provide part of a very specific kind of mechanistic explanation.

Computers are subject to explanation by program execution because they are a peculiar kind of

mechanism, and their peculiarity is explained by a specific kind of mechanistic explanation. The goals

of this section are twofold: first, to identify the subclass of mechanisms that perform computations and

whose (relevant) activities are explained by the computations they perform, and second, to identify the

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

19 of 38 2/22/07 7:26 PM

subclass of computing mechanisms that execute programs and whose (relevant) activities are explained

by the programs they execute. Once we have an account of these distinctions, we will have the

resources to explicate computational functionalism.

Most mechanisms are partially individuated by their normal interactions with their environment.

For instance, stomachs are things whose function is to digest food, and refrigerators are things whose

function is to lower the temperature of certain regions of space. Environmental interactions, in turn, may

be analyzed in terms of inputs received from the environment and outputs delivered to the environment.

Stomachs take undigested food as input and yield digested food as output; refrigerators take their inside

at a certain temperature as input and deliver the same region at a lower temperature as output. Inputs and

outputs may be taxonomized in many ways, which are relevant to the capacities to be explained. In our

examples, foods and temperatures are taxonomized, respectively, in terms of whether and how they can

be processed by stomachs and refrigerators in the relevant ways. Being a specific kind of mechanism,

computing mechanisms are individuated by inputs and outputs of a specific kind and by a specific way

of processing those inputs and outputs.

The inputs and outputs that are relevant to computing mechanisms are what computability

theorists call strings of letters, or symbols.
[25]

 A string of digits, as I’m using the term, is a concrete

counterpart of a string of letters. What does it take for a concrete entity to be a string of digits? I will

now sketch an answer in terms of mechanistic explanation. A digit is a particular that belongs to one

and only one of a finite number of types. The digits’ types are unambiguously distinguishable (and

hence individuated) by the effects they have on the mechanism that manipulates them. That is, every

digit of the same type affects a mechanism in the same way relative to generating the mechanism’s

output, and each type of digit affects the mechanism in a different way relative to generating the

mechanism’s output.

In other words, ceteris paribus, if T
2
 = T

1
, then substituting a digit of type T

1
 for a digit of type

T
2
 in a string results in the exact same computation with the same output string, whereas if T

2
 ! T

1
, then

substituting a digit of type T
2
 for a digit of type T

1
 in a string results in a different computation, which

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

20 of 38 2/22/07 7:26 PM

may generate a different output string.
[26]

 This property of digits differentiates them from many other

classes of particulars, such as temperatures and bites of food, which belong to indefinitely many types.

(There is no well-defined functional classification of temperatures or foods such that every temperature

or bite of food belongs to one among a finite number of types).

 A string is a list of permutable digits identified by the digits’ types, their number, and their order

within the string. Every finite string has a first and a last digit member, and each digit member (except

for the last member) has a unique successor. A digit within a string can be substituted by another digit

without affecting the other digits’ types, number, or position within the string. In particular, when an

input string is processed by a mechanism, ceteris paribus, the digits’ types, their number, and their order

within the string make a difference to what output string is generated.

The fact that digits are organized into strings further differentiates strings of digits from the

inputs and outputs of other functionally analyzable systems. Neither temperatures nor bites of food are

organized into strings in the relevant sense. The comparison is a bit unfair, because neither bites of food

nor temperatures are digits to begin with. But let us suppose, for the sake of the argument, that we

could find a way to unambiguously taxonomize bites of food into finitely many (functionally relevant)

types. For instance, we could taxonomize bites of food into protein bites, fat bites, etc. If such a

taxonomy were viable, it would turn bites of food into digits. Still, sequences of bites of food would

not constitute strings of digits, because digestion—unlike computation—is largely indifferent to the

order in which an organism bites its food. Even vending machines, which have been used to illustrate

the idea of a computing mechanism (Block 1980), are not computing mechanisms in a very interesting

sense, because they yield the same output regardless of the order in which the relevant inputs are

inserted into them.

 Among systems that manipulate strings of digits, some do so in a special way: under normal

conditions, they produce output strings of digits from input strings of digits in accordance with a general

rule, which applies to all relevant strings and depends on the inputs (and perhaps the internal states) for

its application.
[27]

 The rule in question specifies the computation performed by the system. Some

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

21 of 38 2/22/07 7:26 PM

systems manipulate strings without performing computations over them. For instance, a genuine

random number generator yields strings of digits as outputs, but not on the basis of a general rule

defined over strings. (If it did, its output would not be genuinely random.) Systems that manipulate

strings of digits in accordance with the relevant kind of rule deserve to be called computing mechanisms.

 The activities of computing mechanisms are explained by the computations they perform. For

example, if you press the buttons marked ‘21’, ‘:’, ‘7’, and ‘=’, of a (well-functioning) calculator, after a

short delay it will display ‘3’. The explanation for this behavior includes the facts that 3 is 21 divided

by 7, ‘21’ represents 21, ‘:’ represents division, ‘7’ represents 7, ‘=’ represents equality, and ‘3’

represents 3. But most crucially, the explanation involves the fact that the calculator’s function under

those conditions is to perform a specific calculation: to divide its first input datum by the second. The

capacity to calculate is explained, in turn, by an appropriate mechanistic explanation. Calculators have

input devices, processing units, and output devices. The function of the input devices is to deliver input

data and commands from the environment to the processing units, the function of the processing units is

to perform the relevant operations on the data, and the function of the output devices is to deliver the

results of those operations to the environment. By iterating this explanatory strategy, we can explain the

capacities of a calculator’s components in terms of the functions of their components and their

organization.

Some computing mechanisms have special components, usually called processors. Processors

are capable of performing a finite number of primitive operations on input strings (of fixed length) called

data. Which operation a processor performs on its data is determined by further strings of digits, called

instructions. Different instructions cause different operations to be performed by a processor. The

performance of the relevant operation in response to an instruction is what constitutes the execution of

that instruction. A list of instructions constitutes a program. The execution of a program’s instructions

in the relevant order constitutes the execution of the program. So, by executing a program’s instructions

in the relevant order, a computer processor executes the program. This is a brief mechanistic

explanation of (program-controlled) computers, which appeals to kinds of components and their

functions. This particular mechanistic explanation (or better, a detailed and complete version of it)

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

22 of 38 2/22/07 7:26 PM

explains what it means to execute a program and how computers have this capacity. The capacity of a

processor to execute instructions can be further explained by a mechanistic explanation of the processor

in terms of its components, their functions, and their organization.
[28]

Only computing mechanisms of a specific kind, namely computers, have processors capable of

executing programs (and memories for storing programs, data, and results). This is why only the

capacities of computers, as opposed to the capacities of other computing mechanisms—let alone

mechanisms that do not perform computations—are explained by program execution. Computational

explanation by program execution says that there are strings of digits whose function is to determine a

sequence of operations to be performed by a processor on its data.

In other words, explanation by program execution presupposes that (a state of) part of the

computer functions as a program; in an explanation by program execution, ‘program’ is used as a

function term. The way a program determines what the computer is going to do is cashed out in terms

of the mechanistic explanation of the computer. So, explanation by program execution presupposes that

the system executing the program is a very specific kind of computing mechanism, which has the

capacity to execute programs. This is why the appeal to program execution is explanatory for

computers—because it postulates programs and processors inside the computers.

 As a consequence, when the behavior of ordinary computers is explained by program execution,

the program is not just a description. The program is also a physical component of the computer (or a

stable state of a component), whose function is to generate the relevant capacity of the computer.

Programs are physically present within computers, where they have a function to perform. Somehow,

this simple and straightforward point seems to have been almost entirely missed in the philosophical

literature.
[29]

6 Computational Functionalism

We now have the ingredients to explicate computational functionalism:

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

23 of 38 2/22/07 7:26 PM

Computational functionalism: the mind is the software of the brain.

In its strong and literal form, computational functionalism says that (i) the brain contributes to the

production of behavior by storing and executing programs, according to the mechanistic explanation

sketched in the previous section, and (ii) the mind is constituted by the programs stored and executed by

the brain. This doctrine has some interesting consequences for the study of minds and brains.

Computational functionalism licenses explanations of mental capacities by program execution.

This is a kind of mechanistic explanation, which explains mental capacities by postulating a specific kind

of mechanism with specific functional properties. Briefly, the postulated mechanism includes memory

components, which store programs, and processing components, which execute them. Together, the

interaction between memories and processors determines how the system processes its data. The

capacities of the system are explained as the result of the processing of data performed by the

processor(s) in response to the program(s).

Computational functionalism entails that minds are multiply realizable, in the sense in which the

same computer program can run on physically different pieces of hardware. So if computational

functionalism is correct, then—pace Bechtel and Mundale 1999, Shapiro 2000, Churchland 2005 and

other foes of multiple realizability—mental programs can also be specified and studied independently of

how they are implemented in the brain, in the same way in which one can investigate what programs are

(or should be) run by digital computers without worrying about how they are physically implemented.

Under the computational functionalist hypothesis, this is the task of psychological theorizing.

Psychologists may speculate on which programs are executed by brains when exhibiting certain mental

capacities. The programs thus postulated are part of a mechanistic explanation for those capacities.

The biggest surprise is that when interpreted literally, computational functionalism entails that the

mind is a physical component (or a stable state of a component) of the brain, in the same sense in which

computer programs are physical components (or stable states of components) of computers. As a

consequence, even a brain that is not processing any data—analogously to an idle computer, or even a

computer that is turned off—might still have a mind, provided that its programs are still physically

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

24 of 38 2/22/07 7:26 PM

present. This consequence seems to offend some people’s intuitions about what it means to have a

mind, but it isn’t entirely implausible. It might correspond to the sense in which even people who are

asleep, or have fainted, still have minds. Be that as it may, this consequence can be easily avoided by a

more dynamic interpretation of computational functionalism, according to which the mind is constituted

by the processes generated by the brain’s software. This dynamic reading may well be the one intended

by the original proponents of computational functionalism.

Computational functionalism offers a particular mechanistic explanation of the mind. It

describes the mind as a program, which means that the function of the mind is to determine which

sequences of operations the brain has to perform. This presupposes a particular mechanistic explanation

of the brain as a program-controlled computer, i.e., a mechanism with certain components that have

certain functions and a certain organization. Whether a mechanistic explanation applies to a system is an

empirical question. In this important respect, computational functionalism turns out to embody a strong

empirical hypothesis.

Philosophers of mind have usually recognized that computationalism is an empirical hypothesis

in two respects. On the one hand, there is the empirical question of whether a computer can be

programmed to exhibit all of the capacities that are peculiar to minds. This is one traditional domain of

artificial intelligence. On the other hand, there is the empirical question of whether all mental capacities

can be explained by program execution. This is one traditional domain of cognitive psychology. As to

neuroscience, computationalists have traditionally considered it irrelevant to testing their hypothesis, on

the grounds that the same software can be implemented by different kinds of hardware. This attitude is

unsatisfactory in two respects.

First, as we have seen, at least two important construals of functionalism are such that they entail

computationalism. But if computationalism is a logical consequence of the metaphysical doctrine of

functionalism, then the empirical status of computationalism is tied to that of functionalism: if

functionalism is a priori true (as some philosophers believe), then computationalism should need no

empirical testing; conversely, any empirical disconfirmation of computationalism should disconfirm

functionalism too. An important advantage of my proposed reformulation of functionalism is that it

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

25 of 38 2/22/07 7:26 PM

does not entail computationalism. This leaves computationalism free to be an empirical hypothesis about

the specific functional organization of the brain, which—when conjoined with functionalism—gives rise

to computational functionalism.

But second, if computationalism is an empirical hypothesis to the effect that mental capacities are

explained by program execution, it isn’t enough to test it by programming computers and attempting to

explain mental capacities by program execution. Indeed, to assume that this is the only way of testing it

begs the question of whether the brain is the sort of mechanism that could run mental programs at

all—whether it is a (program-storing-and-executing) computer. Assuming that the mind is the software

of the brain presupposes that the brain has components of the relevant kinds, with the relevant functional

and organizational properties.

Whether the brain is the kind of mechanism whose capacities can be explained by program

execution is itself an empirical question, and if the brain were not functionally organized in the right

way, computational functionalism about the mind would turn out to be false. This shows computational

functionalism to incorporate an empirical hypothesis that can be effectively tested only by neuroscience.

 Whether brains are one kind of mechanism or another can only be determined by studying brains.

This sense in which computational functionalism embodies an empirical hypothesis is more

fundamental than the other two. If the brain is a computer, then both classical artificial intelligence and

classical cognitive psychology are bound to succeed. But if the brain is not a computer, then classical

artificial intelligence and cognitive psychology may or may not succeed in ways that depend on the

extent to which it is possible to reproduce the capacities of systems that are not computers by executing

programs. It may be possible to reproduce all or many mental capacities by computational means even

though either the brain is not a computer, or the mind is something other than the programs running on

the brain, or both. The extent to which this is possible is a difficult question, which there is no room to

fully address here.

I have formulated and discussed computational functionalism using the notion of explanation by

program execution, because the analogy between minds and program executing computers is the

motivation behind the strong version of computational functionalism. There is no question that many of

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

26 of 38 2/22/07 7:26 PM

those who felt the pull of the analogy between minds and computers—such as Turing, von Neumann,

Fodor, Newell, and Simon—did so in part because of the explanatory power that comes with

explanation by program execution.

But as I noticed at the beginning of this essay, computational functionalism is ambiguous

between a strong and a weak reading. It is equally obvious that many other authors, who are (or were at

one point) sympathetic to the analogy between minds and computers, such as Putnam, Cummins, the

Churchlands, Devitt and Sterelny (1999), and even McCulloch and Pitts (at least in 1943), would resist

the conclusion that the brain stores and executes programs. Is there a way to cash out their view without

falling into the trivial conclusion that the mind can be described computationally in the sense in which

anything else can? Indeed there is.

The account of computational explanation I sketched in Section 5 applies not only to

computation by program execution. In fact, computation by program execution is explicated in terms of

the more general notion of computation tout court. Roughly, computation is the manipulation of data

and (possibly) internal states according to an appropriate rule. (Computation by program execution,

then, is computation performed in response to instructions that encode the relevant rule.) Most digital

computers compute by executing programs, but ordinary (i.e., non-universal) Turing machines, finite

state automata, and many connectionist networks perform computations without executing programs.

To cover theories that do not appeal to program execution, the present formulation of

computational functionalism can be generalized by replacing program execution with other

computational processes, such as connectionist computation. According to this generalized

computational functionalism, the mind is the computational organization of a (computing) mechanism,

regardless of whether that mechanism is a program-controlled computer, a connectionist computing

mechanism, or any other kind of computing mechanism (e.g., a finite state automaton). Given the

generalized formulation, psychological explanations need not invoke the execution of programs—they

can invoke either program execution or some other kind of computation (connectionist or otherwise) that

is presumed to generate the behavior to be explained. This kind of explanation is still a mechanistic

explanation that appeals to the manipulation of strings of digits in accordance with an appropriate rule by

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

27 of 38 2/22/07 7:26 PM

appropriate components with appropriate functions. Hence, this generalized formulation of

computational functionalism still presupposes that the brain is subject to a specific kind of mechanistic

explanation, which can be studied empirically by neuroscience. Given this generalization, computational

functionalism is compatible with any computational theory of mind, including connectionist

computationalism.

But abandoning the strong analogy between minds and computers (based on program

execution), as the generalized version of computational functionalism does, produces a loss of

explanatory power. The generalized version of computational functionalism still appeals to computation

in explaining mental capacities, but it can no longer appeal to the flexibility that comes with the ability to

acquire, store, modify, and execute different programs. Which computing mechanisms are powerful

enough to explain mental capacities? We do not have room here to enter this complex debate

(Macdonald and Macdonald 1995, Aizawa 2003). But by drawing attention to all functional and

organizational aspects of computing mechanisms at all relevant levels, the account here proposed

promises to push this debate forward.

The present account sheds light on some other old disputes too. Two mental capacities that are

especially contentious are intentionality and consciousness. Several thought experiments have been

proposed to show that either intentionality or consciousness cannot be explained by program execution

(e.g., Block 1978, Searle 1980, Maudlin 1989). The failure of explanation by program execution is then

assumed to affect functionalism, presumably due to the assumption that functionalism entails

computationalism. But now we have seen that properly construed, functionalism does not entail

computationalism.

The only legitimate conclusion that may be drawn from these thought experiments is that

computationalism is insufficient to explain intentionality or consciousness. This does not entail that

computationalism explains no mental capacities, nor does it entail that intentionality and consciousness

cannot be explained functionally by some process other than program execution. In other words, even if

the intuitions behind those thought experiments are accepted, computationalism might explain many

mental capacities, and functionalism might be true of the whole mind. Of course, the intuitions behind

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

28 of 38 2/22/07 7:26 PM

the thought experiments are themselves in dispute. They remain an unlikely basis for reaching

consensus on these matters.
[30]

7 Functionalism, Computationalism, and Computational Functionalism

I have discussed three theses:

Functionalism: The mind is the functional organization of the brain.

Computationalism: The functional organization of the brain is computational.

Computational Functionalism (generalized): The mind is the computational organization of the

brain.

Computational functionalism is the conjunction of functionalism and computationalism. I have offered a

mechanistic framework within which to make sense of these doctrines and exhibit some of their mutual

relations.

 Functionalism does not entail computationalism, and by now it should be easy to see why.

Functional organizations are specified by mechanistic explanations, and there are many mechanistic

explanations that do not involve program execution or any other computational process. That the mind

is subject to mechanistic explanation is consistent with any non-computational mechanistic explanation

applying to the mind. Thus, it is a fallacy to attempt to refute functionalism by impugning some

computationalist hypothesis or another (as done, e.g., by Churchland 2005).

 Computationalism does not entail functionalism either. Computationalism is compatible with the

mind being the computational organization of the brain, but also with the mind being some

non-computational but still functional property of the brain, or even some non-functional property of the

brain, such as its physical composition, the speed of its action, its color, or more plausibly, the

intentional content or phenomenal qualities of its states. In short, one may be a computationalist while

opposing or being neutral about functionalism, at least with respect to some aspects of the mind.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

29 of 38 2/22/07 7:26 PM

Computationalism is an empirical hypothesis about the particular kind of mechanistic explanation

that applies to the brain. Even if the brain is a computing mechanism, the mind may or may not be the

brain’s computational organization—perhaps there are aspects of the mind that have to do with other

properties, e.g., the phenomenal qualities of mental states. But if brains turn out not to be computing

mechanisms, then computationalism (and hence computational functionalism) is false. So, regardless of

whether one agrees with computational functionalism, one can still focus on whether the brain is a

computing mechanism and investigate computationalism. This, of course, cannot be done by examining

intuitions about imaginary scenarios (Block 1978, Searle 1980, Maudlin 1989)—it can only be done by

studying the functional organization of the brain empirically.
[31]

The standard formulations of computational functionalism in philosophy of mind have made it

difficult to discuss computationalism as productively as it can be. They have convinced many

philosophers that computationalism is an a priori thesis, to be discussed by philosophical arguments and

thought experiments, and to be judged by the extent to which it solves philosophical problems such as

the mind-body problem. This has led philosophers to ignore the fact that, in so far as it has empirical

content, computationalism embodies an empirical scientific hypothesis about the functional organization

of the brain, which comes in several varieties that ought to be assessed by neuroscientists on grounds

that are largely empirical.

References

Adams, F. and K. Aizawa (2001). "The Bounds of Cognition." Philosophical Psychology 14(43-64).

Aizawa, K. (2003). The Systematicity Arguments. Boston, Kluwer.

Allen, C., M. Bekoff, et al., Eds. (1998). Nature's Purposes: Analysis of Function and Design in

Biology. Cambridge, MA, MIT Press.

Armstrong, D. M. (1970). The Nature of Mind. The Mind/Brain Identity Thesis. C. V. Borst. London,

Macmillan: 67-79.

Ariew, A., R. Cummins, et al., Eds. (2002). Functions: New Essays in the Philosophy of Psychology

and Biology. Oxford, Oxford University Press.

Baum, E. B. (2004). What is Thought? Cambridge, MA, MIT Press.

Bechtel, W. (2001). Cognitive Neuroscience: Relating Neural Mechanisms and Cognition. Theory and

Method in the Neurosciences. P. Machamer, R. Grush and P. McLaughlin. Pittsburgh, PA,

University of Pittsburgh Press: 81-111.

Bechtel, W. (2006). Discovering Cell Mechanisms: The Creation of Modern Cell Biology. New York,

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

30 of 38 2/22/07 7:26 PM

Cambridge University Press.

Bechtel, W. and A. Abrahamsen (2005). "Explanation: A Mechanistic Alternative." Studies in History

and Philosophy of Biological and Biomedical Sciences 36(2): 421-441.

Bechtel, W. and J. Mundale (1999). "Multiple Realizability Revisited: Linking Cognitive and Neural

States." Philosophy of Science 66: 175-207.

Bechtel, W. and R. C. Richardson (1993). Discovering Complexity: Decomposition and Localization as

Scientific Research Strategies. Princeton, Princeton University Press.

Bickle, J. (1998). Psychoneural Reduction: The New Wave. Cambridge, MA, MIT Press.

Block, N. (1978). Troubles with Functionalism. Perception and Cognition: Issues in the Foundations of

Psychology. C. W. Savage. Minneapolis, University of Minnesota Press. 6: 261-325.

Block, N. (1980). Introduction: What is Functionalism? Readings in Philosophy of Psychology. N.

Block. London, Methuen. 1: 171-184.

Block, N. (1995). "The Mind as the Software of the Brain." In An Invitation to Cognitive Science, edited

by D. Osherson, L. Gleitman, S. Kosslyn, E. Smith and S. Sternberg, MIT Press.

Block, N. (2003). "Do Causal Powers Drain Away?" Philosophy and Phenomenological Research

67(1): 133-150.

Block, N. and J. A. Fodor (1972). "What Psychological States Are Not." Philosophical Review 81(2):

159-181.

Bogen, J. (2005). "Regularities and Causality; Generalizations and Causal Explanations." Studies in

History and Philosophy of Biological and Biomedical Sciences 36(2): 397-420.

Bontly, T. (1998). "Individualism and the Nature of Syntactic States." British Journal for the

Philosophy of Science 49: 557-574.

Boorse, C. (2002). A Rebuttal on Functions. Functions: New Essays in the Philosophy of Psychology

and Biology. A. Ariew, R. Cummins and M. Perlman. Oxford, Oxford University Press: 63-112.

Boyd, R. N. (1980). Materialism without Reductionism: What Physicalism Does Not Entail. Readings

in the Philosophy of Psychology. N. Block. London, Methuen: 67-106.

Buller, D. J., Ed. (1999). Function, Selection, and Design. Albany, State University of New York

Press.

Chalmers, D. J. (1996a). "Does a Rock Implement Every Finite-State Automaton?" Synthese 108:

310-333.

Chalmers, D. J. (1996b). The Conscious Mind: In Search of a Fundamental Theory. Oxford, Oxford

University Press.

Chalmers, D. J. (unpublished). “A Computational Foundation for the Study of Cognition,” available at

http://consc.net/papers/computation.html. References here are to the paper as downloaded on

12/15/2006.

Chrisley, R. L. (1995). "Why Everything Doesn't Realize Every Computation." Minds and Machines 4:

403-430.

Christensen, W. D. and M. H. Bickhard (2002). "The Process Dynamics of Normative Function." The

Monist 85(1): 3-28.

Churchland, P. M. (2005). "Functionalism at Forty: A Critical Retrospective." The Journal of

Philosophy: 33-50.

Churchland, P. M. and P. S. Churchland (1982). Functionalism, Qualia, and Intentionality. Mind, Brain,

and Function: Essays in the Philosophy of Mind. J. I. B. a. R. W. Shahan. Norman, University of

Oklahoma Press: 121-145.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

31 of 38 2/22/07 7:26 PM

Churchland, P. S. and T. J. Sejnowski (1992). The Computational Brain. Cambridge, MA, MIT Press.

Copeland, B. J. (1996). "What is Computation?" Synthese 108: 224-359.

Copeland, B. J. (2000). "Narrow versus Wide Mechanism: Including a Re-Examination of Turing's

Views on the Mind-Machine Issue." The Journal of Philosophy XCVI(1): 5-32.

Corcoran, J., W. Frank, and M. Maloney (1974). "String Theory." The Journal of Symbolic Logic

39(4): 625-637.

Craver, C. (2001). "Role Functions, Mechanisms, and Hierarchy." Philosophy of Science 68(March

2001): 53-74.

Craver, C. (2005). "Beyond Reductionism: Mechanisms, Multifield Integration and the Unity of

Neuroscience." Studies in History and Philosophy of Biological and Biomedical Sciences 36(2):

373-395.

Craver, C. F. (2006). "When Mechanistic Models Explain." Synthese.

Craver, C. F. (forthcoming). Explaining the Brain. Oxford, Oxford University Press.

Craver, C. and L. Darden (2001). Discovering Mechanisms in Neurobiology. Theory and Method in the

Neurosciences. P. Machamer, R. Grush and P. McLaughlin. Pittsburgh, PA, University of

Pittsburgh Press: 112-137.

Cummins, R. (1977). "Programs in the Explanation of Behavior." Philosophy of Science 44: 269-287.

Cummins, R. (1983). The Nature of Psychological Explanation. Cambridge, MA, MIT Press.

Cummins. R. (2002). “Neo-teleology.” In Ariew, A., R. Cummins, et al., Eds. (2002). Functions: New

Essays in the Philosophy of Psychology and Biology. Oxford, Oxford University Press.

Cummins, R. and G. Schwarz (1991). Connectionism, Computation, and Cognition. Connectionism and

the Philosophy of Mind. T. Horgan and J. Tienson. Dordrecht, Kluwer: 60-73.

Darden, L. (2006). Reasoning in Biological Discoveries. New York, Cambridge University Press.

de Ridder, J. (2006). "Mechanistic Artefact Explanation." Studies in History and Philosophy of Science

37(1): 81-96.

Dennett, D. C. (1978). Brainstorms. Cambridge, MA, MIT Press.

Devitt, M. and K. Sterelny (1999). Language and Reality: An Introduction to the Philosophy of

Language. Cambridge, MA, MIT Press.

Egan, F. (1992). "Individualism, Computation, and Perceptual Content." Mind 101(403): 443-459.

Egan, F. (2003). Naturalistic Inquiry: Where does Mental Representation Fit in? Chomsky and His

Critics. L. M. Antony and N. Hornstein. Malden, MA, Blackwell: 89-104.

Enç, B. (1983). "In Defense of the Identity Theory." Journal of Philosophy 80: 279-298.

Fodor, J. A. (1965). Explanations in Psychology. Philosophy in America. M. Black. London,

Routledge and Kegan Paul.

Fodor, J. A. (1968a). Psychological Explanation. New York, Random House.

Fodor, J. A. (1968b). "The Appeal to Tacit Knowledge in Psychological Explanation." Journal of

Philosophy 65: 627-640.

Fodor, J. A. (1975). The Language of Thought. Cambridge, MA, Harvard University Press.

Fodor, J. A. (1997). Special Sciences: Still Autonomous after All These Years. Ridgeview, CA.

Fodor, J. A. (2000). The Mind Doesn't Work That Way. MIT Press, Cambridge, MA.

Gillett, C. (2002). "The Dimensions of Realization: A Critique of the Standard View." Analysis 62:

316-323.

Gillett, C. (2003). "The Metaphysics of Realization, Multiple Realizability and the Special Sciences."

The Journal of Philosophy C(11): 591-603.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

32 of 38 2/22/07 7:26 PM

Glennan, S. S. (2002). "Rethinking Mechanistic Explanation." Philosophy of Science 64: 605-206.

Glennan, S. (2005). "Modeling Mechanisms." Studies in History and Philosophy of Biological and

Biomedical Sciences 36(2): 443-464.

Harman, G. (1973). Thought. Princeton, Princeton University Press.

Harman, G. (1999). Reasoning, Meaning and Mind. Oxford, Clarendon Press.

Haugeland, J. (1978). "The Nature and Plausibility of Cognitivism." Behavioral and Brain Sciences 2:

215-260.

Heil, J. (2003). From an Ontological Point of View. Oxford, Clarendon Press.

Heil, J. (2004). Functionalism, Realism and Levels of Being. Hilary Putnam: Pragmatism and Realism.

J. Conant and U. M. Zeglen. London, Routledge: 128-142.

Houkes, W. (2006). "Knowledge of Artefact Functions." Studies in History and Philosophy of Science

37(1): 102-113.

Houkes, W. and A. Meijers (2006). "The Ontology of Artefacts: The Hard Problem." Studies in History

and Philosophy of Science 37(1): 118-131.

Houkes, W. and P. Vermaas (2004). "Actions versus Functions: A Plea for an Alternative Metaphysics

of Artifacts." The Monist 87(1): 52-71.

Humphreys, P. (2004).

Keeley, B. (2000). "Shocking Lessons from Electric Fish: The Theory and Practice of Multiple

Realizability." Philosophy of Science 67: 444-465.

Kim, J. (1989). "The Myth of Nonreductive Materialism." Proceedings and Addresses of the American

Philosophical Association 63: 31-47.

Kim, J. (1992). "Multiple Realization and the Metaphysics of Reduction." Philosophy and

Phenomenological Research 52: 1-26.

Kim, J. (1998). Mind in a Physical World: An Essay on the Mind-Body Problem and Mental

Causation. Cambridge, MA, MIT Press.

Kim, J. (2003). "Blocking Causal Drainage and Other Maintenance Chores with Mental Causation."

Philosophy and Phenomenological Research 67(1): 151-176.

Lewis, D. K. (1966). "An Argument for the Identity Theory." Journal of Philosophy 63: 17-25.

Lewis, D. K. (1969). "Review of Art, Mind, and Religion." Journal of Philosophy 66(22-27).

Lewis, D. K. (1972). "Psychophysical and Theoretical Identifications." Australasian Journal of

Philosophy 50: 249-258.

Lewis, D. K. (1980). Mad Pain and Martian Pain. Readings in Philosophy of Psychology, Volume 1.

N. Block. Cambridge, MA, MIT Press: 216-222.

Lucas, J. R. (1996). "Minds, Machines, and Gödel: A Retrospect." Machines and Thought: The Legacy

of Alan Turing. P. J. R. Millikan and A. Clark, Eds. Oxford, Clarendon.

Lycan, W. (1981). "Form, Function, and Feel." Journal of Philosophy 78: 24-50.

Lycan, W. (1982). Psychological Laws. Mind, Brain, and Function: Essays in the Philosophy of Mind.

J. I. Biro and R. W. Shahan. Norman, University of Oklahoma Press: 9-38.

Lycan, W. (1987). Consciousness. Cambridge, MA, MIT Press.

Macdonald, C. and G. Macdonald, Eds. (1995). Connectionism: Debates on Psychological Explanation,

Volume Two. Oxford, Blackwell.

MacDonald and Macdonald 1995

Machamer, P. (2004). "Activities and Causation: The Metaphysics and Epistemology of Mechanisms."

International Studies in the Philosophy of Science 18(1): 27-39.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

33 of 38 2/22/07 7:26 PM

Machamer, P. K., L. Darden, and C. Craver (2000). "Thinking About Mechanisms." Philosophy of

Science 67: 1-25.

Marr, D. (1982). Vision. New York, Freeman.

Maudlin, T. (1989). "Computation and Consciousness." Journal of Philosophy 86(8): 407-432.

Millikan, R. G. (1984). Language, Thought, and Other Biological Categories: New Foundations for

Realism. Cambridge, MA, MIT Press.

Moor, J. H. (1978). "Three Myths of Computer Science." British Journal for the Philosophy of Science

29: 213-222.

Nelson, R. J. (1987). "Church's Thesis and Cognitive Science." Notre Dame Journal of Formal Logic

28(4): 581-614.

Newell, A. (1980). "Physical Symbol Systems." Cognitive Science 4: 135-183.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA, Harvard University Press.

Pereboom, D. and H. Kornblith (1991). "The Metaphysics of Irreducibility." Philosophical Studies 63.

Perlman, M. (2004). "The Modern Philosophical Resurrection of Teleology." The Monist 87(1): 3-51.

Piccinini, G. (2003a). "Alan Turing and the Mathematical Objection." Minds and Machines 13(1):

23-48.

Piccinini, G. (2003b). "Review of John von Neumann's The Computer and the Brain." Minds and

Machines 13(2): 327-332.

Piccinini, G. (2003c). "Epistemic Divergence and the Publicity of Scientific Methods." Studies in the

History and Philosophy of Science 34(3): 597-612.

Piccinini, G. (2004a). "The First Computational Theory of Mind and Brain: A Close Look at

McCulloch and Pitts's 'Logical Calculus of Ideas Immanent in Nervous Activity'." Synthese 141(2):

175-215.

Piccinini, G. (2004b). "Functionalism, Computationalism, and Mental States." Studies in the History

and Philosophy of Science 35(4): 811-833.

Piccinini, G. (2004c). "Functionalism, Computationalism, and Mental Contents." Canadian Journal of

Philosophy 34(3): 375-410.

Piccinini, G. (2006). “Computation without Representation.” Philosophical Studies.

Piccinini, G. (2007a). "Is Everything a Turing Machine, and Does It Matter to the Philosophy of

Mind?" Australasian Journal of Philosophy.

Piccinini, G. (2007b). Computational Explanation and Mechanistic Explanation of Mind. Cartographies

of the Mind: Philosophy and Psychology in Intersection. M. De Caro, F. Ferretti and M. Marraffa.

Dordrecht, Springer: 23-36.

Piccinini, G. (forthcoming). "Computationalism, the Church-Turing Thesis, and the Church-Turing

Fallacy." Synthese.

Preston, B. (1998). "Why is a Wing Like a Spoon? A Pluralist Theory of Function." The Journal of

Philosophy XCV(5): 215-254.

Preston, B. (2003). "Of Marigold Beer: A Reply to Vermaas and Houkes." British Journal for the

Philosophy of Science 54: 601-612.

Prinz, J. (2001). Functionalism, Dualism and the Neural Correlates of Consciousness. Philosophy and

the Neurosciences: A Reader. W. Bechtel, P. Mandik, J. Mundale and R. Stufflebeam. Oxford,

Blackwell.

Polger, T. W. (2004a). Natural Minds. Cambridge, MA, MIT Press.

Putnam, H. (1960). Minds and Machines. Dimensions of Mind: A Symposium. S. Hook. New York,

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

34 of 38 2/22/07 7:26 PM

Collier: 138-164.

Putnam, H. (1967a). The Mental Life of Some Machines. Intentionality, Minds, and Perception. H.

Castañeda. Detroit, Wayne State University Press: 177-200.

Putnam, H. (1967b). Psychological Predicates. Art, Philosophy, and Religion. Pittsburgh, PA,

University of Pittsburgh Press.

Putnam, H. (1988). Representation and Reality. Cambridge, MA, MIT Press.

Roth, M. (2005). "Program Execution in Connectionist Networks." Mind and Language 20(4):

448-467.

Rupert, R. (2004). "Challenges to the Hypothesis of Extended Cognition." The Journal of Philosophy

CI: 389-428.

Rupert, R. (2006). "Functionalism, Mental Causation, and the Problem of Metaphysically Necessary

Effects." Noûs 40: 256-283.

Scheele, M. (2006). "Function and Use of Artefacts: Social Conditions of Function Ascription." Studies

in History and Philosophy of Science 37(1): 23-36.

Scheutz, M. (2001). "Causal versus Computational Complexity." Minds and Machines 11: 534-566.

Scheutz, M. (2004). Comments presented at the 2004 Pacific APA in Pasadena, CA.

Schlosser, G. (1998). "Self-re-Production and Functionality: A Systems-Theoretical Approach to

Teleological Explanation." Synthese 116(3): 303-354.

Searle, J. R. (1980). "Minds, Brains, and Programs." The Behavioral and Brain Sciences 3: 417-457.

Searle, J. R. (1992). The Rediscovery of the Mind. Cambridge, MA, MIT Press.

Sellars, W. (1954). "Some Reflections on Language Games." Philosophy of Science 21: 204-228.

Shagrir, O. (1998). "Multiple Realization, Computation and the Taxonomy of Psychological States."

Synthese 114: 445-461.

Shagrir, O. (2001). "Content, Computation and Externalism." Mind 110(438): 369-400.

Shagrir, O. (2005). The Rise and Fall of Computational Functionalism. Hilary Putnam. Y.

Ben-Menahem. Cambridge, Cambridge University Press.

Shagrir, O. (2006). "What is Computing in the Brain?" Synthese.

Shapiro, L. A. (1994). "Behavior, ISO Functionalism, and Psychology." Studies in the History and

Philosophy of Science 25(2): 191-209.

Shapiro, L. A. (2000). "Multiple Realizations." The Journal of Philosophy XCVII(12): 635-654.

Schlosser, G. (1998). "Self-re-Production and Functionality: A Systems-Theoretical Approach to

Teleological Explanation." Synthese 116(3): 303-354.

Schroeder, T. (2004). "Functions from Regulation." The Monist 87(1): 115-135.

Shoemaker, S. (2001). Realization and Mental Causation. Physicalism and Its Discontents. C. Gillett

and B. Loewer. Cambridge, Cambridge University Press: 74-98.

Shoemaker, S. (2003a). "Realization, Micro-Realization, and Coincidence." Philosophy and

Phenomenological Research LXVII(1): 1-23.

Shoemaker, S. (2003b). Identity, Cause and Mind, Expanded Edition. Oxford: Clarendon Press.

Simon, H. A. (1996). The Sciences of the Artificial, Third Edition. Cambridge, MA, MIT Press.

Smith, B. C. (1996). On the Origin of Objects. Cambridge, MA, MIT Press.

Sober, E. (1990). Putting the Function Back into Functionalism. Mind and Cognition. W. Lycan.

Malden, MA, Blackwell: 63-70.

Sober, E. (1999). "The Multiple Realizability Argument against Reductionism." Philosophy of Science

66: 542-564.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

35 of 38 2/22/07 7:26 PM

Stich, S. (1983). From Folk Psychology to Cognitive Science. Cambridge, MA, MIT Press.

Tabery, J. (2004). "Synthesizing Activities and Interactions in the Concept of a Mechanism."

Philosophy of Science 71(1): 1-15.

Thagard, P. (2003). "Pathways to Biomedical Discovery." Philosophy of Science 70(2): 235-254.

Turing, A. M. (1950). "Computing Machinery and Intelligence." Mind 59: 433-460.

Vermaas, P. E. (2006). "The Physical Connection: Engineering Function Ascription to Technical

Artefacts and their Components." Studies in History and Philosophy of Science 37(1): 62-75.

Vermaas, P. E. and W. Houkes (2006). "Technical Functions: A Drawbridge between the Intentional

and Structural Natures of Technical Artefacts." Studies in History and Philosophy of Science 37(1):

5-18.

von Neumann, J. (1951). The General and Logical Theory of Automata. Cerebral Mechanisms in

Behavior. L. A. Jeffress. New York, Wiley: 1-41.

von Neumann, J. (1958). The Computer and the Brain. New Haven, Yale University Press.

Webb, J. C. (1980). Mechanism, Mentalism, and Metamathematics. Dordrecht, Reidel.

Wilkes, K. V. (1982). Functionalism, Psychology, and the Philosophy of Mind. Mind, Brain, and

Function: Essays in the Philosophy of Mind. J. I. Biro and R. W. Shahan. Norman, University of

Oklahoma Press: 147-167.

Wilson, M. (1985). "What is This Thing Called "Pain"?-The Philosophy of Science Behind the

Contemporary Debate." Pacific Philosophical Quarterly 66: 227-267.

Wilson, M. (1993). Honorable Intensions. Naturalism: A Critical Appraisal. S. J. Wagner and R.

Warner. Notre Dame, Indiana, University of Indiana Press: 53-94.

Wilson, R. A. (2004). Boundaries of the Mind: The Individual in the Fragile Sciences. Cambridge,

Cambridge University Press.

Wimsatt, W. C. (1972). "Teleology and the Logical Structure of Function Statements." Studies in

History and Philosophy of Science 3(1): 1-80.

Wright, L. (1973). "Functions." Philosophical Review 82: 139-168.

[1]
 A version of this paper was presented at the 2004 Pacific APA in Pasadena, CA. I thank the audience and

commentators, Matthias Scheutz and Charles Wallis, for their helpful feedback. I also thank those who commented on
previous versions of this paper, especially David Chalmers, Robert Cummins, Carl Craver, Chris Eliasmith, Peter
Machamer, Diego Marconi, Andrea Scarantino, Oron Shagrir, and Julie Zahle. I am especially indebted to Bill Lycan for
discussion and comments. In revising the paper, I benefited from attending the 2006 NEH Summer Seminar in Mind and
Metaphysics and from a University of Missouri Research Grant. The views expressed here do not necessarily reflect those
of these institutions.
[2]

 In this paper, I am mostly concerned with functionalism with respect to scientific theories of mind—what Block
(1980) calls psychofunctionalism. I am not directly concerned with functionalism about folk psychological theories
(Lewis 1966, 1972, 1980; Armstrong 1970), analytical or conceptual truths about the mental (Shoemaker 2003b), or the
content of mental states (e.g., Sellars 1954; Harman 1973, 1999; Block 1986). I avoid formulating functionalism in
terms of Ramsey sentences (Lewis 1966, Block 1980) because such formulations obscure the issues addressed here (cf.
Gillett 2007). I am also not concerned with several other topics related to functionalism: to what extent functionalism is
consistent with reductionism and the identity theory (e.g., Lewis 1969, Fodor 1975, 1997, Boyd 1980, Churchland and
Churchland 1982, Lycan 1982, Enç 1983, Wilson 1984, 1993, Kim 1989, 1992, Pereboom and Kornblith 1991, Bickle
1998, Shagrir 1998, Sober 1999, Bechtel and Mundale 1999, Keeley 2000, Bechtel 2001, Prinz 2001, Pereboom 2002),
whether functionalism is consistent with mental causation (Block 2003, Kim 2003, Rupert 2006), whether functionalism
should be formulated in terms of roles or realizers, whether functionalism should be formulated in terms of higher level
properties, higher order properties, or similarities between fundamental properties (Heil 2003, 2004), whether the mind

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

36 of 38 2/22/07 7:26 PM

extends into the environment (Harman 1999, Shapiro 1994, Adams and Aizawa 2001, Wilson 2004, Rupert 2004), and
the correct metaphysics of realization (Kim 1998, Shapiro 2000, Shoemaker 2001, 2003a, Gillett 2002, 2003, Polger
2004, Wilson 2004).
[3]

 The second formulation, though perhaps more common in the literature than the first, is not quite equivalent to it.
There is more to functional organization than individual functional states and their relations. There are also aggregates of
states, components bearing the states, functional properties of the components, and relations between the components.
Since the first formulation is more general than the second, I prefer the first, but nothing in what follows hinges on the
difference between the two.
[4]

 The critical literature is quite large. Representative examples include Block 1978, Putnam 1988, Searle 1992, and
Lucas 1996.
[5]

 For a more detailed reconstruction and discussion of Putnam’s functionalism and computational functionalism, see
Piccinini 2004b and Shagrir 2005.
[6]

 As McCulloch put it, “What we thought we were doing (and I think we succeeded pretty well) was treating the brain
as a Turing machine” (quoted in von Neumann 1951, 33). For a detailed study of McCulloch and Pitts’s theory, see
Piccinini 2004a.
[7]

 Examples of such arguments may be found in Dennett 1978, Webb 1980, Nelson 1987, Chalmers 1996b, Simon
1996, and Baum 2004. For their refutation, see Copeland 2000 and Piccinini forthcoming.
[8]

 David Chalmers has pointed out to me that the weak thesis may be strengthened by arguing that while computation is
insufficient for the instantiation of most properties, computation is sufficient for the instantiation of mental properties.
Unlike most properties, mental properties might be such that they are instantiated “in virtue of the implementation of
computations” (Chalmers, personal correspondence). This is a fair point, but it makes a difference only insofar as we have
good evidence that computation is sufficient for mentation.

Chalmers defends a thesis of computational sufficiency along these lines in an insightful paper (Chalmers
unpublished). Briefly, Chalmers defines a notion of abstract causal organization, which involves “the patterns of
interaction among the parts of the system, abstracted away from the make-up of individual parts and from the way the
causal connections are implemented,” and yet includes “a level fine enough to determine the causation of behavior”
(ibid.). Chalmers argues that unlike most non-mental properties, all there is to mental properties is abstract causal
organization, and abstract causal organization can be fully and explanatorily captured computationally. If Chalmers is
right, then (the right kind of) computation is sufficient for mentation while being insufficient for most other properties.

Lacking space for a detailed discussion of Chalmers’s argument, let me make the following brief comment. I
don’t see that Chalmers’s argument establishes computational sufficiency for mental properties in a way that makes a
difference for present purposes. Chalmers faces a dilemma. If abstract causal organization is truly fine grained enough to
determine the causation of a system’s behavior, then—contrary to Chalmers’s intent—abstract causal organization will
capture (at least the causal aspects of) any property (including digestion, combustion, etc.). If, instead, abstract causal
organization excludes enough information about a system to rule out at least certain properties (such as digestion and
combustion), then—again, contrary to Chalmers’s intent—there is no reason to accept that abstract causal organization
will capture every aspect of mental properties. Either way, the specific connection between mentation and computation is
not strengthened. Thus, Chalmers’s argument does not affect our main discussion.
[9]

 I am using ‘digit’ to refer to the physical entities or states manipulated by computers, regardless of whether they
represent numbers.
[10]

 According to Smith, “The only compelling reason to suppose that we (or minds or intelligence) might be computers
stems from the fact that we, too, deal with representations, symbols, meanings, and the like” (1996, 11). Smith is
exaggerating in calling this the only reason, but the semantic analogy between minds and computers does have a long and
influential history. For a more detailed discussion, see Piccinini 2004c.
[11]

 An argument to this effect is in Fodor 1968b, which is one of the founding documents of computational
functionalism and which Fodor 2000 singles out as conflating functionalism and computationalism. An argument along
similar lines is in Newell 1990, 113ff. Other influential authors offered similar considerations. For the role played by
program execution in Alan Turing’s thinking about intelligence, see Turing 1950 and Piccinini 2003a. For the role
played by program execution in von Neumann’s thinking about brains, see von Neumann 1958 and Piccinini 2003b.
[12]

 Here is a case in point:
[A] programming language can be thought of as establishing a mapping of the physical states of a machine onto
sentences of English such that the English sentence assigned to a given state expresses the instruction the
machine is said to be executing when it is in that state (Fodor 1968b, 638).

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

37 of 38 2/22/07 7:26 PM

Beginning in the 1970s, some authors attempted to go beyond the mapping view by imposing further constraints on
implementation. Most prominently, Bill Lycan (1987) imposed a teleological constraint. Although this was a step in
the right direction (more on this later), Lycan and others used ‘software/hardware’ and ‘role/realizer’ interchangeably.
They offered no account specific to software implementation as opposed to role realization, and the conflation between
functionalism and computationalism remained unaffected. When talking specifically about computation, philosophers
continued to appeal to versions of the mapping view:

[A] physical system is a computational system just in case there is an appropriate (revealing) mapping between
the system’s physical states and the elements of the function computed (Churchland and Sejnowski 1992, p. 62;
emphasis added).

[C]omputational theories construe cognitive processes as formal operations defined over symbol structures…
Symbols are just functionally characterized objects whose individuation conditions are specified by a realization
function fg which maps equivalence classes of physical features of a system to what we might call “symbolic”

features. Formal operations are just those physical operations that are differentially sensitive to the aspects of
symbolic expressions that under the realization function fg are specified as symbolic features. The mapping fg
allows a causal sequence of physical state transitions to be interpreted as a computation (Egan 1992, p. 446; first
emphasis added).

[13]
 Matthias Scheutz has suggested an amendment to the standard explication of software implementation, according to

which for a computational description to be considered relevant to software implementation, all its states and all its
computational steps must map onto the system that is being described (Scheutz 2004). This proposal rules out many
computational descriptions, such as computational models that employ C++ programs, as irrelevant to what software is
being implemented by a system, and hence it improves on the standard view. But this proposal still leaves in place
indefinitely many computational descriptions of any given system, and hence it doesn’t solve the present problem.
[14]

 The thesis that everything has computational descriptions is more problematic than it may appear, in a way that adds
a further difficulty for the standard view of software implementation. For ordinary computational descriptions are only
approximate descriptions rather than exact ones, and hence a further undesirable consequence of the standard view is that
programs can only approximate the behavior of the systems that are supposed to be implementing them. A full treatment
of this further difficulty would take up more space than is available in this paper, so I will set it aside. For a detailed
discussion of the relevance of approximation to the claim that everything is computational and the way this claim
trivializes computationalism, see Piccinini 2007a.
[15] For a systematic treatment of computational modeling in science, see Humphreys 2004.
[16]

 In the relevant sense of “program execution”. Another notion is that of developmental “program,” which is employed
in biology. That is an independent notion of program, which would require a separate account.
[17]

 Cf.: “the paradigmatic psychological theory is a list of instructions for producing behavior” (Fodor 1968b, 630). For
a more extended discussion, see Piccinini 2004b.
[18]

 E.g., see Bechtel and Richardson 1993, Machamer, Darden and Craver 2000, Bechtel 2001, 2006, Craver 2001,
2005, 2006, forthcoming, Glennan 2002, 2005, Thagard 2003, Machamer 2004, Tabery 2004, Bogen 2005, Bechtel and
Abrahamsen 2005, Darden 2006.
[19]

 Polger 2004 follows a similar strategy in distinguishing different versions of functionalism based on which notion of
function they employ.
[20]

 The main competing accounts of function ascription in biology and engineering can be found in Allen, Bekoff, and
Lauder 1998; Preston 1998; Schlosser 1998; Buller 1999; Ariew, Cummins, and Perlman 2002, Christensen and
Bickhard 2002. Other contributions include Perlman 2004, Hourkes and Vermaas 2004, Cameron 2004, Johansson 2004,
Schroeder 2004, Vermaas and Houkes 2006, Scheele 2006, Franssen 2006, Vermaas 2006, Houkes 2006, Houkes and
Meijers 2006, Kroes 2006.
[21]

 Why not? First, the evolutionary account of functions does not immediately apply to artifacts, such as computers,
which are not the product of evolution by natural selection. Because of this, it’s unclear whether and how computational
functionalism, which is based on an analogy between minds and computers, can be formulated in terms of a notion of
function that relies on evolution. (This is not to say that there can’t be a broader notion of selection that applies to both
organisms and artifacts; cf. Wright 1973, Preston 2003.) Second, and perhaps most importantly, the evolutionary account
of functions grounds any resulting theory of mind on the notions and practices of evolutionary biology rather than the
empirical disciplines that are relevant to explaining the capacities of minds and computers—namely, psychology,
neuroscience, and computer science.

Computational Functionalism, Or the Mind as Neural Software http://www.umsl.edu/~piccininig/Computational%20Functionalis...

38 of 38 2/22/07 7:26 PM

[22]
 For example, non-etiological accounts of teleology are given by Schlosser 1998 and Boorse 2002.

[23]
 Carl Gillett (2007) has independently developed a proposal similar to mechanistic functionalism to deal with some of

the more metaphysical aspects of functionalism.
When mechanistic functionalism is further specified by employing teleological functions, the resulting doctrine

is a close relative of teleological functionalism (Lycan 1981, 1987, Wilkes 1982, Millikan 1984, Sober 1990, Shapiro
1994, Rupert 2006). According to teleological functionalism, the mind is the teleological organization of the brain, or
mental states are individuated by their teleological function. A teleological version of mechanistic functionalism adds to
traditional teleological functionalism a mechanistic framework within which to specify the functional organization of the
brain. Furthermore, the following two caveats apply. First, teleological functionalism is often offered as an alternative to
computational functionalism (e.g., Lycan 1981, Millikan 1984, Sober 1990). But I will soon argue that mechanistic
explanation is actually the most adequate framework within which to explicate computational explanation. As a
consequence, computational functionalism turns out to be a special version of mechanistic functionalism. Second, many
supporters of teleological functionalism endorse an etiological account of teleology. But as I already pointed out, this
may not be the most suitable account of teleology for present purposes.
[24]

 Unfortunately, the distinction between the abstract and the concrete is an endless source of confusion, especially in
the philosophy of computation. Here I have no room for a full treatment of all the relevant issues, so the following brief
point will have to suffice. It is common to see references to different levels of description of computing mechanisms,
some of which are said to be more abstract than others (e.g., Newell 1980, Marr 1982). By focusing on the mechanistic
explanation of computing mechanisms, I am not questioning the distinction between more abstract and more concrete
levels of description and I am not focusing on the “implementation” or “physical” level at the expense of more “abstract”
computational levels. Rather, I am offering a new way of understanding the computational levels, in light of the fact that
insofar as levels of description are relevant to the explanation of a system’s capacities, they are all describing aspects of a
mechanism—they are all part of a complete mechanistic explanation of the system, regardless of how abstract they are.
For a detailed account of levels within mechanistic explanation, see Craver forthcoming.
[25]

 For the mathematical theory of strings, see Corcoran, Frank, and Maloney 1974.
[26]

 It is possible for two different computations to generate the same output from the same input. This simply shows
that computations are individuated more finely than input-output mappings.
[27]

 Which strings are relevant? All the strings from the relevant alphabet. For each computing mechanism, there is a
relevant finite alphabet. Notice that the rule need not define an output for all input strings (and perhaps internal states)
from the relevant alphabet. If some outputs are left undefined, then under those conditions the mechanism should produce
no output strings of the relevant type.
[28]

 Cf. any standard textbook on computer organization and design, such as Patterson and Hennessy 1998.
[29]

 For an exception, see Moor 1978, 215. Robert Cummins, one of the few people to discuss this issue explicitly,
maintained that “programs aren’t causes but abstract objects or play-by-play accounts” (Cummins 1983, p. 34; see also
Cummins 1977). This weaker notion of program execution is quite popular among philosophers, and is yet another side
of the fuzziness surrounding functionalism and computationalism. This is because the weaker notion does not motivate
the strong analogy between minds and computers that is behind the slogan “the mind is the software of the brain,” and yet
the weaker notion is often used in explicating computationalism or even functionalism. The main reason for Cummins’s
view of program execution seems to be the way he mixes functional analysis and computational description. Roughly,
Cummins thinks that explaining a capacity by program execution is the same as giving a functional analysis of it, and
therefore the program is not a part of the computer but a description of it (see section 4 above). This leads Cummins and
his followers to the paradoxical conclusion that connectionist networks compute by executing algorithms or programs
(Cummins and Schwarz 1991, Roth 2005). But it should be obvious that connectionist networks do not store and
execute programs in the sense I explicated in the main text, which is why their behavior is not as flexible as that of digital
computers. I should point out that Cummins has recently agreed that “stored programs are certainly causes” (personal
correspondence).
[30]

 For an argument that this use of intuitions is inconclusive, see Piccinini 2003c.
[31]

 For some hints on the likely outcome, cf. Piccinini 2007b.

Searle on Brains as Computers
William J. Rapaport

Department of Computer Science and Engineering,
Department of Philosophy, Department of Linguistics

and Center for Cognitive Science
State University of New York at Buffalo, Buffalo, NY 14260-2000

rapaport@cse.buffalo.edu
http://www.cse.buffalo.edu/∼rapaport/

January 28, 2007

Abstract

Is the brain a digital computer? Searle says that this is meaningless; I say that it is an empirical question. Is the mind
a computer program? Searle says no; I say: properly understood, yes. Can the operations of the brain be simulated
on a digital computer? Searle says: trivially yes; I say yes, but that it is not trivial.

1 Three Questions
In his 1990 essay, “Is the Brain a Digital Computer?”, Searle factors the “slogan . . . ‘the mind is to the brain as the
program is to the hardware’ ” (p. 21) into three questions:

1. Is the brain a digital computer?

2. Is the mind a computer program?

3. Can the operations of the brain be simulated on a digital computer? (Searle 1990: 21.)

Let us consider each of these, beginning with the second.

2 Is the Mind a Computer Program?
What does it mean to say that the mind is a computer program? Surely not that there is a programming language
and a program written in it that is being executed on a brain—not for humans, at least. But it could mean that by
bottom-up, reverse engineering (neuroscience) together with top-down, cognitive-scientific investigation, we could
write a program that would cause a computer to exhibit mental behavior. However, that’s question 3, to which Searle
gives a different answer.

Possibly question 2 means that the mind plays the same role with respect to the brain that a program does to a
computer; call this “Good Old-Fashioned Cartesian Dualism”. This may not be much progress over the “slogan” of
which question 2 is supposed to be merely a part, but it is worth a small digression.

2.1 Good Old-Fashioned Cartesian Dualism
Computational cognitive science, including what John Haugeland (1985: 112) has termed “good old-fashioned
artificial intelligence”, is, I believe, good old-fashioned Cartesian dualism. The view that mental states and processes
are (or are expressible as) algorithms that are implemented in the physical states and processes of physical devices is

1

(a form of) Cartesian dualism: The mental states and processes and the physical states and processes can be thought
of as different “substances” that “interact”. How might this be?

It should be clear that an algorithm and a computer are different kinds of “substance”. If one considers an algorithm
as a mathematical abstraction (in the ordinary sense of the term ‘abstraction’), then it is an abstract mathematical entity
(like numbers, sets, etc.). Alternatively, if one considers an algorithm as a text expressed in some language, then it
is, say, ink marks on paper or ASCII characters in a word-processor’s file. An algorithm might even be—and indeed
ultimately is—“switch settings” (or their electronic counterparts) in a computer. All of these are very different sorts
of things from a very physical computer.

How do an algorithm and a computer “interact”? By the latter being a semantic interpretation—a model—of
the former. More precisely, the processes of the brain/body/computer are semantic interpretations (or models) of the
mind/algorithm in the sense of semantics as correspondence. But this is just what we call an implementation. So, an
implementation is a kind of semantic interpretation. (For further discussion of this, see Rapaport 1999, 2005.)

Note, by the way, that the mind/algorithm can itself be viewed as a semantic interpretation of the
brain/body/computer, since the correspondence can go both ways (Rapaport 2002). How is a mind implemented?
Consider a computer program: Ultimately, the program (as text) is implemented as states of a computer (expressed
in binary states of certain of its components). That is purely physical, but it is also purely syntactic; hence, it can
have a semantic interpretation. An abstract data type, for instance, can be thought of as the semantic interpretation
of an arrangement of bits in the computer (cf. Tenenbaum & Augenstein 1981: 1, 6, 45; see Rapaport 1995, §2.3,
and Rapaport 2005). This Janus-faced aspect of the bit arrangements—thought of both as a physical model or
implementation of the abstract algorithm and as a syntactic domain interpretable by the algorithm and its data
structures—is Marx W. Wartofsky’s “model muddle” (Wartofsky 1966, 1979: xiii–xxvi; Rapaport 1995; 1996, Ch. 2;
1999; 2000).

Now, is this really good old-fashioned Cartesian dualism? Is mind-body interaction really semantic interpretation
or implementation? Or might this semantic/implementational view be more like some other theory of the mind?

It is not parallelism, since there really is a causal interaction: The algorithm (better: the process) causes the
physical device to behave in certain ways.

So it’s not epiphenomenalism, either. Moreover, the device—or its behavior—can produce changes in the program,
as in the case of self-modifying programs, or even in the case of a system competent in natural language whose
knowledge base (part of the software) changes with each interaction.

Could it be a dual-aspect theory? Perhaps: Certainly, the physical states and processes are one “level of
description”, and the mental states and processes are another “level of description” of the same (physical) system.
But talk of levels of description seems to me to be less illuminating than the theory of semantics as correspondence.
More to the point, neither “level” is a complete description of the system: The algorithm is not the process, nor can
one infer from the algorithm what the future behavior of the process will be: The process can behave in ways not
predictable by the programmer (cf. Fetzer 1988, 1991). And even a complete physical description of the system would
not tell us what it is doing; this is one of the lessons of functionalism.

So dualism is at least plausible. Do the physical states and processes produce mental ones? Here is where the
problem of qualia—i.e., subjective qualitative experiences, including pain and physical sensations—enters. (I say
more about this in Rapaport 2005, §2.2.)

2.2 Return to Searle
Does question 2 mean that the mind is the way the brain behaves? That seems right, but isn’t the right analogy: It
doesn’t seem right to say that a program is the way a computer behaves.

“Programs,” Searle goes on to say, “are defined purely formally or syntactically” (p. 21). That, I think, is not quite
right: They require a set of input-output conventions, which would be “links” to the world. In any case, this together
with the assertion that “minds have an intrinsic content . . . immediately [implies] that the program by itself cannot
constitute the mind” (p. 21). What does ‘content’ mean?

If it means something internal to the mind (a “container” metaphor; cf. Twardowski 1894, Rapaport 1978), then that
minds have intrinsic content could mean that within a mind there are links among mental concepts, some of which play
the role of a language of thought and others of which play the role of mental representations of external perceptions
(cf. Rapaport 1996, Ch. 3; 2000; 2002; 2006). If so, that would be purely syntactic, as Searle says programs are.

If, on the other hand, ‘content’ means a relation to an external entity, then why don’t programs have that, too (as I

2

noted two paragraphs back)? In any case, programs do take input from the external world: I enter ‘2’ on the keyboard,
which results (after a few transductions) in a switch being set in the computer, which the program interprets as the
number 2.

So, on either interpretation, the conclusion doesn’t follow, since programs can also have “intrinsic mental content”,
whatever that means.

The problem is that question 2 is not the right question. Of course “The formal syntax of the program does not by
itself guarantee the presence of mental contents” (p. 26), because the program might never be executed. What Searle
should have asked is whether the mind is a computer process. And here the answer can be ‘yes’, since processes can
have contents. Searle says:

I showed this [viz., that the formal syntax of a program doesn’t guarantee the presence of mental contents]
a decade ago in the Chinese Room Argument The argument rests on the simple logical truth that
syntax is not the same as, nor is it by itself sufficient for, semantics. (Searle 1990: 21.)

This seems to follow from Charles Morris’s definitions (1938) of syntax as the study of relations among symbols
and of semantics as the study of relations between symbols and their meanings; thus, syntax "= semantics. Nor is it
the case that semantics can be “derived”, “constructed”, or “produced” from syntax by Morris’s definitions. But the
first-person semantic enterprise is one of determining correspondences among symbols—between linguistic symbols
and internal representations of external objects. Hence, it is syntactic even on Morris’s definition. The third-person
semantic enterprise is more like what Morris had in mind. But one person’s third-person semantics is another’s
first-person semantics: If one cognitive agent, Oscar, tries to account for the semantics of another cognitive agent
(Cassie) by drawing correspondences between her mental concepts and things in the world, all he can really do is draw
correspondences between his representations of her concepts and his representations of things in the world. As with
the turtles who hold up the Earth, it’s syntax all the way down. (For more about how Cassie and Oscar understand
each other, see, e.g., Rapaport 2003.)

3 Can the Operations of the Brain Be Simulated on a Digital Computer?
Let’s turn to question 3, the answer to which Searle thinks is trivially—or, at least, uninterestingly—affirmative.
“[N]aturally interpreted, the question means: Is there some description of the brain such that under that description
you could do a computational simulation of the operations of the brain” (p. 21). Such a description would inevitably
be partial (Smith 1985). Hence, so would be the computational simulation. But if it passed the Turing test (i.e.,
if its effects in the actual world were indistinguishable from those of a human), then what’s not in the model is an
implementation detail. What might these be? They might include sensations of pain, warm fuzzy feelings associated
with categorizing something as “beautiful”, etc. (cf. Rapaport 2005). As for pain, don’t forget that our sensation of it
is an internal perception, just like our sensation of an odor (cf. Crane 1998). It might be possible to be in pain and to
know that one is in pain without what we normally call a pain sensation, just as it is possible to determine the presence
of an object by its odor—by a chemical analysis—without sensing that odor.1 The “triviality” or “obviousness” of the
answer to question 3 stems, according to Searle, from Church’s Thesis: “The operations of the brain can be simulated
on a digital computer in the same sense in which weather systems, the behavior of the New York Stock market or the
pattern of airline flights over Latin America can” (p. 21). And, presumably, since simulated weather isn’t weather,
simulated brains aren’t brains. But the premise is arguable (Rapaport 2005, §3); at least, it does not follow that the
behavior of simulated brains isn’t mental. Brains and brain behavior are special cases.

4 Is the Brain a Digital Computer?
Searle equates question 1 to “Are brain processes computational?” (p. 22). What would it mean to say that the brain
was not a digital computer? It might mean that the brain is more than a digital computer—that only some proper part
of it is a digital computer. What would the rest of it be? Implementation details, perhaps. I am, however, willing to

1Angier 1992 reports that “Sperm cells possess the same sort of odor receptors that allow the nose to smell.” This does not mean, of course,
that sperm cells have the mental capacity to have smell-qualia. Blakeslee 1993 reports that “humans . . . may exude . . . odorless chemicals called
pheromones that send meaningful signals to other humans.” She calls this “a cryptic sensory system that exists without conscious awareness”
And Fountain 2006 discusses a plant that has what might be called a sense of smell, presumably without any smell qualia.

3

admit that perhaps not all of the brain’s processes are computational. Following Philip N. Johnson-Laird (1988: 26–
27), I take the task of cognitive science to be to find out how much of the brain’s processes are computational—and
surely some of them are (Rapaport 1998). It is, thus, a working hypothesis that brain processes are computational,
requiring an empirical answer and not subject to apriori refutation.

On the other hand, to say that the brain is not a digital computer might mean that it’s a different kind of entity
altogether—that no part of it is a digital computer. But that seems wrong, since it can execute programs (we use
our brains to hand-simulate computer programs, which, incidentally, is the inverse of Turing’s 1936 analysis of
computation).

What are brain processes, how do they differ from mental processes, and how do both of these relate to computer
processes? A computer process is a program being executed; therefore, it is a physical thing that implements an
abstract program. A brain process is also a physical thing, so it might correspond to a computer process. A mental
process could be either (i) something abstract yet dynamic or (ii) a brain process. The former (i) makes no sense if
programs and minds are viewed as static entities. The latter (ii) would mean that some brain processes are mental
(others, like raising one’s arm, are not). So to ask if brain processes are computational is like asking if a computer
process is computational. That question means: Is the current behavior of the computer describable by a recursive
function (or is it just a fuse blowing)? So Searle’s question 1 is: Is the current (mental) behavior of the brain describable
by a recursive function? This is the fundamental question of artificial intelligence as computational philosophy. It is a
major research program, not a logical puzzle capable of apriori resolution.

Searle’s categorization of the possible positions into “strong AI” (“all there is to having a mind is having
a program”), “weak AI” (“brain processes (and mental processes) can be simulated computationally”), and
“Cognitivism” (“the brain is a digital computer”) is too coarse (p. 22). What about the claim that a computer running
the “final” AI program (the one that passes the Turing test, let’s say) has mentality? As I argued above, that’s not
necessarily “just” having a program. But on the process interpretation of question 2, Strong AI could be the view
that all there is to having a mind is having a process, and that’s more than having a program. What about the claim
that the “final” AI program need not be the one that humans use—i.e., the claim that computational philosophy might
“succeed”, not computational psychology? (Computational philosophy seeks to learn which aspects of cognition in
general are computable; computational psychology studies human cognition using computational techniques. Cf.
Shapiro 1992, Rapaport 2003.) This is a distinction that Searle does not seem to make. Finally, Pylyshyn’s version of
“cognitivism” (1985) does not claim that the brain is a digital computer, but that mental processes are computational
processes. That seems to me to be compatible with the brain being “more” than a digital computer.

Searle complains that multiple realizability is “disastrous” (p. 26; cf. Rapaport 2005, §4.1). The first reason
is that anything can be described in terms of 0s and 1s (p. 26), and there might be lots of 0-1 encodings of the
brain. But the real question, it seems to me, is this: Does the brain compute (effectively) some function? What is
the input-output description of that function? The answer to the latter question is whatever psychology tells us is
intelligence, cognition, etc. For special cases, it’s easier to be a bit more specific: For natural-language understanding,
the input is some utterance of natural language, and the output is an “appropriate” response (where the measure of
“appropriateness” is defined, let’s say, sociolinguistically). For vision, the input is some physical object, and the output
is, again, some “appropriate” response (say, an utterance identifying the object or some scene, or some behavior to
pick up or avoid the object, etc.). Moreover, these two modules (natural-language understanding and vision) must be
able to “communicate” with each other. (They might or might not be modular in Fodor’s sense (1983), or cognitively
impenetrable in Pylyshyn’s sense (1985). In any case, solving one of these problems will require a solution to the
other; they are “AI-complete” (Shapiro 1992).)

The second allegedly disastrous consequence of multiple realizability is that “syntax is not intrinsic to physics. The
ascription of syntactical properties is always relative to an agent or observer who treats certain physical phenomena as
syntactical” (p. 26). The observer assigns 0s and 1s to the physical phenomena. But Morris’s definition of syntax as
relations among symbols (uninterpreted marks) can be extended to relations among components of any system. Surely,
physical objects stand in those relationships “intrinsically”. And if 0s and 1s can be ascribed to a physical object (by
an observer), that fact exists independently of the agent who discovers it.

Searle’s claim “that syntax is essentially an observer relative notion” (p. 27) is very odd. One would have expected
him to say that about semantics, not syntax. Insofar as one can look at a complex system and describe (or discover)
relations among its parts (independently of any claims about what it does at any higher level), one is doing non–
observer-relative syntax. Searle says that “this move is no help. A physical state of a system is a computational
state only relative to the assignment to that state of some computational role, function, or interpretation” (p. 27),

4

where, presumably, the assignment is made by an observer. But an assignment is an assignment of meaning; it’s an
interpretation. So is Searle saying that computation is fundamentally a semantic notion? But, for Church, Turing,
et al., computation is purely syntactic. It’s only the input-output coding that might constitute an assignment. But
such coding is only needed in order to be able to link the syntax with the standard theory of computation in terms of
functions from natural numbers to natural numbers. If we’re willing to express the theory of computation in terms of
functions from physical states to physical states (and why shouldn’t we?), then it’s not relative.

Searle rejects question 1: “There is no way you could discover that something is intrinsically a digital computer
because the characterization of it as a digital computer is always relative to an observer who assigns a syntactical
interpretation to the purely physical features of the system” (p. 28, my italics). I, too, reject question 1, but for a very
different reason: I think the question is really whether mental processes are computational. In any event, suppose we
do find computer programs that exhibit intelligent input-output behavior, i.e., that pass the Turing Test. Computational
philosophy makes no claim about whether that tells us that the human brain is a digital computer. It only tells us that
intelligence is a computable function. So at best Searle’s arguments are against computational psychology. But even
that need not imply that the brain is a digital computer, only that it behaves as if it were. To discover that something X
is intrinsically a digital computer, or a Y , is to have an abstraction Y, and to find correspondences between X and Y .

Perhaps what Searle is saying is that being computational is not a natural kind, but an artifactual kind (cf.
Churchland & Sejnowski 1992):

I am not saying there are a priori limits on the patterns we could discover in nature. We could no doubt
discover a pattern of events in my brain that was isomorphic to the implementation of the vi program on
this computer. (Searle 1990: 28.)

This is to admit what I observed two paragraphs back. Searle continues:

But to say that something is functioning as a computational process is to say something more than that
a pattern of physical events is occurring. It requires the assignment of a computational interpretation by
some agent. (Searle 1990: 28.)

But why? Possibly because to find correspondences between two things (say, a brain and the Abstraction
ComputationalProcess—better, the Abstraction Computer) is observer-relative? But if we have already established
that a certain brain process is an implementation of vi, what extra “assignment of a computational interpretation by
some agent” is needed?

Searle persists:

Analogously, we might discover in nature objects which had the same sort of shape as chairs and which
could therefore be used as chairs; but we could not discover objects in nature which were functioning as
chairs, except relative to some agent who regarded them or used them as chairs. (Searle 1990: 2.)

The analogy is clearly with artifacts. But the notion of a computational process does not seem to me to be artifactual;
it is mathematical. So the proper analogy would be something like this: Can we discover in nature objects that were,
say, sets, or numbers, or Abelian groups? Here, the answer is, I think, (a qualified) ‘yes’. (It is qualified, because sets
and numbers are abstract and infinite, while the world is concrete and finite. Groups may be a clearer case.) In any
event, is Searle claiming that the implementation of vi in my brain isn’t vi until someone uses it as vi? If there is
an implementation of vi on my Macintosh that no one ever uses, it’s still vi.

Searle accuses computational cognitive scientists of “commit[ing] the homunculus fallacy . . . treat[ing] the brain
as if there were some agent inside it using it to compute with” (p. 28). But consider Patrick Hayes’s (1990, 1997)
objection to the Chinese-Room Argument: Computation is a series of switch-settings; it isn’t rule-following. (On this
view, by the way, the solar system does compute certain mathematical functions.) Turing machines do not follow
rules; they simply change state. There are, however, descriptions—programs—of the state changes, and anything that
follows (executes) that program computes the same function computed by the Turing machine. A universal Turing
machine can also follow that program. But the original, special-purpose Turing machine’s program is “hardwired” (an
analogy, of course, since everything is abstract here). A universal Turing machine has its program similarly hardwired.
It is only when the universal Turing machine is fed a program that it follows the rules of that program. But that’s what
we do when we consciously follow (hand-simulate) the rules of a program. So it’s Searlewho commits the homuncular
fallacy in the Chinese-Room Argument by putting a person in the room. It is not the person in the room who either

5

does or does not understand Chinese; it is the entire system (Rapaport 2000, 2006). Similarly, it is not some part of
my brain that understands language; it is I who understands.

In his discussion of “discharging” the homunculus, Searle says that “All of the higher levels reduce to this bottom
level. Only the bottom level really exists; the top levels are all just as-if ” (p. 29). But all levels exist, and all levels
“do the same thing”, albeit in different ways (Rapaport 1990, 2005).

I noted above that systems that don’t follow rules can still be said to be computing. My example was the solar
system. Searle offers “nails [that] compute the distance they are to travel in the board from the impact of the hammer
and the density of the wood” (p. 29) and the human visual system; “neither,” according to him, “compute anything”
(p. 29). But in fact they both do. (The nail example might not be ideal, but it’s a nice example of an analog
computation.)

But you do not understand hammering by supposing that nails are somehow intrinsically implementing
hammering algorithms and you do not understand vision by supposing the system is implementing, e.g.,
the shape from shading algorithm. (Searle 1990: 29; my italics.)

Why not? It gives us a theory about how the system might be performing the task. We can falsify (or test) the theory.
What more could any (scientific) theory give us? What further kind of understanding could there be? Well, there could
be first-person understanding, but I doubt that we could ever know what it is like to be a nail or a solar system. We do
understand what it is like to be a cognitive agent!

The problem, I think, is that Searle and I are interested in different (but complementary) things:

. . . you cannot explain a physical system such as a typewriter or a brain by identifying a pattern which
it shares with its computational simulation, because the existence of the pattern does not explain how the
system actually works as a physical system. (Searle 1990: 32.)

Of course not. That would be to confuse the implementation with the Abstraction. Searle is interested in the former;
he wants to know how the (human) brain works. I, however, want to know what the brain does and how anything could
do it. For that, I need an account at the functional/computational level, not a biological (or neuroscientific) theory.

The mistake is to suppose that in the sense in which computers are used to process information, brains
also process information. [Cf. Johnson 1990.] To see that that is a mistake, contrast what goes on in the
computer with what goes on in the brain. In the case of the computer, an outside agent encodes some
information in a form that can be processed by the circuitry of the computer. That is, he or she provides
a syntactical realization of the information that the computer can implement in, for example, different
voltage levels. The computer then goes through a series of electrical stages that the outside agent can
interpret both syntactically and semantically even though, of course, the hardware has no intrinsic syntax
or semantics: It is all in the eye of the beholder. And the physics does not matter provided only that you
can get it to implement the algorithm. Finally, an output is produced in the form of physical phenomena
which an observer can interpret as symbols with a syntax and a semantics.

But now contrast this with the brain. . . . none of the relevant neurobiological processes are observer
relative . . . and the specificity of the neurophysiology matters desperately. (Searle 1990: 34.)

There is much to disagree with here. First, “an outside agent” need not “encode . . . information in a form that can be
processed by the circuitry of the computer”. A computer could be (and typically is) designed to take input directly from
the real world and to perform the encoding (better: the transduction) itself, as, e.g., in document-image understanding
(cf. Srihari & Rapaport 1989, 1990; Srihari 1991, 1993, 1994). Conversely, abstract concepts are “encoded” in natural
language so as to be processable by human “circuitry”.

Second, although I find the phrase ‘syntactical realization’ quite congenial (cf. Rapaport 1995), I’m not sure how
to parse the rest of the sentence in which it appears. What does the computer “implement in voltage levels”: the
information? the syntactical realization? I’d say the former, and that the syntactical realization is the voltage levels.
So there’s an issue here of whether the voltage levels are interpreted as information, or vice versa.

Third, the output need not be physical phenomena interpreted by an observer as symbols. The output could be
an action, or more internal data (e.g., as in a vision system),2 or even natural language to be interpreted by another

2Searle seems to think (p. 34) that vision systems yield sentences as output! (See below.)

6

computer. Indeed, the latter suggests an interesting research project: Set up Cassie and Oscar, two computational
cognitive agents implemented in a knowledge-representation, reasoning, and acting system such as SNePS.3 Let Cassie
have a story pre-stored or as the result of “reading” or “conversing”. Then let her tell the story to Oscar and ask him
questions about it. No humans need be involved.

Fourth, neurobiological processes aren’t observer-relative, only because we don’t care to, or need to, describe them
that way. The computer works as it does independently of us, too. Of course, for us to understand what the brain is
doing—from a third-person point of view—we need a psychological level of description (cf. Chomsky 1968, Fodor
1968, Enç 1982).

Finally, why should “the specificity of the neurophysiology matter desperately”? Does this mean that if the
neurophysiology were different, it wouldn’t be a human brain? I suppose so, but that’s relevant only for the
implementation side of the issue, not the Abstraction side, with which I am concerned.

Here is another example of how Searle does not seem to understand what computational cognitive science is about:

A standard computational model of vision will take in information about the visual array on my retina and
eventually print out the sentence, “There is a car coming toward me”. But that is not what happens in the
actual biology. In the biology a concrete and specific series of electro-chemical reactions are set up by the
assault of the photons on the photo receptor cells of my retina, and this entire process eventually results
in a concrete visual experience. The biological reality is not that of a bunch of words or symbols being
produced by the visual system, rather it is a matter of a concrete specific conscious visual event; this very
visual experience. (Searle 1990: 34–35.)

The first sentence is astounding. First, why does he assume that the input to the computational vision system is
information on the retina, rather than things in the world? The former is close to an internal symbol representing
external information! Second, it is hardly “standard” to have a vision system yield a sentence as an output. It might,
of course (“Oh, what a pretty red flower.”), but, in the case of a car coming at the system, an aversive maneuver would
seem to be called for, not a matter-of-fact description. Nonetheless, precisely that input-output interaction could, pace
Searle, be “what happens in the actual biology”: I could say that sentence upon appropriate retinal stimulation.

Of course, as the rest of the quotation makes clear, Searle is more concerned with the intervening qualitative
experience, which, he seems to think, humans have but computers don’t (or can’t). Well, could they? Surely, there
ought to be an intervening stage in which the retinal image is processed (perhaps stored) before the information thus
processed or stored is passed to the natural-language module and interpreted and generated. Does that process have
a qualitative feel? Who knows? How would you know? Indeed, how do I know (or believe) that you have such a
qualitative feel? The question is the same for both human and computer. Stuart C. Shapiro has suggested how a pain-
feeling computer could be built (Rapaport 2005, §2.3.1); similarly, it’s possible that a physical theory of sensation
could be constructed. Would it be computational? Perhaps not—but so what? Perhaps some “mental” phenomena are
not really mental (or computational) after all (Rapaport 2005, §2.3). Or perhaps a computational theory will always
be such that there is a role to play for some sensation or other, even though the actual sensation in the event is not
computational. That is, every computational theory of pain or vision or what have you will be such that it will refer
to a sensation without specifying what the sensation is. (Cf. Gracia’s (1990) example of a non-written universal for a
written text, discussed in Rapaport 2005, §2.2. See also McDermott 2001.)

Of course, despite my comments about the linguistic output of a vision system, the sentence that Searle talks about
could be a “sentence” of one’s language of thought. That, however, would fall under the category of being a “concrete
specific conscious visual event” and “not . . . a bunch of words or symbols” (Cf. Pylyshyn 1981; Srihari op. cit.; Srihari
& Rapaport op. cit.)

Searle’s final point about question 1 is this:

The point is not that the claim “The brain is a digital computer” is false. Rather it does not get up to the
level of falsehood. It does not have a clear sense. (Searle 1990: 35.)

This is because “you could not discover that the brain or anything else was intrinsically a digital computer” (p. 35,
my italics). “Or anything else”? Even an IBM PC? Surely not. Possibly he means something like this: Suppose we
find an alien physical object and theorize that it is a digital computer. Have we discovered that it is? No—we’ve got
an interpretation of it as a digital computer (cf. “you could assign a computational interpretation to it as you could to

3Shapiro 1979, 2000; Shapiro & Rapaport 1987, 1992, 1995; Shapiro et al. 2006. Further information is available online at:
[http://www.cse.buffalo.edu/sneps] and at: [http://www.cse.buffalo.edu/∼rapaport/snepskrra.html].

7

anything else” (p. 35)). But how else could we “discover” anything about it? Surely, we could discover that it’s made
of silicon and has 10k parts. But that’s consistent with his views about artifacts. Could we discover the topological
arrangement of its parts? I’d say ‘yes’. Can we discover the sequential arrangement of its behaviors? Again, I’d say
‘yes’. Now consider this: How do we determine that it’s made of silicon? By subjecting it to certain physical or
chemical tests and having a theory that says that any substance that behaves thus and so is (made of) silicon. But if
anything that behaves such and thus is a computer, then so is this machine! So we can discover that (or whether) it is
a computer. (Better: We can discover whether its processing is computational.)

References
Angier, Natalie (1992), “Odor Receptors Discovered in Sperm Cells”, The New York Times (30 January 1992): A19.
Blakeslee, Sandra (1993), “Human Nose May Hold An Additional Organ For a Real Sixth Sense”, The New York Times (7

September 1993): C3.
Chomsky, Noam (1968), Language and Mind (New York: Harcourt, Brace & World).
Churchland, Patricia S., & Sejnowski, Terrence J. (1992), The Computational Brain (Cambridge, MA: MIT Press).
Crane, Tim (1998), “Intentionality as the Mark of the Mental”, in Anthony O’Hear (ed.), Current Issues in the Philosophy of Mind

(Cambridge, UK: Cambridge University Press): 229–251.
Enç, Berent (1982), “Intentional States of Mechanical Devices”,Mind 91(362; April): 161–182.
Fetzer, James H. (1988), “Program Verification: The Very Idea”, Communications of the ACM 31: 1048–1063.
Fetzer, James H. (1991), “Philosophical Aspects of Program Verification”,Minds and Machines 1: 197–216.
Fodor, Jerry A. (1968), Psychological Explanation: An Introduction to the Philosophy of Psychology (New York: Random House).
Fodor, Jerry A. (1983), The Modularity of Mind: An Essay in Faculty Psychology (Cambridge, MA: MIT Press).
Fountain, Henry (2006), “This Plant Has the Sense of Smell (Loves Tomatoes, Hates Wheat)”, The New York Times (3 October

2006): F1.
Gracia, Jorge J.E. (1990), “Texts and Their Interpretation”, Review of Metaphysics 43: 495–542.
Haugeland, John (1985), Artificial Intelligence: The Very Idea (Cambridge, MA: MIT Press).
Hayes, Patrick J. (1990), “Searle’s Chinese Room”, abstract of presentation to the Society for Philosophy and Psychology

Symposium on Searle’s Chinese Room andWorkshop on Symbol Grounding, University of Maryland (electronic mail posting
from Stevan Harnad, 6 June 1990).

Hayes, Patrick J. (1997), “What Is a Computer? An Electronic Discussion”, The Monist 80(3).
Johnson-Laird, Philip N. (1988), The Computer and the Mind: An Introduction to Cognitive Science (Cambridge, MA: Harvard

University Press).
McDermott, Drew (2001), Mind and Mechanism (Cambridge, MA: MIT Press).
Morris, Charles (1938), Foundations of the Theory of Signs (Chicago: University of Chicago Press).
Pylyshyn, Zenon (1981), “The Imagery Debate: Analog Media versus Tacit Knowledge”, in Ned Block (ed.), Imagery (Cambridge,

MA: MIT Press): 151–206.
Pylyshyn, Zenon (1985), Computation and Cognition: Toward a Foundation for Cognitive Science, 2nd edition (Cambridge, MA:

MIT Press).
Rapaport, William J. (1978), “Meinongian Theories and a Russellian Paradox”, Noûs 12: 153–180; errata, Noûs 13 (1979) 125.
Rapaport, William J. (1990), “Computer Processes and Virtual Persons: Comments on Cole’s ‘Artificial Intelligence and

Personal Identity’,” Technical Report 90-13 (Buffalo: SUNY Buffalo Department of Computer Science, May 1990)
[http://www.cse.buffalo.edu/∼rapaport/Papers/cole.tr.17my90.pdf].

Rapaport, William J. (1995), “Understanding Understanding: Syntactic Semantics and Computational Cognition”, in James E.
Tomberlin (ed.), Philosophical Perspectives, Vol. 9: AI, Connectionism, and Philosophical Psychology (Atascadero, CA:
Ridgeview): 49–88; reprinted in Toribio, Josefa, & Clark, Andy (eds.) (1998), Language and Meaning in Cognitive Science:
Cognitive Issues and Semantic Theory, Artificial Intelligence and Cognitive Science: Conceptual Issues, Vol. 4 (New York:
Garland): 73–88.

Rapaport, William J. (1996), “Understanding Understanding: Semantics, Computation, and Cognition”, Technical Report 96-26
(Buffalo: SUNY Buffalo Department of Computer Science).

Rapaport, William J. (1998), “How Minds Can Be Computational Systems”, Journal of Experimental and Theoretical Artificial
Intelligence 10: 403–419.

Rapaport, William J. (1999), “Implementation is Semantic Interpretation”, The Monist 82: 109–130.
Rapaport, William J. (2000), “How to Pass a Turing Test: Syntactic Semantics, Natural-Language Understanding, and First-Person

Cognition”, Journal of Logic, Language, and Information 9(4): 467–490; reprinted in James H. Moor (ed.), The Turing Test:
The Elusive Standard of Artificial Intelligence (Dordrecht: Kluwer, 2003): 161–184.

Rapaport, William J. (2002), “Holism, Conceptual-Role Semantics, and Syntactic Semantics”, Minds and Machines 12(1): 3–59.
Rapaport, William J. (2003), “What Did You Mean by That? Misunderstanding, Negotiation, and Syntactic Semantics”,Minds and

8

Machines 13(3): 397–427.
Rapaport, William J. (2005), “Implementation Is Semantic Interpretation: Further Thoughts”, Journal of Experimental and

Theoretical Artificial Intelligence 17(4; December): 385–417.
Rapaport, William J. (2006), “How Helen Keller Used Syntactic Semantics to Escape from a Chinese Room”

[http://www.cse.buffalo.edu/∼rapaport/Papers/helenkeller.pdf].
Searle, John R. (1990), “Is the Brain a Digital Computer?”, Proceedings and Addresses of the American Philosophical Association,

64(3): 21–37.
Shapiro, Stuart C. (1979), “The SNePS Semantic Network Processing System”, in Nicholas Findler (ed.), Associative Networks:

Representation and Use of Knowledge by Computers (New York: Academic Press): 179–203.
Shapiro, Stuart C. (1992), “Artificial Intelligence”, in Stuart C. Shapiro (ed.), Encyclopedia of Artificial Intelligence, second edition

(New York: John Wiley & Sons): 54–57.
Shapiro, Stuart C. (2000), “SNePS: A Logic for Natural Language Understanding and Commonsense Reasoning”, in Łucja M.

Iwańska & Stuart C. Shapiro (eds.), Natural Language Processing and Knowledge Representation: Language for Knowledge
and Knowledge for Language (Menlo Park, CA/Cambridge, MA: AAAI Press/MIT Press): 175–195.

Shapiro, Stuart C., & Rapaport, William J. (1987), “SNePS Considered as a Fully Intensional Propositional Semantic Network”,
in Nick Cercone & Gordon McCalla (eds.), The Knowledge Frontier: Essays in the Representation of Knowledge (New
York: Springer-Verlag): 262–315; shorter version appeared in Proceedings of the 5th National Conference on Artificial
Intelligence (AAAI-86, Philadelphia) (Los Altos, CA: Morgan Kaufmann): 278–283; a revised shorter version appears as “A
Fully Intensional Propositional Semantic Network”, in Leslie Burkholder (ed.), Philosophy and the Computer (Boulder, CO:
Westview Press, 1992): 75–91.
tem Shapiro, Stuart C., & Rapaport, William J. (1992), “The SNePS Family”, Computers and Mathematics with Applications
23: 243–275; reprinted in F. Lehmann (ed.), Semantic Networks in Artificial Intelligence (Oxford: Pergamon Press, 1992):
243–275.

Shapiro, Stuart C., & Rapaport, William J. (1995), “An Introduction to a Computational Reader of Narratives”, in Judith F. Duchan,
Gail A. Bruder, & Lynne E. Hewitt (eds.), Deixis in Narrative: A Cognitive Science Perspective (Hillsdale, NJ: Lawrence
Erlbaum Associates): 79–105.

Shapiro, Stuart C., & the SNePS Research Group (2006), “SNePS” [http://en.wikipedia.org/wiki/SNePS].
Smith, Brian Cantwell (1985), “Limits of Correctness in Computers”, reprinted in Charles Dunlop & Rob Kling (eds.),

Computerization and Controversy (San Diego: Academic Press, 1991): 632–646.
Srihari, Rohini K. (1991), “PICTION: A System that Uses Captions to Label Human Faces in Newspaper Photographs”,

Proceedings of the 9th National Conference on Artificial Intelligence (AAAI-91, Anaheim) (Menlo Park, CA: AAAI Press/MIT
Press): 80–85.

Srihari, Rohini K. (1993), “Intelligent Document Understanding: Understanding Photos with Captions”, Proceedings of the
International Conference on Document Analysis and Recognition (ICDAR-93, Tsukuba City, Japan).

Srihari, Rohini K. (1994), “Use of Collateral Text in Understanding Photos in Documents”, Proceedings of the Conference on
Applied Imagery and Pattern Recognition (AIPR/SPIE, Washington, DC).

Srihari, Rohini K., & Rapaport, William J. (1989), “Extracting Visual Information From Text: Using Captions to Label Human
Faces in Newspaper Photographs”, Proceedings of the 11th Annual Conference of the Cognitive Science Society (Ann Arbor,
MI) (Hillsdale, NJ: Lawrence Erlbaum Associates): 364–371.

Srihari, Rohini K., & Rapaport, William J. (1990), “Combining Linguistic and Pictorial Information: Using Captions to Interpret
Newspaper Photographs”, in Deepak Kumar (ed.), Current Trends in SNePS—Semantic Network Processing System, (Berlin:
Springer-Verlag Lecture Notes in Artificial Intelligence 437): 85–96.

Tenenbaum, Aaron M., & Augenstein, Moshe J. (1981), Data Structures using Pascal (Englewood Cliffs, NJ: Prentice-Hall).
Turing, Alan M. (1936), “On Computable Numbers, with an Application to the Entscheidungsproblem”, Proceedings of the London

Mathematical Society, Ser. 2, Vol. 42: 230–265; reprinted, with corrections, in Martin Davis (ed.), The Undecidable: Basic
Papers On Undecidable Propositions, Unsolvable Problems And Computable Functions (New York: Raven Press, 1965):
116–154.

Twardowski, Kasimir (1894), On the Content and Object of Presentations, Reinhardt Grossmann (trans.) (The Hague: Nijhoff,
1977).

Wartofsky, Marx W. (1966), “The Model Muddle: Proposals for an Immodest Realism”, in Models: Representation and the
Scientific Understanding (Dordrecht, Holland: D. Reidel, 1979): 1–11.

Wartofsky, Marx W. (1979), “Introduction”, in Models: Representation and the Scientific Understanding (Dordrecht, Holland:
D. Reidel, 1979): xiii–xxvi.

9

