Assigned: 31 Jan '07 Topic: What is engineering? (part Il)

Required:

Petroski, Henry (2003), "Early [Engineering] Education”, American
Scientist 91 (May-June): 206-209.

Loui, Michael C. (1987), "Computer Science Is an Engineering
Discipline"” Engineering Education 78(3): 175-178.

Strongly recommended:

* Re-read (or finish reading) Brooks 1996



ENGINEERING
Early Education

Henry Petroski

Children are born engineers. Everything they see, they want to change. They want to remake their world.
They want to roll over, crawl, walk. They want to make words out of sounds. They want to amplify and
broadcast their voice. They want to rearrange their clothes. They want to hold their air, their water, their
fire, their earth. They want to swim and fly. They want their food, and they want to play with it too. They
want to move dirt and pile sand. They want to build dams and make lakes. They want to launch ships of
sticks. They want to stack blocks and cans and boxes. They want to build towers and bridges. They want to
move cars and trucks over roads of their own design. They want to walk and ride on wheels. They want to
draw and paint and write. They want to command armies and direct dolls. They want to make pictures out
of pixels. They want to play games —sometimes computer games. They want to talk across distance and
time. They want to control the universe. They want to make something of themselves.

click for full image and
caption Grown-up engineering, which is as old as civilization, maintains the youth,

vigor and imagination of a child. This is why, when presented to children on
their own terms, the excitement of engineering is immediately apparent and
fully comprehendible. No child is too young to play and therefore to engage in
engineering, albeit of a primitive kind. We all did so as children ourselves,
when we devised our own toys and games —and sometimes even imaginary
friends to enjoy them with us. The idea of playfulness is embedded in
engineering through the concepts of invention and design. Not that
engineering is frivolous; rather, the heart of the activity is giving the
imagination its head, reining it in only to check impossible or dangerous
dreams and to turn ideas into reality.

Children do experience the essence of engineering in their earliest activities,
yet there is seldom any recognition that this is the case. They may hear the
word "engineer" only in connection with railroad locomotives and have no
idea that their playful activity could become a lifelong profession. Engineers
themselves are understandably reluctant to equate their professional activity
with mere child's play. After all, they studied long and hard to master esoteric knowledge of atoms and
molecules, stresses and strains, heat and power, currents and voltages, bits and bytes. They manipulate
equations, not blocks. They use computers for serious modeling and calculation, not for fun and games.
They design and build real towers and bridges that test the limits of reliability and safety, not toy ones that
totter and fall down with little consequence.

These regimens learned in college and put into practice are important and serious, but they are still not
essential to comprehending the profession's fundamental activity: design. Design is rooted in choice and
imagination—and play. Thus the essential idea of engineering can readily be explained to and understood
by children.

Sharing the Joy

Much has been said and written about the declining numbers of and disappointing lack of diversity among
college students majoring in engineering. Among the factors cited to explain this paucity are the lack of
exposure of high school students to the very idea of engineering and the fact that many have insufficient



mathematics and science background to gain entrance to engineering school, even if they do identify the
profession as a possible career. This is unfortunate, for the ideas of engineering should be integrated into
the curricula not only of high schools but also of middle and primary schools. Our children are being done
a disservice by not being exposed properly throughout their education to engineering activities identified as
such. After all, even preschool children have the prerequisites in their play for appreciating exactly what
engineering is: design. Indeed, design is ubiquitous throughout their school day, even in their before- and
after-school activities. It need only be pointed out to them that they are designing something, and therefore
being engineers of sorts, in virtually everything that they do.

According to Nicholson Baker in his novel, The Mezzanine, "Shoes are the first adult machines we are
given to master." We learn to tie our shoes even before going to school. This is no mean accomplishment,
as most of us may remember, and its execution is by no means as rigidly codified as the alphabet drilled in
school. There are different ways to tie a shoelace, as we readily learn when we help different children
unknot theirs, and the steps in tying a knot or bow can vary from family to family in ways that the order of
the letters in the alphabet cannot. Most children learn from their parents, and in their teaching role the
parents themselves often have to relearn from a different point of view. That different techniques exist is
characteristic of the fact that tying a shoe is a design problem —and design problems seldom if ever have
unique solutions. Each child may be taught to tie shoes in a prescribed way, but it is not the only way or
even necessarily the best way. Such an observation is beneficial not only for introducing students to design
but also for augmenting lessons in diversity.

Opportunities in the Everyday

The idea of tying a shoe, and the related problem of lacing one up, can be turned into playful educational
activities that expose students to the idea of design and thereby to engineering. A recent article in the New
York Times' "Science Times" described how Burkard Polster, a mathematician at Monash University,
calculated that there are more than 40,000 distinct ways to lace up a shoe with two rows of six eyelets each.
In true academic mathematical fashion, Polster extended his research by viewing the laced shoe as a pulley
system to determine which lacing pattern was most effective in performing its function. He also determined
the lacing that could be effected with the shortest lace. The combinatorial mathematics used by Polster
make the problem as he approached it unsuitable for young children, of course, but the practical problem
itself can definitely be used to advantage in the elementary school classroom. How much fun could children
have redesigning the lacings of their shoes into imaginative patterns and learning by doing that there is
more than one way to solve a problem? Being told by the teacher that a mathematician calculated that there
are exactly 43,200 different ways they could have solved the problem can only add to the wonder of the
lesson.

Elementary school students might also be asked if they could imagine how Polster got the idea of counting
how many ways there are to lace a shoe. Telling them that he did so after learning that two physicists from
the University of Cambridge calculated how many ways there were to knot a necktie provides yet another
opportunity to to describe a commonplace problem in design. Even if the children are not in uniform—and
the teacher, too, is dressed casually —the tie-knotting problem is at least one they might take home to tackle
with their families. It would also expand the vocabulary of professions to which the children are exposed.
To their knowledge that mathematicians can have fun counting shoe lacing patterns, the students can add
the mental note that physicists can have fun counting tie knottings. To this can be added the observation
that if mathematicians and physicists have such fun counting things, imagine how much fun engineers have
in designing things that can be counted.

(As an aside to teachers and others, the word "science" is in fact a misnomer when it actually refers to
engineering. Science, strictly speaking, does not include engineering, an activity distinguished by its
domination by design. Engineers design things, such as patterns of shoe lacings; scientists analyze things,
such as counting how many lacings can be designed. These are distinctly different activities, even though
the object of their attentions can be common. Journalists and others often use the term "science" as a
convenient shorthand to include "engineering," but it verbally subsumes engineering into an activity whose



fundamental objectives are of another kind altogether. This use of "science" essentially keeps "engineering"
out of the vocabulary of children, who consequently do not learn about all the possible ways there are to
have fun with shoelaces, neckties and so much more —including real towers, bridges, automobiles,
airplanes, power plants, computers, and everything designed and made.)

An after-school snack provides further opportunities for children to learn that design means that there is not
just one way to do something. Consider the problem of designing a method for eating an Oreo cookie with
a glass of milk. Different children (and adults) employ different techniques. Those with big enough mouths
might just pop the whole thing in. Most eat the cookie in steps, some taking a bite at a time, as if it were a
real sandwich. Others proceed by first twisting or prying off one side of the cookie to expose the cream.
Some eat the separated top right away; others put it aside and attack the cream first. Even this allows for
variations: Some lick the cream off, and others scrape it off with their teeth; some use their top and others
their bottom teeth. After finishing the cream, those who put the top aside still have another choice to make:
whether to eat the top or bottom next. All along, the glass of milk on the table has allowed for further
variations on the process, for the cookie may be dunked or not before each bite. Countless everyday
activities, in school or out, provide ample opportunities to introduce young children to design and therefore
to engineering.

Invention — within Bounds

Design pervades the lives of children and adults alike; virtually nothing that we do goes untouched by it.
We design our own approaches to the everyday things of life, such as lacing our shoes, knotting our ties
and eating our cookies. But we also design our own procedures for washing our hands, taking a shower,
putting on our clothes. As I recall, in one episode of All in the Family, Archie Bunker's son-in-law, Mike,
watches Archie put on his shoes and socks. Mike goes into a conniption when Archie puts the sock and
shoe completely on one foot first, tying a bow to complete the action, while the other foot remains bare. To
Mike, if I remember correctly, the right way to put on shoes and socks is first to put a sock on each foot and
only then put the shoes on over them, and only in the same order as the socks. In an ironic development in
his character, the politically liberal Mike shows himself to be intolerant of differences in how people do
common little things, unaccepting of the fact that there is more than one way to skin a cat or put on one's
shoes.

At times we do prescribe how certain everyday things are done, even though there might be countless ways
to vary the procedure. This is especially the case in more formal social situations, where doing things too
individually might detract from the formality or, in some instances, even prove to be repulsive to polite
society. Thus we have manners and social protocols. Arbitrary as they sometimes seem, such things as table
manners and restraint in creativity at the table obviate distractions that otherwise might make eating with
others, especially strangers, a less than pleasant experience. Imagine a business lunch where the group of
people around the table ate with the individuality that children show when eating cream-sandwich cookies.
As many ways to eat a sandwich as there might be, there are also practical reasons beyond decorum for
following a customary procedure. By keeping the sandwich intact and bringing it to the mouth in the
conventional way, we demonstrate one of the sandwich's design features: The fingers are kept free of
mustard and mayonnaise, which in turn means that the outside of the drink glass remains relatively tidy
throughout the meal and that after lunch the business associates can shake hands without feeling they are
washing dishes.

We discover as children, sometimes with the guidance of an adult but often by our own devices, preferred
ways to proceed with all sorts of social and recreational activities. There are many ways to design a ball
game, and the plethora includes the supplemental use of bats, rackets, bases, baskets, goalposts, nets and
more. But when two or more people participate in any game, they must agree on which implements to
allow and which rules to follow. Otherwise what transpired would hardly be a game as we know it. Imagine
a player on a tennis court serving a football with a baseball bat across a volleyball net to an opponent with a
lacrosse stick. Only an agreed-upon set of rules is likely to produce a recreational activity that is not
chaotic. If the objective is to have a friendly, or even a fiercely competitive, game, it must proceed



according to rules of a rigid design. Even the game of solitaire is only truly played by sticking to the rules.
Engineers must certainly stick to the rules of physics, chemistry and the other sciences.

Putting together a jigsaw puzzle is an activity that can be done alone or in a group. Either way, it provides
another fine example of how many ways there are to achieve an objective—forming a single picture out of
hundreds of pieces of various colors and shapes. Theoretically, it is possible to solve the puzzle by
arbitrarily choosing a piece and then trying to fit each of the remaining pieces to it. Systematically trying
each piece in each orientation on each side of the starter piece would lead eventually to a match, and the
procedure could be followed to completion. I know of no one who works jigsaw puzzles in this tedious and
unimaginative way, however, because one of the implicit challenges is to finish the puzzle as efficiently as
possible. Most people look for edge and corner pieces first, completing the periphery before tackling the
more amorphous middle. If nothing else, this way there are fewer pieces to contend with. As many ways as
there might be to complete a puzzle, the preferred way is the most efficient way.

So it is with engineering. There are many ways to build a water crossing, from arranging a set of stepping
stones to constructing a majestic bridge or a tunnel. What kind of bridge or tunnel might be best for a given
crossing depends on many factors, including river bottom conditions, shipping requirements and traffic
capacity. The different ways in which a bridge alone could be designed and constructed are virtually
countless, but the added constraint of economy usually makes very few viable. Experienced engineers
know which kind of bridge works best for what conditions, just as experienced game players know
effective strategies for winning and experienced puzzle solvers know what pieces of the puzzle are best
attacked first. Everyone benefits from experience, but we must often rely on the experience of others to get
our start in a new endeavor. This is certainly true when students are looking ahead to career choices.

Making Engineering Evident

Children used to see possibilities for their lives in the familiar roles of cowboy, nurse or teacher. Today
they may more readily think in terms of astronaut, athlete or rock star. Everyone visits a doctor now and
then, which also provides exposure to a common career goal. Many young people learn about other options
through family and friends, who often serve as role models. And a good number must rely on what they are
exposed to in school, depending on the experience of teachers to set forth the broader possibilities available
in school and beyond. No matter the mentor, engineering will not necessarily be seen as an option. It likely
depends on how the idea of design is perceived and presented by teachers and parents alike.

Middle or high school children are often introduced to design in the context of "science projects" that are
really "engineering projects." Among the most common is the bridge-building contest, in which students
are asked to make a model bridge out of balsa wood, Popsicle sticks, spaghetti or some such fragile
material. Even though the contest is often associated with a science course, the students are seldom given
any substantive guidance about how to visualize, let alone calculate, the structural forces involved. Most
necessarily proceed by imitation of bridges they have seen in pictures or across highways. Increasingly,
student-friendly computer programs have become available, most notably the West Point Bridge Designer
(see http://bridgecontest.usma.edu), in which students can design virtual bridges and test them on the
screen. Seldom, however, are such contests presented as exercises in engineering as opposed to, say,
applied physics.

Before the collapse of the World Trade Center twin towers, live on television and replayed over and over
on videotape, the most widely known failure of a large engineering structure was that of the Tacoma
Narrows Bridge. This 1940 disaster was captured on film, but it was subsequently transferred to numerous
other media and has been shown to generations of high school students, usually in their physics class as an
example of resonant vibration caused by the wind. In fact, the collapse mechanism is much more
complicated (described in this column in September—October 1991), and represents an example of wind-
structure interaction. Although sophisticated distinctions are understandably absent from most high school
physics courses, this case does offer an opportunity to say a bit about the bridge as an artifact of
engineering design. Instead of focusing exclusively on the bridge's final dramatic writhing as an illustration



of a physical principle, some background on the design of the bridge as an engineering achievement, albeit
flawed, would introduce students to a profession that they might find appealing for the opportunities that it
presents to change the world for the better.

It is also a familiar middle or high school assignment for students to build small vehicles powered solely by
the energy stored in a rubber band or a mousetrap spring. These too are really engineering design problems,
but they are seldom presented as such. Rather, at best they are presented as applications of physics, and at
worst as mere competitions to devise the machine that travels fastest or farthest. There is certainly nothing
wrong with students enjoying the race, but it is unfortunate indeed if the pedagogical opportunity is missed
to introduce the joys of design and to inform students that they are engaging in engineering, something that
they might spend their lives enjoying—if only they take enough math and science to satisfy admission
requirements for engineering school.

Teachers cannot be faulted for failing to promote engineering if they have not been exposed to it
themselves. Engineering is not taught in every teacher's college, and it is not a required field of study even
in most full-service universities. It is certainly possible to get a bachelor of arts or science—and a teaching
certificate— without appreciating that engineering is a profession as noble, rewarding and satisfying as
medicine or law. The absence of even the playful rudiments of engineering in the curriculum is unfortunate,
as I have learned from doctors and lawyers who have expressed disappointment that they were not exposed
more to engineering while in school themselves.

I compare engineering design to making sand castles or lacing up shoes or eating cookies or designing toys
not to trivialize it but to humanize it. The conventional wisdom, among the general population as well as
among many teachers of children, is that engineering is a cold, dehumanizing and unsatisfying career.
Those who hold such a view are not likely to have met or spoken with engineers who enjoy what they do.
They are no longer children playing with blocks or building castles on the beach, of course, but many of
them retain a certain childlike fascination with the elemental structure of the world and with what can be
done with timber and concrete and steel —or with atoms and molecules and microbes. They know that what
they have fun designing and building and overseeing is essential to the smooth working of civilization. We
should all learn this as children.

_ Henry Petroski

Acknowledgment

This essay was prompted by an invitation to give the keynote luncheon address at the Children's
Engineering Workshop cosponsored by the National Aeronautics and Space Administration and
Christopher Newport University and held in Williamsburg, Virginia, on January 24.



Computer Science
Is an Engineering Discipline

Michael C. Loui
University of Illinois at Urbana-Champaign

The author asserts that since it is impossible.to define a
reasonable boundary between computer science _and
computer engineering, they are the same discipline.

s computer science an intellec-

tual discipline worthy of repre-

sentation as an academic depart-
ment in a university? In an essay
widely circulated among mathema-
ticians, Steven Krantz of Penn State
wrote, “Computer science is. . . not
an end in itself: it is a tool. ... Last
week’s news is this week’s trivia. The
subject is all hardware and few
ideas.” Perhaps the hostile attitude
of many academics arises from mis-
conceptions about computer science
and ignorance of its intellectual
foundations. 1 shall briefly review
the body of knowledge that makes
computer science a genuine intellec-
tual discipline.

4

{ v
i A, B R A N L A APl S S
: i - , -

P £ IR 520 T O RN “ K
i

What Is Computer Science?

-,,m.w_mv.“,-v....
wf L

- A ard A

A popular misconception is that
computer science studies the use of -
computers. Those who harbor this
misconception argue, rightly, that
universities should not grant aca-
demic degrees in computer science
to people taught only to use comput-
ers, any more than they should grant
degrees in toaster-oven science to
people taught to use toaster-ovens.
Further, no intellectual discipline of
lasting value can be built on skill in
the use of a specific machine that
could become obsolete in 20 years.

This misconception arises from
identifying computer science with its
artifact, the electronic digital com-
puter. The intellectual discipline of
computer science has a body of con-

.

i oo s .. ST, S 32 B I B 55 O M T, 5 LN b =

3
-
P p—

A

S
BRI

sl R

B W A I
¥
A

i 4 om0 0 R TIORNT £

AR s T S 15 TN

.
7 —— S O——_ WSt TN NI

4

SRRS—_ .
P s
St o o MBI 1K B A S

r

NERTURRBI. P

™

I

2‘3""‘

I T P 1 e B o R

?
?

[ !
%E‘
|
i
|
i

55 R I bt 1

P -

A O TN AR LA St bl

1

v v

o SRR BN ST 590 & K Mt

i

o
( ST B bt s AT

P

[ S
e

G
4

A s s,

IOV— 4
TS
3 I

O IR AP S Pk 80 R % Tt A AT NI T SIS DL 705 RN B B

"_‘,’ ?

h , poon
S

snsvomnetrn o £ g a0 st

g e

»
et 0ot ot 2 3 e et s e S

= IS IS

ey Vet e e e s
N

P T T RGN o A B P ke ek
vt st s st

)mw-r R
A, e oA

LT

( 35 A O A AT, B a5

D"

o]}

D

Reprinted with permission from Engineeriny Education © 1987 ASEE.



cepts and principles independent of
commercially available computers
and that have little relevance to the
use of computers.

Computer - science is the theory,
design, and analysis of algorithms
for processing information, and the
implementations of these algorithms
in hardware and in softwarc. The
processing of information includes
storage, transformation, retrieval,
and transmission of information.
Within computer science are six in-
terrelated areas:

1) Theory of computation (e.g.,
analysis of algorithms);

2) Software (e.g., programming
languages and compilers);

3) Hardware (e.g., logic design);

4) Resource management (e.g.,
operating systems);

5) Computational mathematics
(e.g., numerical analysis);

6) Artificial intelligence (e.g.,
natural language understanding).

Others have divided the computing
field in a somewhat different way.?

Like other intellectual disciplines,
computer science has a corpus of
concepts and principles. Important
concepts include the abstract data
type, which specifies information
mathematically in terms of opera-
tions on the information, analogous
to defining an algebraic group in
terms of its axioms; the abstract data
type separates specification from im-
plementation. Important principles
include the equivalence of pushdown
automata and context-free lan-
guages. Several groups have pro-
posed influential model curricula®?
that organize the fundamental con-
cepts and principles of computer sci-
ence into pedagogically appropriate
sequences. The emergence of these
curricula and of standards for
accrediting curricula® bespeak the
maturity of computer science as an
intellectual discipline.

Computer Science As an
Engineering Discipline

Is computer science an engineer-
ing discipline? One observer who

does not seem to think so has writ-
ten:

The fundamental difference between,
say, physics and computer science is
that in physics, we study to a very large
extent a world that exists.... Com-
puter science, on the other hand, is pri-
marily interested in what can exist .. ..
There is a substantial engineering com-
ponent in computer science (or its appli-
cations), particularly in building com-
puting machines and managing large
software projects, but its core activities
do not fit the traditional engineering
paradigms.'!

But it is precisely the emphasis on
“what can exist” that makes com-
puter science an engineering disci-
pline. Its core activities may not fit
traditional engineering paradigms
because computer science is an en-
tirely new kind of engineering.

Computer science has all the sig-
nificant attributes of engineering: a
scientific basis, application of princi-
ples in design, analysis of trade-offs,
and heuristics and techniques. Let us
consider these attributes one at a
time.

1) Scientific Basis. Unlike tradi-
tional engineering disciplines such as
mechanical engineering and electri-

Reprinted with permission from Engineering Education ® 1987 ASEE.

cal engineering, the fundamental
concepts and principles of computer
science are not rooted in the physical
phenomena of force, heat, and elec-
tricity, but in mathematics. Since its
scientific foundations are mathemat-
ical instead of physical, computer
science is a new kind of engineering.

2) Application of Principles in
Design. The ultimate goal of an engi-
neering project is a product such as a
steel bridge or a computer program
that benefits society. Like a struc-
tural engineer, who applies the prin-
ciples of mechanics to design a
bridge, a computer specialist applies
the principles of computation to de-
sign a digital system or a program.
(The designer may apply these prin-
ciples either consciously and directly
or unconsciously and indirectly.)
Most engineers recognize the devel-
opment of a digital system as an en-
gineering activity. The development
of a large program is also an engi-
neering activity, for it involves prob-
lem analysis, specification,. design,
testing, implementation, and mainte-
nance—all classic engineering tasks.



€<

Despite its nontraditional
mathematical basis,
computer science qualifies
as an engineering discipline
because it has all the
characteristics of
engineering.

»

“Software engineering” is an ac-
cepted term for the development of
large software systems.

3) Analysis of Trade-offs. The
analysis of trade-offs is a salient
characteristic of engineering. To im-
plement algorithms efficiently, the
designer of a computer system must
continually evaluate trade-offs be-
tween resources: running time vs.
memory space, performance vs. cost,
hardware vs. software. For example,
hardware implementation of an oper-
ation usually runs faster but is
harder to change, while software im-
plementation runs more slowly but is
easier to change.

Engineering has been defined by
its heuristics.? Computer science has
many heuristics. For example, the
Principle of Spatial Locality states
that the next memory location
accessed is usually near the present
location. A popular heuristic of pro-
gramming methodology is that a pro-
gram module should be about one
page long. Some heuristics have be-
come sufficiently well understood to
be called techniques. Important
techniques of computer science in-
clude pipelining, buffering, recur-
sion, and linked addressing.

Despite its nontraditional math-
ematical basis, computer science
qualifies as an engineering discipline
because it has all the characteristics
of engineering. Indeed, at several
major universities such as Cornell
and Stanford, the computer science
department is in the engineering col-
lege.

Computer Science vs.
Computer Engineering

Computer engineers typically
claim that computer science con-
cerns only the applications of com-
puters, or only theory, or only soft-
ware, and computer engineering
comprises everything else. Computer
scientists frequently claim that com-
puter engineering concerns only
hardware, and computer science en-
compasses everything else.

The applications of computers to a
discipline should be considered prop-
erly a part of the natural evolution of
the discipline. For example, numeri-
cal weather forecasting is the prov-
ince of meteorology, not of computer
science. The mass spectrometer has
permitted significant advances in
chemistry, but there is no ‘“‘mass
spectrometry science” devoted to the
study of this instrument.

The theory of computation may
seem remote from the engineering of
computers. John Doyle has classified
the theory of computation as a kind

of applied mathematics separate
from computer engineering, analo-
gous to the division between rational
mechanics and mechanical engineer-
ing.* During the twentieth century,
however, all engineering disciplines
have matured by strengthening their
scientific foundations. Excluding the
theory of computation from com-
puter engineering would be as incon-
ceivable as excluding circuit theory,
linear system theory, communication
theory, control theory, electromag-
netic theory, and semiconductor the-
ory from modern electrical engineer-
ing.

Computer engineering should in-
clude software just as computer sci-
ence should include hardware. Since
software development is an engineer-
ing activity, software engineering be-
longs to computer engineering. To
enforce a dichotomy between hard-
ware as computer engineering and
software as computer science would
obscure the fundamental principle

*Personal communication.

What Computer Science
Is Not

Computer Science Is Not Mathematics. Although the principles of computer
science are mathematical, computer science is not mathematics. Mathematics
includes precise statements about objects, but computer science includes pre-
cisely specified algorithms for computing objects. As Abelson and Sussman have
explained, “Mathematics provides a framework for dealing precisely with no-
tions of “what is.” Computation provides a framework for dealing precisely with
notions of “how to.”

Despite striking analogies between mathematical proofs and computer pro-
grams,® mathematics and computer science use proofs differently. In mathemat-
ics, proving a theorem is a social process® in which mathematicians rely on
informal, high-leve! intuitions. In computer science, proving the correctness ofa
program involves detailed applications of formal inference rules.

Computer Science Is Not Electrical Engineering. Some electrical engineers
assert that since a computer is merely a digital system, computer science is
properly a part of electrical engineering. 1 doubt that these engineers would
accept a similarly specious reductionist argument that since a transistor is
merely impure semiconductor material, electronics is properly a part of chemis-
try. The emphasis on the computer as a digital system misses the point of
computer science: the principles of computation are independent of specific
technologica! realizations in, say, semiconductor microelectronics. These princi-
ples would remain the same for computers built out of mechanical components
instead of electronic components. “The computing scientist could not care less
about the specific technology that might be used to realize machines, be it
electronics, optics, pneumatics, or magic.”"

Reprinted with permission from Enqineeriné Education © 1987 ASEE.




that hardware and software are func-
tionally equivalent.

This discussion has been summa-
rized:
Computer science includes in one disci-
pline its own theory, experimental
method, and engineering. This contrasts
with most physical sciences, which are
separate from the engineering disci-
plines that apply their findings—as, for
example, in chemistry and chemical en-
gineering. I do not think the science and
the engineering can be separated within
computer science because of the funda-
mental emphasis on efficiency.”

It is impossible to define a reason-
able boundary between the disci-
plines of computer science and com-
puter engineering. They are the
same discipline.

Computer Science and a Liberal
Education

Many liberal arts colleges have
created computer science curricula,
treating computer science as one of
the natural sciences. Misunderstand-
ings arise because the engineering
orientation of computer science is in-
compatible with the sciences. For in-
stance, computer science labora-
tories emphasize engineering design,
whereas biology laboratories empha-
size measurement and observation.
How can colleges reconcile educa-
tion in computer science with a lib-
eral education, to which professional
engineering education seems anti-
thetical?

Undergraduate programs in engi-
neering, including computer science,
need not train professional engineers,

any more than undergraduate pro-
grams in psychology or geology train
professional psychologists and geolo-

. gists. Some liberal arts colleges, in-

cluding Dartmouth and Princeton,
have offered strong undergraduate
engineering programs for many
years, teaching engineering in a hu-
manistic way similar to the more tra-
ditional liberal arts.

Although computer science is an
engineering discipline, colleges and
universities can design computer sci-
ence programs to meet the intellec-
tual and pedagogical goals of a
broad liberal education.™

Summary

Computer science is a true intel-
lectual discipline. Although com-
puter science is not mathematics, its
concepts and principles are math-
ematical, and every day a flourishing
research community augments its
foundations. Although computer sci-
ence is not electrical engineering, it
is a new kind of engineering, the
engineering of algorithms for pro-
cessing information.

Acknowledgments

This essay has benefited from the
constructive criticisms of Edward S.
Davidson, Jon Doyle, J. Craig Dutton,
Glen G. Langdon Jr., Peter W. Sauer,
and Timothy N. Trick.

References
1. Krantz, S.G., “Letter to the Edi-

tor,” American Mathematical Monthly,
vol. 91, no. 9, Nov. 1984, pp. 598-600.

Reprinted with permission from Engineering Education © 1987 ASEE.

2. Sammet, J.E. and A. Ralston
(eds.), “The New (1982) Computing
Reviews Classification System,” Com-
munications of the ACM, vol. 24, no. 1, .
Jan. 1982, pp. 13-25.

3. ACM Curriculum Committee on
Computer Science, “Curriculum ’78:
Recommendations for the Undergradu-
ate Program in Computer Science,”
Communications of the ACM, vol. 22,
no.3, March 1979, pp. 147-166.

4. The 1983 IEEE Computer Soci-
ety Model Program in Computer Sci-
ence and Engineering. IEEE Computer
Society Press, Silver Spring, Md., 1983.

5. Shaw, M. (ed.), The Carnegie-
Mellon Curriculum for Undergraduate
Computer Science, Springer-Verlag,
New York, 1985.

6. Mulder, M.C. and 1. Dalphin,
“Computer Science Program Require-
ments and Accreditation,” Computer,
vol. 17, no. 4, April 1984, pp. 30-35.
Also Communications of the ACM, vol.
27, no. 4, April 1984, pp. 330-335.

7. Abelson, H. and G.J. Sussman,
Structure and Interpretation of Com-
puter Programs, MIT Press, Cam-
bridge, Mass., 1985.

8. Gries, D., The Science of Pro-
gramming, Springer-Verlag, New York,
1981.

9. De Millo, R.A., R.J. Lipton, and
A.J. Perlis, *“‘Social Processes and
Proofs of Theorems and Programs,”
Communications of the ACM, vol. 22,
no. 5, May 1979, pp. 271-280.

10. Dijkstra, E-W,, “Mathematicians
and Computing Scientists: The Cultural
Gap,” Mathematical Intelligencer, vol.
8, no. 1, 1986, pp. 48-52. Also Abacus,
vol. 4, no. 4, 1987, pp. 26-31.

11. Hartmanis, J., “Qbservations
About the Development of Theoretical
Computer Science,” Annals of the His-
tory of Computing, vol. 3, no. 1, Jan.
1981, pp. 42-51.

12. Koen, B.V., “Toward a Defini-
tion of the Engineering Method,” Engi-
neering Education, vol. 75, no. 3, Dec.
1984, pp. 150-155.

13. Denning, PJ., “What is Com-
puter Science?” American Scientist,
vol. 73, no. 1, Jan.-Feb. 1985, pp- 16-19.

14. Gibbs, N.E. and A.B. Tucker, “A
Model Curriculum for a Liberal Arts
Degree in Computer Science,” Commu-
nications of the ACM, vol. 29, no. 3,
March 1986, pp. 202-210.

Michael C. Loui is associate profes-
sor of electrical and computer engineer-
ing at the University of Illinois at
Urbana-Champaign. His research inter-
ests include computational complexity
theory and the theory of parallel and
distributed computation. He received a
1985 Dow Outstanding Young Faculty
Award from ASEE.



