
Required Readings for CSE/PHI 4/584

Assigned 19 Jan 2007

Contents:

Newell, Allen; Perlis, Alan J.; & Simon, Herbert A. (1967), "Computer

Science", Science 157(3795) (22 September): 1373-1374.

Knuth, Donald (1974), "Computer Science and Its Relation to Mathematics",

American Mathematical Monthly 81(4) (April): 323-343.

Newell, Allen, & Simon, Herbert A. (1976), "Computer Science as

Empirical Inquiry: Symbols and Search", Communications of the ACM

19(3) (March): 113-126.

Denning, Peter J.; Comer, Douglas E.; Gries, David; Mulder, Michael C.;

Tucker, Allen; Turner, A. Joe; & Young, Paul R. (1989), "Computing as a

Discipline", Communications of the ACM 32(1) (January): 9-23.

file:///documents/newell-1967/newell-1967.html

1 of 2 1/20/07 6:04 PM

file:///documents/newell-1967/newell-1967.html

2 of 2 1/20/07 6:04 PM

file:///documents/knuth-1974/knuth1974.html

1 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

2 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

3 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

4 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

5 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

6 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

7 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

8 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

9 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

10 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

11 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

12 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

13 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

14 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

15 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

16 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

17 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

18 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

19 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

20 of 21 1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

21 of 21 1/20/07 6:03 PM

1975 A C M F u r i n g

A w a r d t , ec tu re

The 1975 ACM Turing Award was presented jointly to Allen
Newell and Herbert A. Simon at the ACM Annual Conference in
Mim?eapolis, October 20. In introducing the recipients, Bernard A.
Gaiter, Chairman of the Turing Award Cotamittee, read tile %l-
lowing citation:

"It is a privilege to be able to present the ACM Turing Award
to two f?iends of long standing, Professors Allen Newell and
Herbert A. Simon, both of Carnegie-Mellon University.

"In joint scientific efforts extending over twenty years, initially
in collaboration with J.C. Shaw at the RAND Corporation, and
subsequently with numerous faculty and student colleague{ at
Carnegie-Mellon University, tlney have made basic contributions
to artificial intelligence, the psychology of human cognition, and
list processing.

"In artificial intelligence, they contributed to the establishment
of the field as an area of scientific endeavor, to the development of
heuristic programming generally, and of heuristic search, means-
ends analysis, and methods of induction, in particular; providing

demonstrations of tile sufI~,ciency of these mechanisms to solve
interesting problems.

"In psychology, they were principal instigators of the idea that
human cognition can be described in terms of a symbol system, and
they have developed detailed theories fbr human problem solving,
verbal learning and inductive behavior in a number of task domains,
using computer programs embodying these theories to simulate tile
human behavior,

"They were apparently the inventors of list processing, and

have been major contributors to both software technology and the

development of the concept of tlne computer as a system of manipu-

lating symbolic structures and not just as a processor of numerical

data.

"It is an honor tbr Professors Newell and Simon to be given

this award, but it is also an honor for ACM to be able to add their

names to our list of recipients, since by their presence, they will add

to the prestige and importance of the ACM Turing Award."

Completer Science asEmp rical Inquiry:
Symbols and Search

Allen Newel1 and Herbert A. Simon

C o m p u t e r science is the s tudy of the p h e n o m e n a

s u r r o u n d i n g c o m p u t e r s . The founders o f this socie ty

unde r s tood this very well when they called themse lves

the A s s o c i a t i o n for C o m p u t i n g Mac h ine r y . T h e

mach ine - - -no t j u s t the h a r d w a r e , but the p r o g r a m m e d ,

l iving m a c h i n e - - i s the o r g a n i s m we study.

This is the tenth T u r i n g Lec ture . The n ine pe r sons

who preceded us on this p l a t f o r m have p re sen ted n ine

different views of c o m p u t e r science. F o r ou r o rgan i sm,

the machine , can be s tud ied at m a n y levels and f rom

m a n y sides. W e are d e e p l y h o n o r e d to a p p e a r lhere

today and to p resen t yet a n o t h e r view, the one that has

pe rmea ted the scientific w o r k for which we have been

Key Words and Phrases: symbols, search, science, computer
science, empirical, Turing, artificial intelligence, intelligence, list
processing, cognition, heuristics, problem solving.

CR Categories: 1.0, 2.1, 3.3, 3.6, 5.7.
Copyright © 1976, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright
notice is given and that reference is made to the publication,

to its date of issue, and to the fact that reprinting privileges
were granted by permission of the Association for Computing
Machinery.

The authors' research over the years has been supported in part
by the Advanced Research Projects Agency of the Department of
Defense (monitored by the Air Force Office of Scientific Research)
and in part by the National Institutes of Mental Health.

Authors' address: Carnegie-Mellon University, Pittsburgh.

113 Communications March 1976
of Volume 19
the ACM Number 3

cited. Wc wish to speak oFcolnputcr science as empirical

inqttily.

()u~ view is only one of Jmu~y; thc prcx.ious lc'ctures

m:xkc th~,l clc~r. }lowcvcr, c,/cn takeli together tile ice

[kl[cs fail ~o cover the whole scope of our science. Many

Rmdamcntai aspucts of" it have not bccn represcutcd h~

thcsu tun ~ts~ards, Aml il' the time cvcr arrives, surely

lie(booi!, whcll the cOill[)ass has bcc~] boxed~ w)le~l coln-

ptm:r sck'uce has b(c~l discussed Fronl every side, it wil l

bc tinnt t~ Start tile cycIe ;l~xliN. t::;oy the hsYc ~ts lect i l tcr

s'~ili l~avc to nmk~: ~.tt~ annual sprim to o~ert~.~kc the

cumulat ion of srmdt, i~}cremcntal gains tiu~t the tortoise

of' scientific und tcchnic~ll development i~as achieved ill

his stcudy murch, }]ach war wil l create a r~ew gap a~rcl

caU For :x new sprint, For irt science there is rio ihml word.

(;omputcr science is un empirical discipline. We would

havu called it arl cxperJtncntal science, but like as-

honou~y, cc'~u~omk:s, :rod gcolo.gy, some of its uuiquc

forms of obscrvation and experience do not fit a marrow

stereotype of the expcrimc'ntal meGod. None thc less,

they arc uxpt'rimcuts. }}uch new nmchinc that is built is

an experiment. Actu~Aly cons/ructi~g the machine poses

~1 qucStioI1 to ~l,.'Htlre; a t ld we listen for the a~Jswer by

observing thc machhle irl operation and analyzing it by

~dl amdytic:~l amt me,inurement mcuns available. Kach

nuw progr:.~m that is built is :u~l cxpcrmient, It poses a

ctucsticm h) ~ra:h~ic. a~rd its bchuvior oflkxs cities to arl

u,swcr. Nuithcr machi~lcs nor progr,:m~s are black

boxes: they arc artiIi~cl.s that have bccn dcsigi~cd, both

hi~rdwarc ',ill<:] SO]'{w;~ue, al ld we ,ca~r open thorn up arid

look hlsidc, Wc can relate their structure to their bc-

huvi,,n' .and draw many lessons Frout a single experiment.

\~c don't have to build I00 copies of, say, a thcoreln

prover, to dcmorsshate statistically that it has not over-

come the combim~toria] explosion of search in the way

hoped t) r . Inspection of the program in the light of a

R:w runs reveals the flaw and lets us proceed to file next
a ttcntpt.

We build computers and prograrns f'or many reasons.

Wc build thern to serve society and as tools For carrying

out the ccJoi} ([)[~ ic tasks of society. But as basic scientists

wc build machines and programs .as a way of discovering

new phenomena and analyzing phenome~m we already

know about. Society often becomes confused about this,

believing dial computers and programs are to be con-

structed only tk}r the economic use that can be made of

them (or as intermediate items in a developmental

sequence leading to such use). It needs to understand

that the phenomena surrounding computers are deep

and obscure, requiring much experimentation to assess

their nature, It needs to understand that, as in any

114

science, fine gains thut accrue from stlch experimentatio~l

and unclerstandir~g pay off in the p e r m a n e n t acquisition

oF ncw techniques; and that it is these techniques that

will create the instruments to help soc ie ty in achieving

its goals.

Our purpose here, however, is n o t to plead for

understanding f'rom an outside world, ill is to examine

one aspect of our science, the deve lopmen t of' new basic

uuderstandhlg by empirical inquiry. 7 h i s is best done:

by illustrations. We will be pardoned if, presuming upon

the occasion, we choose our examples Q o m the area of

our own research. As will become apparent, these

examples involve the whole d e v e l o p m e n t off artificial

intelligence, especially in its early years . 3f'hey rest on

much more than our own personal co~ t r i bu t i ons . And

even where we have made direct c o n t r i b u t i o n s , this has

bee~r doue in cooperat ion witin others. O u r collaborators

have included especially Cliff Shaw, with whom wc

Formed a team of" three through the exc i t ing period of

tire late fifties. But we have also w.orked with a great

many colleagues and students at Carnegie-Mellon

U n ivcrsity.

Time permits taking up just two examples . The first

is the development of the notion off a symbol ic system.

The second is die development of the n o t i o n of heuristic

search. Both conceptions have deep significance for

uuclerstal~ding how information is processed and how

intelligence is achieved. However, t h e y do not come

close to exhausting the flull scope o f artificial intelli-

gence, though they seem to us to be useful for exhibiting

the nature of fundamental knowledge in this part of

computer science.

I. Symbols and Physical Symbol Systems

One of tile fundamental contributions to knowledge

of computer science has been to explain, at a rather

basic level, what symbols are. This explanation is a

scientific proposition about Nature. It is empirically

derived, with a long and gradual development.

Symbols lie at the root of intelligent action, which

is, of course, the primary topic of artificial intelligence.

For that matter, it is a primary question for all of com-

puter science. For all information is processed by com-

puters in the service of ends, and we measure the in-

telligence of a system by its ability to achieve stated

ends in the face of variations, difficulties and com-

plexities posed by the task environment. This general

investment of computer science in attaining intelligence

is obscured when the tasks being accomplished are

Communications March 1976
of Volume 19
the ACM Number 3

limited in scope, for then the full variations in the en-

vironment car? be accurately foreseen. It becomes more

obvious as we extend cornpttters to more global, com-

plex and k]~owledgeintensive tasks as we attempt to

nlake them our agents, capable of handling on their

own tile full contingencies of the natura[world.

Our understanding of tile systems requirements for

intelligent action cnnerges slowly. It is composite, for

no single elementary thing accounts for intelligence in

all its m.anifcstations. There is no "intelligence prin-

ciple," just as there is no "vital principle" that conveys

by its very nature the essence of life. But the lack of a

simple dc'u.s' e £ t n a c h M a does not imply that there are

no structural requirements for intelligence. One such

requirement is the ability to store and manipulate

symbols. To put the scientific question, we may para:

phrase the title of a famous paper by Warren McCul-

loch [1961]: What is a symbol, that intelligence may

use it, and intelligence, that it may use a symbol?

Laws of Qualitative Structure

All sciences characterize the essential nature of the

systems they study. These characterizations are in-

variably qualitative in nature, for they set the terms

within which more detailed knowledge can be devel-

oped. Their essence can often be captured in very

short, very general statements. One might judge these

general laws, due to their limited specificity, as making

relatively little contribution to the sum of a science,

were it not for the historical evidence that shows them

to be results of the greatest importance.

The Cell Doctrine in Biology~ A good example of a

law of qualitative structure is the cell doctrine in biol-

ogy, which states that the basic building block of all

living organisms is the cell. Cells come in a large variety

of forms, though they all have a nucleus surrounded

by protoplasm, the whole encased by a membrane. But

this internal structure was not, historically, part of the

specification of the cell doctrine; it was subsequent

specificity developed by intensive investigation. The

cell doctrine can be conveyed almost entirely by the

statement we gave above, along with some vague

notions about what size a cell can be. The impact of

this law on biology, however, has been tremendous,

and the lost motion in the field prior to its gradual

acceptance was considerable.

Plate Tectonics in Geology. Geology provides an inter-

esting example of a qualitative structure law, interest-

ing because it has gained acceptance in the last decade

and so its rise in status is still fresh in memory. The

theory of plate tectonics asserts that the surface of the

globe is a collection of huge plates--a few dozen in

all which move (at geological speeds) against, over,

and under each other into tile center of the earth,

where they lose their identity. 't"he movements of the

plates account for the shapes and relative locations of

tile continents arid oceans, for tile areas of volcanic

and earthquake activity, for the deep sea ridges, arid

so on. With a few additional particulars as to speed

and size, the essential theory has been specified, it was

of course not accepted until it succeeded in exphfining

a number of details, all of which hung together (e.g.

accounting for flora, fauna, and stratification agree-

ments between West Africa and Northeast South

America). The plate tectonics theory is highly qualita-

tive, Now that it is accepted, the whole earth seems to

offer evidence for it everywhere, for we see the world

in its terms.

The Germ Theory of Disease. It is little more than a

century since Pasteur enunciated the germ theory of

disease, a law of qualitative structure that produced a

revolution in medicine. The theory proposes that most

diseases are caused by tile presence and multiplication

in the body of tiny single-celled living organisms, and

that contagion consists :in the transmission of these

organisms from one host to another. A large part of

the elaboration of the theory consisted in identifying

the organisms associated with specific diseases, de-

scribing them, and tracing their life histories. The fact

that the law has many exceptions--that many diseases

are no t produced by germs--does not detract from its

importance. The law tells us to took for a particular

kind of cause; it does not insist that we will always

find it.

The Doctrine of Atomism. The doctrine of atomism

offers an interesting contrast to the three laws of quali-

tative structure we have just described. As it emerged

from the work of Dalton and his demonstrations that

the chemicals combined in fixed proportions, the law

provided a typical example of qualitative structure:

the elements are composed of small, uniform particles,

differing from one element to another. But because the

underlying species of atoms are so simple and limited

in their variety, quantitative theories were soon for-

mulated which assimilated all the general structure in

the original qualitative hypothesis. With ceils, tectonic

plates, and germs, the variety of structure is so great

that the underlying qualitative principle remains dis-

tinct, and its contribution to the total theory clearly

discernible.

115 Communications March 1976
of Volume 19
the ACM Number 3

Co~elusion. Laws of qualitative structure are seen

everywhere in science. Some o[" our greatest scientific

discoveries are to be found among them. As the exam-

ples illustrate, they often set the terms on which a

whole science operates,

Physical Symbol Systems

Let us retur~ to the topic of symbols, and define a

!~04ice/ symbol s3",slem. The adjective "physical" tie-

notes two hnportant features: (1) Such systems clearly

obey the laws o{ physics t h e y are realizable by engin-

eered systems made of engineered cornponerlts; (2)

although our use of the term "symbol" prefigures our

intended interpretation, it is not restricted to human

symbol systems.

A physical symbol system consists of a set o[en-

tides, called symbols, which arc physical patterns that

can occur as components of another type of entity

called an expression (or symbol structure). Thus, a

symbol structure is corn.posed of 'a number o[' instances

(or tokens) of" symbols related in some physical way

(such as ore: token being next to another). At any

i~stant of time the system will contain a collection of'

d~c, se symbol structures. Besides these structures, tile

system also contains a collectiml of' processes that

operate o~t, expressions to produce other expressions:

process,cs of creation, modification, reproduction and

destructi<m. A physical symbol system is a machine

d~at produces through time an evolving collection of

syntbot structures. Such a system exists in a world of"

objects wider than just these symbolic expressions
themselves.

Two notions are central to this structure o[ex-

pressions, symbols, and objects: designation and
interprctatio,~.

Desig,talion. An expression designates an ob-

ject if, given the e:xpression, the system can either

affect the object itself' or behave in ways depend-
ent ,.m the ,object.

1~ either case, access to tile object via. the expres-

sion has been obtained, which is the essence of
designation.

lnterpre/alimt. The systern can interpret an ex-

pression iI' the express!on designates a process

and if, given the expression, tile system can
carry out the process.

E'~terpretation implies a special form o{" dependent

action : given an expression the system, cart perform the

indicated process, which is to say, it can evoke and

execute its own processes from expressions that desig-
nate them,

A system capable of designation and interpretation,

in the sense just indicated, must also meet a number of

adctitiona] requirenmnts, of completeness and closure.

We will have space only to mention these briefly; all

116

of them are impor tan t and have £a>.rcaching conse_

quences.

(t) A symbol may be used to designate any expres_

sion whatsoever. Tha t is, given a symbol , it is no t

prescribed a priori what expressions it can designate.

This arbitrariness pertains only to symbols ; the symbol

tokens and their mutual relations detcrmine wJnat object;

is designated by a cornpiex expression. (2)] 'here exist

expressions that designate every process of which t}'~e

machine is capable. (3) There exist processes for creating

any expression and for modifying any expression its

arbitrary ways. (4) Expressions are stable; once created

they will continue to exist until explicitly modified or

deleted. (5) The number of expressions that fine system

can hold is essentially unbounded.

The "type of system we have just defined is not u~>

familiar to computer scientists. It bears a s t rong family

resemblance to sit general purpose computers . If u.

symbol manipulat ion language, such as I . lSP, is taken

as defining a machine, then the kinship becomes truly

brotherly. Our intent in laying out such a sys tem is no~

to propose something new. Just the opposi te : it is t o

show what is now known and hypothes ized abou t

systems that satisf) such a characterizat ion.

We can now state a general scientific hypothesis --a

law of qualitative structure for symbol systems:

The Physical Symbol System Hypothesis. A phys-.

ical symbol system has the necessary and sufl%

cient means for general intelligent action.

By "necessary" we mean that any system tha t

exhibits general intelligence will prove upon analysis

to be a physical symbol system. By "suff icient" we mear~

that any physical symbol system of sufficient size can

be organized further to exhibit general intelligence. By

"general intelligent ac t ion" we wish to indicate the

sarne scope of intelligence as we see in humian a.ctio~a:

that in any real situation behavior a p p r o p r a t e to the

ends of the system and adaptive to the demands of the

environment can occur, within som.e limits of speed

and complexity.

The Physical Symbol System Hypothes is clearly is

a law of qualitative structure. It specifies a general class

of systems within which one will find those capable o f

intelligent action.

This is an empirical hypothesis. W e have defined a

class of systems; we wish to ask whether that class

accounts for a set of phenomena we find in the real

world. Intelligent action is everywhere a r o u n d us in

the biological world, most ly in human behavior . I t is :a

form of behavior we can recognize by its effects whether

it is performed by humans or not. The hypothes is

could indeed be false. Intelligent behav ior is not so

easy to produce that any system will exhibit it wil ly-

nilly, Indeed, there are people whose analyses lead them

to conclude either on philosophical or on scientific

grounds that the hypothesis is false. Scientifically, one

Commurfications March 1976
of Volume 19
the ACM Number 3

can attack or defend it only by bringing forth empirical

evidence about the natural world.

Wc r~ow need to trace the development of this

hypothesis and look at the evidence for it.

Develepme~t of the Symho~ System Hypothesis

A physical symbol system is an instance of a uni-

versal machine, Thus the symbol system hypothesis

implies that intelligence will be realized by a universal

computer, However, the hypothesis goes far beyond

the argument, of'ten made on general grounds o1" physi-

cal determinism, that any computation that is realizable

ca~ be realized by a universal machine, provided that

it is specified. For it asserts specifically that the intelli-

gent machine is a symbol system, thus making a specific

architectural assertion about the nature of intelligent

systems. It is im.portant to understand how this addi-

tional specificity arose.

Formal Logic. The roots of the hypothesis go back to

the program of Yrege and of Whitehead and Russell

for formalizing logic: capturing the basic conceptual

notions of mathematics in logic and putting the no-

tions of proof" and deduction on a secure footing. This

effort culminated in mathematical logic--.-our familiar

propositional, first-order, and higher-order logics. It

developed a characteristic view, of Ren referred to as

tile %ymbo] game." Logic, and by incorporation all of

mathematics, was a game played with meaningless

tokens according to certain purely syntactic rules. All

meaning had been purged. One had a mechanical,

though permissive (we would now say nondeterminis-

tic), system about which various things could be proved.

Thus progress was first made by walking away from

all that seemed relevant to meaning and human sym-

bols. We could ca11 this the stage of formal symbol

manipulation.

This general attitude is well reflected in the deveI-

opment of information theory. It was pointed out

time and again that Shannon had defined a system

that was useful only for communication and selection,

and which had nothing to do with meaning. Regrets

were expressed that such a general name as "informa-

tion theory" had been given to the field, and attempts

were made to rechristen it as "the theory of selective

in format ion"- - to no avail, of course.

Turing Machines and the Digital Computer. The devel-

opment of the first digital computers and of automata

theory, starting with Turing's own work in the '30s,

can be treated together. They agree in their view of

what is essential. Let us use Turing's own model, for it

shows the features well.

A Turing machine consists of two memories: an un-

bounded tape and a finite state control. The tape holds

data, i.e. the famous zeroes and ones. The machine

has a very small set of proper operations---read, write,

and scan opera t ions- -on the tape. The read operation

is not a data operation, but provides conditional

117

branching to a control state as a function of the data

under the read head. As we all know, this model con-

tains the essentials of all computers, in terms of what

they can do, though other computers with different mem-

ories and operations might carry out the same computa-

tions with different requirements of space and time. In

particular, the model of a Turing machine contains

within it the notions both of what cannot be computed

and of universal machines---computers that can do

anything that can be done by any machine.

We should marvel that two of our deepest insights

into information processing were achieved in the

thirties, before modern computers came into being. It

is a tribute to the genius of Alan Turing. It is also a

tribute to the development of mathematical logic at

the time, and testimony to the depth of computer

science's obligation to it. Concurrently with Turing's

work appeared the work of the logicians Emil Post and

(independently) Alonzo Church. Starting from inde-

pendent notions of logistic systems (Post productions

and recursive functions, respectively) they arrived at

analogous results on undecidability and universality

results that were soon shown to imply that all three

systems were equivalent. Indeed, the convergence of all

these attempts to define ttle m.ost general class of infor-

mation processing systems provides some of the force

of our conviction that we have captured the essentials

of information processing in these models.

In none of these systems is there, on tile surface, a

concept of the symbol as something that designates.

The data are regarded as just strings of zeroes and

ones-Andeed that data be inert is essential to the re-

duction of computation to physical process. The finite

state control system was always viewed as a small con-

troller, and logical games were played to see how small

a state system could be used without destroying the

universality of the machine. No games, as far as we

can tell, were ever played to add new states dynamically

to the finite control-~to think of' the control memory

as holding tile bulk of the system's knowledge. What

was accomplished at this stage was half the principle

of interpretation--showing that a machine could be

run from a description. Thus, this is tile stage of auto-

matic formal symbol manipulation.

The Stored Program Concept. With the development of

the second generation of electronic machines in the

mid-forties (after the Eniac) came the stored program

concept. This was rightfully hailed as a milestone, both

conceptually and practically. Programs now can be

data, and can be operated on as data. This capability

is, of course, already implicit in the model of Turing:

the descriptions are on the very same tape as the data.

Yet the idea was realized only when machines acquired

enough memory to make it practicable to locate actual

programs in some internal place. After all, the Eniac

had only twenty registers.

The stored program concept embodies the second

Communications March 1976
of Volume 19
the ACM Number 3

half of the interpretation principle, the part that says

that the system's own data can be interpreted. But it

does not yet contain the notion of designatio~ -of the

physical relation that underlies meaning.

List Processi~g° The next step, taken in 1956, was list

processing. The contents of the data structures were

now symbols, in the sense of our physical symbol

system: patterns that designated, that had referents.

I.ists held addresses which permitted access to other

lists thus the ilotion of list structures. That this was

a new view was demonstrated to us many times in the

early days of']ist processing when colleagues would ask

where the data were-- that is, which list finally held

the collections of bits that were the content of the

system. They found it strange that there were no such

bits, there were only symbols that designated yet other

symbol structures.
List processing is simultaneously three things in thc

development of computer science. (1) ~t is the creation

of a genuine dynamic memory structure in a machine

that had heretofore been perceived as having fixed

structure. It added to our ensemble of operations those

that built and modified structure in addition to those

that replaced and changed content. (2) It was an early

demonstration of the basic abstraction that a computer

consists of a set of data types and a set of operations

proper to these data types, so that a computational

system should employ whatever data types are appro-

priate to the application, independent of the underlying

machine. (3) List processing produced a model of des-

ignation, thus defining symbol manipulation in the

sense in which we use this concept in computer science

today.

As often occurs, the practice of the time already

anticipated all the elements of list processing: addresses

are obviously used to gain access, the drum machines

used linked programs (so called one-plus-one address-

ing), and so on. But the conception of list processing

as an abstraction created a new world in which desig-

nation and dynamic symbolic structure were the de-

fining characteristics. The embedding of the early list

processing systems in languages (the 1PLs, LISP) is

often decried as having been a barrier to the diffusion

of iist processing techniques throughout programming

practice; but it was the vehicle that held the abstraction

together.

LISP° One more step is worth noting: McCarthy's

creation of LISP in 1959-60 [McCarthy, 1960]. It com-

pleted the act of abstraction, lifting list structures out

of their embedding in concrete machines, creating a

new formal system with S-expressions, which could be

shown to be equivalent to the other universal schemes

of computation.

Conclusion. That tile concept of the designating

symbol and symbol manipulation does not emerge

until the mid-fifties does not mean that the earlier steps

were either inessential or less important. The total

118

co,lcept is the join of computability, physical realiza-

bility (and by muhiple technologies), universality, the

symbolic represe~m~tio~l of processes (i.e. interpreta_

biiity), and~ fi~l:H]y, sylr~bolic stiuct~re and designation.

Each of the steps ptovided an csse~tiat part of the

whole.

The first step i~i this chs~iia, ~mthored by Turing, is

theoretically motivated, but thc others all have deep

empirical roots. We have been led by the evolution of

the computer itself. The stored program principle arose

out of the experience with Eniac. I.ist processing arose

out of the attempt to construct intelligent programs.

itt took its cue fl'om the emergence of random access

memories, which provided a clear physical realization

of a designating symbol in the address. I.~SP arose out

of the evolving experience with list processing.

The Evidence

We come now to the evidence for the hypothesis

that physical symbol systems are capable of intelligent

action, and that general intelligent actio,1 calls ['or a

physical symbol system. Tile hypothesis is an em.pirical

generalization and not a theorem. We know of no way

of demonstrating the connection between symbol sys-

tems and intelligence on purely logical grounds. Lack-

ing such a demonstration, we must look at the facts.

Our central aim, however, is not to review the evidence

in detail, but to use the example before us to illustrate

the proposition that computer science is a field of

empirical inquiry. Hence, we will only indicate what

kinds of evidence there is, and the general nature of

the testing process.

The notion of physical symbol system had taken

essentially its present form by the middle of the 1950%

and one can date from that time the growth of arti-

ficial intelligence as a coherent subfield of computer

science. The twenty years of work since then has seen

a continuous accumulation of empirical evidence of two

main varieties. The first addresses itself to the su~i-
cie~cy of physical symbol systems for producing intelli-

gence, attempting to construct and test specific systems

that have such a capability. The second kind of evidence

addresses itself to the tTecessity of having a physical

symbol system wherever intelligence is exhibited. It

starts with Man, the intelligent system best known to

us, and attempts to discover whether his cognitive

activity can be explained as the working of a physical

symbol system. There are other forms of evidence,

which we will comment upon briefly later, but these

two are the important ones. We will consider them in

turn. The first is generally called artificial intelligence,

the second, research in cognitive psychology.

Constructing Intelligent Systems. The basic paradigm

for the initial testing of the germ theory of disease was:

identify a disease; then look for the germ. An analogous

paradigm has inspired much of the research in artificial

intelligence: identify a task domain calling for intelli-

gence; then construct a program for a digital computer

Communications March 1976
of Volume 19
the ACM Number 3

that can handle tasks in that domain. The easy and

well struct~:red tasks were iooked at first: puzzles and

games, operations research probtems of scheduling and

allocating resources, simple inductiorl tasks. Scores, if

not hundreds, of programs of these kinds have by now

been constructed, each capable of some measure of

intelligent action in the appropriate domain.

Of course intelligence is not an all-or-none matter,

and there has been steady progress toward higher levels

of performance in specific domains, as well as toward

widening the range of those domains. Early chess

programs, for example, were deemed successful if they

could play the game legaily and with some indication

of purpose; a little later, they reached the level of

human beginners; within ten or fifteen years, they

began to compete with serious amateurs. Progress has

been slow (and the total programming effort invested

small) but continuous, and the paradigm of construct-

and-test proceeds in a regular cycle - the whole research

activity mimicking at a macroscopic level the basic

generate-and-test cycle of many of the AI programs.

]'here is a steadily widening area within which intel-

ligent action is attainable. From the original tasks,

research has extended to building systems that handle

and understand natural language in a variety of ways,

systems for interpreting visual scenes, systems for

hand eye coordination, systems that design, systems

that write computer programs, systems for speech

understanding -the list is, if not endless, at least very

long. If there are limits beyond which the hypothesis

will not carry us, they have not yet become apparent.

Up to the present, the rate of progress has been gov-

erned mainly by the rather modest quantity of scientific

resources that have been applied and the inevitable

requirement of a substantial system-building effort for

each new major undertaking.

Much more has been going on, of course, than

simply a piling up of examples of intelligent systems

adapted to specific task domains. It would be sur-

prising and unappealing if it turned out that the AI

programs performing these diverse tasks had nothing

in common beyond their being instances of physical

symbol systems. Hence, there has been great interest in

searching for mechanisms possessed of generality, and

for common components among programs performing

a variety of tasks. This search carries the theory beyond

the initial symbol system hypothesis to a more com-

plete characterization of the particular kinds of symbol

systems that are effective in artificial intelligence. In

the second section of this paper, we will discuss o n e

example of a hypothesis at this second level of speci-

ficity: the heuristic search hypothesis.

The search for generality spawned a series of pro-

grams designed to separate out general problem-solving

mechanisms from the requirements of particular task

domains. The General Problem Solver (GPS) was

perhaps the first of these; while among its descendants

are such contemporary systems as PLANNER and

CONNIVER. The search for common components has

led to generalized schemes of representation for goals

and plans, methods for constructing discrimination

nets, procedures for the control of tree search, pattern-

matching mechanisms, and language-parsing systems.

Experiments are at present under way to find conven-

ient devices for representing sequences of time and

tense, movement, causality and the like. More and

-more, it becomes possible to assemble large intelli-

gent systems in a modular way from such basic

components.

We can gain some perspective on what is going on

by turning, again, to the analogy of the germ theory.

If the first burst of research stimulated by that theory

consisted largely in finding the germ to go with each

disease, subsequent effort turned to learning what a

germ was---to building on the basic qualitative law a

new level of structure, tn artificial intelligence, an

initial burst of activity aimed at building intelligent

programs for a wide variey of almost randomly selected

tasks is giving way to more sharply targeted research

aimed at understanding the common mechanisms of

such systems.

T h e Modeling of Human Symbolic Behavior. The

symbol system hypothesis implies that the symbolic

behavior of man arises because he has the character-

istics of a physical symbol system. Hence, the results

of efforts to model human behavior with symbol systems

become an important part of the evidence for the hy-

pothesis, and research in artificial intelligence goes on

in close collaboration with research in information

processing psychology, as it is usually called.

The search for explanations of man's intelligent

behavior in terms of symbol systems has had a large

measure of success over the past twenty years; to the

point where information processing theory is the lead-

ing contemporary point of view in cognitive psychol-

ogy. Especially in the areas of problem solving, concept

attainment, and long-term memory, symbol manipu-

lation models now dominate the scene.

Research in information processing psychology

involves two main kinds of empirical activity. The first

is the conduct of observations and experiments on

human behavior in tasks requiring intelligence. The

second, very similar to the parallel activity in artificial

intelligence, is the programming of symbol systems to

model the observed human behavior. The psychologi-

cal observations and experiments lead to the formula-

tion of hypotheses about the symbolic processes the

subjects are using, and these are an important source

of the ideas that go into the construction of the pro-

grams. Thus, many of the ideas for the basic mecha-

nisms of GPS were derived from care%l analysis of the

protocols that human subjects produced while thinking

aloud during the performance of a problem-solving
task.

The empirical character of computer science is

nowhere more evident than in this alliance with psy-

119 Communications March 1976
of Volume 19
the ACM Number 3

chology. Not only are psychological experimmltS re-.

quired t.o test the veridicality of the simulation models

as explanations of the human behavior, but out of the

experiments come new ideas for tile design and con-

struction of physical symbol systems.

Other Evidence. The principal body of evidence for the

symbol system, hypothesis that we have not consid-.

ered is negative evidence: the absence of specific com-

peting hypotheses as to how intelligent activity might

be accomplished.- whether by man or machine. Most

attempts to build such hypotheses have taken place

within the field of psychology. Here we have had a

continuum of theories from the points of view usually

labeled "behaviorism" to those usually labeled "Gestalt

theory." Neither of these points of" view stands as a

real competitor to the syrnbol system hypothesis, and

this for two reasons. }:;its% neither behaviorism nor

Gestalt theory has demonstrated, or even shown how

to demonstrate, that the explanatory mechanisms it

postulates are suflicie~t t:o account for intelligent

behavior in complex tasks. Second, neither theory has

been form.ulated with anything like the specificity of

artificial programs. As a matter of f;~ct, the alternative

theories are sufficiently vague so that it is not terribly

difficult to give them informatior~ processing interpre-

tations, and thereby assinfitate ttlem to the symbol

system hypothesis.

Conclusion

We have tried to use the example of the Physical

Symbol System [typothesis to illustrate concretely that

corn.purer science is a scientific e~lterprise in the usual

meaning of" that term: that if develops scientific hypothe

ses which it then seeks to verify by empMca/ inquiry.

We]lad a second reason, however, for choosing this

particular example to illustrate our point. The Physical

Symbol System tlypothesis is itself a substantial sciem

tific hypothesis of" the kind that we earlier dubbed

"laws of" qualitative structure." It represents an im-

portant discovery off computer science, which if borne

out by the empirical evidence, as in {'act appears to be

occurring, will have major continuing impact on the

field.

We turn now to a second example, the role ofsearcll

in intelligence. TMs topic, and the particular hypothesis

about it that we shall examine, have also played a

centraI role in computer science, in general, and arti-

ficial intelligence, in particular.

IL Heuristic Search

Knowing that physical symbol systems provide the

matrix for intelligent action does not tell us how they

accomplish this. Our second example of a law of" quail

tative structure in computer science addresses this

latter question, asserting that symbol systems solve

problems by using the processes of heuristic search.

120

'['his generalization, like the previous one, rests on em-

pirical evidence, and has not been derived formally

from other premises. However, we sIna]l see in a moment

that it does have some logical connection with the

symbol system hypothesis, and perhaps we can look

forward to formalization of the connection at some

time in the fu, ture. dntiI that time arrives, our storx

must again be one of" empirical inquiry. Wc will describe

what is known about heurist.ic search and review the

empirical findings that show tnow it enables action to be

intelligent. We begin by stating this law of qualitative

structure, the Heuristic Search I Iypothesis~

]tez#'Ls'tic Search H3:potkeMr. The sohations to

problems are represented as symbol structures.

A physical symbol system exercises its intelli-

gence in problem solving by s e a r c h - t h a t is, by

generating arid progressively modifying symbol

structures until it produces a solution structure,

Physical symbol systems must use heuristic search

to solve problems because such systems have lirnJted

processing resources; in a finite number o£ steps, and

over a finite interval of time, they can execute otfiy a

finite number of processes. Of course that is riot a very

strong limitation, for all universal Turing machines

suffer from it. We intencl the limitation, however, in a

stronger sense: we mean /)tactically limited. We can

conceive of systems that arc not limited ill a practical

way, but are capable, for example, of searching in

parallel the nodes of an exponentially expanding tree

at a constant rate for each unit advance in depth. We

wilt not be concerned here with such systems, but w[tl~

systems whose computing resources are scarce relative

to the complexity of the situations with which they are

confronted. The restriction will not exclude any real

symbol systems, in cornputer or man, in the context o["

real tasks. The fact of' limited resources allows us, ['or

most purposes, to view a symbol system as though it

were a serial, one-.process-at-a-time device, if it can

accomplish only a small amount of processing in any

short time interval, then we might as well regard it as

doing th.ings one at a time, "["has "limited resouroe

symbol system" and "serial symbol system" are prac-

tically synonymous. The problem of allocating a

scarce resource from moment to moment can usually

be treated, if the moment is short enough, as a problem

of scheduling a serial machine.

Problem Solving

Since ability to solve problems is generally taken

as a prime indicator that a system has intelligence, it

is natural that much of the history of artificial intdli-

genre is taken up with attempts to build and understand

problem-solving systems. Problem solving has been

discussed by philosophers and psychologists for two

millenia, in discourses dense with the sense of mystery.

If you think there is nothing problematic oi" mysterious

about a symbol system solving problems, then you are

Communications March 1976
of Volume 19
the ACM Number 3

a child of today, wtnosc views have been ~ormed since

midcentury. Plato (and, by his account, Socrates)

{buud .dilSculty understanding even how problems

could be e,~tertai~zed, much less how they could be

solved. Le[me remind you of how he posed the conum

dlqlnl in the Meflo:

Meno: And how will you inquire, Socrates,

into that which you know not? What will you

put f'orth as the subject of inquiry? And if you

find what you want, how will you ever know that

this is what you did not know?

To deal with this puzzle, Plato invented his famous

theory of recollection: when you think you are discov-

eri~lg or]earning something, you are really just recalling

what you already knew in a previous existence, tf you

find this explanation preposterous, there is a much

simpIer one available today, based upon our under-

standing of symbol systems. An approximate statement

of it is:

To state a problem is to designate (1) a test

for a class of symbol structures (solutions of the

problem), and (2) a gee~erator of symbol struc-

tures (potential solutions). To solve a problem is

to generate a structure, using (2), that satisfies

the test of (1).

We have a problem if we know what we want to do

(the test), and if we don' t know immediately how to do

it (our generator does not immediately produce a

symbol structure satisfying the test). A synlbol system

cat~ state and solve problems (sometimes) because it

can generate and test.

If that is all there is to problem solving, why not

simply generate at once an expression that satisfies the

test? This is, in Fact, what we do when we wish and

dream. " I f wishes were horses, beggars might ride."

But outside the world of dream.s, it isn't possible. To

know how we would test something, once constructed,

does not mean that we know how to construct i t - - that

we have any generator for doing so.

For example, it is well known what it means to

"solve" the problem of playing winning chess. A

simple test exists for noticing winning positions, the

test for checkmate of the enemy King. In the world of

dreams one simply generates a strategy that leads to

checkmate for all counter strategies of the opponent.

Alas, no generator that will do this is known to existing

symbol systems (man or machine). Instead, good moves

in chess are sought by generating various alternatives,

and painstakingly evaluating them with the use of

approximate, and often erroneous, measures that are

supposed to indicate the likelihood that a particular

line of play is on the route to a winning position. Move

generators there are; winning move generators there

are not.

Before there can be a move generator for a problem,

there must be a problem space: a space of symbol

structures in which probIem situations, including the

initial and goal situations, can be represented. Move

gerterators are processes for modifying one situation in

the problem space into another. The basic character-

istics of physical symbol systems guarantee that they

can represent problem spaces and that they possess

move generators. }:tow, in any concrete situation they

synthesize a problem space and move generators ap-

propr:iate to that situation is a question that is still

very much on the frontier of artificial intelligence

research.

The task that a symbol system, is faced with, then,

when it is presented with a problem and a problem

space, is to use its limited processing resources to gen-

erate possible solutions, one after another, until it finds

one that satisfies the problem-defining test. if the system

had some control over the order in which potential

solutions were generated, then it would be desirable to

arrange this order of generation so that actual solutions

would have a high likelihood of appearing early. A

symbol system would exhibit intelligence to the extent

that it succeeded in doing this. Intelligence for a system

with limited processing resources consists in making

wise choices or" what to do next.

Search in Problem Solving

During the first decade or so of artificial intelligence

research, the study of problem solving was almost

synonymous with the study of search processes. From

our characterization of problems and problem solving,

it is easy to see why this was so. In fact, it might be

asked whether it could be otherwise. But before we

try to answer that question, we must explore further

the nature of' search processes as it revealed itself during

that decade of activity.

Extracting Information from the Problem Space. Con-

sider a :set of symbol structures, some small subset

of" which are solutions to a given problem. Suppose,

further, that the solutions are distributed randomly

through the entire set. By this we mean that no informa-

tion exists that would enable any search generator to

perform, better than a random search. Then no symbol

system could exhibit more intelligence (or less intelli-

gence) than any other in solving the problem, al-

though one might experience better luck than another.

A condition, then, for the appearance of intelligence

is that the distribution of solutions be not entirely

random, that the space of symbol structures exhibit at

least some degree of order and pattern. A second condi-

tion is that pattern in the space of symbol structures be

more or less detectible. A third condition is that the

generator of potential solutions be able to behave dif-

ferentially, depending on what pattern it detected.

There must be information in the problem space, and

the symbol system must be .capable of extracting and

using it. Let us look first at a very simple example,

where the intelligence is easy to come by.

121 Communications March 1976
of Volume 19
the ACM Number 3

Consider the problem of solving a simple algebraic

eq,,mtion:

/X+ B : CX+ D

The test defines a solution as any expression of the

Form, X = 2Z, such that AE -% B C E + D. Now

one could use as generator any process that would

produce numbers which could then be tested by sub-

s t int ing in the latter equation. We would not call this

an intelligent generator.

Alternative]y, one could use generators that would

make use of the fact that the original equation can be

modified.~by adding or subtracting equal quantities

from both sides, or multiplying or dividing both sides

by the same quantity--without changing its solutions.

But, of course, we can obtain even more information

to guide the generator by comparing the original ex-

pression with the form. of the solution, and making

precisely those changes in the equation that leave its

solution unchanged, while at the same time, bringing

it into the desired form. Such a generator could notice

that there was an unwanted CX on the right-hand side

of the original equation, subtract it from both sides

and collect terms again. It could then notice that there

was an unwanted B on the left-hand side and subtract

that. Finally, it could get rid of the unwanted coefi%

cient (A - C) on the left-hand side by dividing.

Thus by this procedure, which now exhibits con-

siderable intelligence, tlhe generator produces successive

symbol structures, each obtained by modifying the

previous one; and the modifications are aimed at

reducing the differences between the form of the input

structure and the form of the test expression, while

maintaining the other conditions for a solution.

This simple example already illustrates many of the

main mechanisms that are used by symbol systems for

intelligent problem solving. First, each successive ex-

pression is not generated independently, but is produced

by modifying one produced previously. Second, the

modifications are not haphazard, but depend upon two

kinds of information. They depend on information

that is constant over this whole class of algebra prob-

lems, and that is built into the structure of the generator

itself: all modifications of expressions must leave the

equation's solution unchanged. They also depend on

information that changes at each step: detection of the

differences in Form that remain between the current

expression and the desired expression. In effect, the

generator incorporates some of the tests the solution

must satisfy, so that expressions that don't meet these

tests will never be generated. Using the first kind of

information guarantees that only a tiny subset of all

possible expressions is actually generated, but without

losing the solution expression from this subset. Using

the second kind of information arrives at the desired

solution by a succession of approximations, employing

a simple form of means-ends analysis to give direction
to the search.

122

There is no mystery where the information that

guided the search came frorm We need not Follow Plato

in endowing the symbol systern with a previous exist-

ence in which it ah'eady knew the solution. A moder-

ately sophisticated gei~erator-test system did the trick

without invokit~g reincarmltion.

Search Trees° The sinapte algebra problem may seem

an unusual, even pathological, example of search. It is

certainly not trial-and-error search, for though there

were a few trials, there was no error. We are more

accustomed to thinking of problem-solving search as

generating lushly branching trees of partial solution

possibilities which may grow to thousands, or even

millions, of branches, before they yietd a solution. Thus,

if fl-om each expression it produces, the generator

creates B new branches, then the tree will grow as BD,

where D is its depth. The tree grow~ FOr the algebra

problem had the peculiarity that its branchiness, B,
equaled unity.

Programs that play ctness typically grow broad

search trees, amounting in some cases to a million

branches or more. (Although this example will serve to

illustrate our points about tree search, we should note

that the purpose of search in chess is not to generate

proposed solutions, but to evaluate (test) them.) One

line of research into game-playing programs has been

centrally concerned with improving the representation

of the chess board, and the processes for making moves

on it, so as to speed up search and make it possible to

search larger trees. The rationale for this direction, of

course, is that the deeper the dynamic search, the more

accurate should be the evaluations at the end of it. On

the other hand, there is good empirical evidence that

the strongest human players, grandmasters, seldom

explore trees of more than one hundred branches.

This economy is achieved not so much by searching

less deeply than do chess-playing programs, but by

branching very sparsely and selectively at each node.

This is only possible, without causing a deterioration

of the evaluations, by having more of the selectivity

built into the generator itself, so that it is able to select

for generation just those branches that are very likely

to yield important relevant information about the
position.

The somewhat paradoxical-sounding conclusion to

which this discussion leads is that search--successive

generation of potentional solution structures--is a fun-

damental aspect of a symbol system's exercise of intel-

ligence in problem solving but that amount of search

is not a measure of the amount of intelligence being

exhibited. What makes a problem aproblem is not that

a large amount of search is required for its solution,

but that a large amount would be required if a requisite

level of intelligence were not apptied. When the sym-

bolic system that is endeavoring to solve a problem

knows enough about what to do, it simply proceeds

directly towards its goat; but whenever its knowledge

becomes inadequate, when it enters terra incognita, it

Communications March 1976
of Volume 19
the ACM Number 3

is faced with the threat of going through large amounts

of searcl-i before it finds its way again.

The potential for the exponential explosion of the

search tree that is present in every scheme for gener-

ating problem sot utions warns us against depending on

the brute force of computers-~---even the biggest and

fastest computers---as a compensation for the ignorance

and unselectivity of their generators. The hope is still

periodically ignited in some human breasts that a

computer can be found that is fast enough, and that

can be programmed cleverly enough, to play good

chess by brute-force search. There is nothing known in

theory about the game of chess that rules out this pos-

sibility. Empirical studies on the management of search

in sizable trees with only modest results make this a

much less promising direction than it was when chess

was first chosen as an appropriate task for artificial

intelligence. We must regard this as one of the important

empirical findings of research with chess programs°

The Forms of Intelligence. The task of intelligence,

then, is to avert the ever-present threat of the exponen-

tial explosion of search. How can this be accomplished?

The first route, already illustrated by the algebra

example, and by chess programs that only generate

"plausible" moves for further analysis, is to build

selectivity into the generator: to generate only struc-

tures that show promise of being solutions or of being

along the path toward solutions. The usual consequence

of doing this is to decrease the rate of branching, not

to prevent it entirely. Ultimate exponential explosion is

not avoided--save in exceptionally highly structured

situations like the algebra example--but only post-

poned. Hence, an intelligent system generally needs to

supplement the selectivity of its solution generator with

other information-using techniques to guide search.

Twenty years of experience with managing tree

search in a variety of task environments has produced

a small kit of general techniques which is part of the

equipment of every researcher in artificial intelligence

today. Since these techniques have been described in

general works like that of Nilsson [1971], they can be

summarized very briefly here.

In serial heuristic search, the basic question always

is: what shall be done next? In tree search, that ques-

tion, in turn, has two components: (1) from what node

in the tree shall we search next, and (2) what direction

shaft we take from that node? Information helpful in

answering the first question may be interpreted as

measuring the relative distance of different nodes from

the goal. Best-first search calls for searching next from

the node that appears closest to the goal. Information

helpful in answering the second question--in what

direction to search--is often obtained, as in the algebra

example, by detecting specific differences between the

current nodal structure and the goal structure de-

scribed by the test of a solution, and selecting actions

that are relevant to reducing these particular kinds of

123

differences. This is the technique known as means-ends

analysis, which plays a central role in the structure of

the General Problem Solver.

The importance of empirical studies as a source of

general ideas in Ai research can be demonstrated clearly

by tracing the history, through large numbers of prob-

lem solving programs, of these two central ideas:

best-first search and means-ends analysis. Rudiments

of best-first search were already present, though un-

named, in the Logic Theorist in 1955. The General

Problem Solver, embodying means-ends analysis, ap--

peared about 1957--but combined it with modified

depth-first search rather than best-first search. Chess

programs were generally wedded, for reasons of econ-

omy of memory, to depth-first search, supplemented

after about 1958 by the powerful alpha beta pruning

procedure. Each of these techniques appears to have

been reinvented a number of times, and it is hard to

find general, task-independent theoretical discussions

of problem solving in terms of these concepts until the

middle or late 1960's. The amount of formal buttressing

they have received from mathematical theory is still

miniscule:some theorems about the reduction in searctl

that can be secured from using the alpha-beta heuristic,

a couple of theorems (reviewed by Nilsson {1971])

about shortest-path search, and some very recent

theorems on best-first search with a probabilistic

evaluation function.

"Weak" and "Strong" Methods. The techniques we

have been discussing are dedicated to the control of

exponential expansion rather than its preventi.on. For

this reason, they have been properly called "weak

methods"--methods to be used when the symbol

system's knowledge or the amount of structure actually

contained in the problem space are inadequate to

permit search to be avoided entirely. It is instructive

to contrast a highly structured situation, which can be

formulated, say, as a linear programming problem,

with the less structured situations .of combinatorial

problems like the traveling salesman problem or sched-

uling problems. ("Less structured" here refers to the

insufficiency or nonexistence of relevant theory about

the structure of the problem space.)

In solving linear programming problems, a sub-

stantial amount of computation may be required, but

the search does not branch. Every step is a step along

the way to a solution. In solving combinatorial prob-

lems or in proving theorems, tree search can seldom

be avoided, and success depends on heuristic search

methods of the sort we have been describing.

Not all streams of AI problem-solving research

have followed the path we have been outlining. An

example of a somewhat different point is provided by

the work on theorem-proving systems. Here, ideas

imported :from mathematics and logic have had a strong

influence on the direction of inquiry. For example, the

use of heuristics was resisted when properties of corn-

Communications March 1976
of Volume 19
the ACM Number 3

pleteness could not be proved (a bit ironic, since most

interesting matherraticaI systems are known to he

undecidable). Since completeness can seldom be proved

for best-first search heuristics, or for many kinds of

selective generators, the effect of this requirement was

rather inhibiting. When theorem-.proving programs

were continualIy incapacitated by the combinatorial

explosion of their search trees, thought began to be

given to sekctive heuristics, which in many cases

proved to be analogues of heuristics used in general

problem-seining prog-rams. The set-of-support heuris-

tic, for example, :is a form of" working backwards,

adapted to the resolution theorem proving environ-

meri t ,

A Smnmary of the Experience° We have now described

the workings of our second]aw of qualitative struc-.

Sure, which asserts that physical symbol systems solve

problems by means of heuristic search. Beyond that,

we have examined some subsidiary characteristics of

heuristic search, in particular the threat that it always

faces of exponential explosion of the search tree, and

some of the means it uses to avert that threat. Opinions

differ as to how effective heuristic search has been as a

problem solving mechanism---the opinions depending

on what task domains are considered and what criterion

of' adequacy is adopted. Success can be guaranteed by

setting aspiration levels love--or failure by setting them

high. The evidence might be summed up about as

follows. Few programs are solving problems at "expert"

professional levels. Samuel's checker program and

Feigenbaum and Lederberg's DENDRAL are perhaps

the best-known exceptions, but one could point also to

a number of heuristic search programs for such opera-

tions research problem domains as scheduling and

integer programming. In a number of domains, pro.-

grams perform at the level of competent amateurs:

chess, some theorem--proving domains, many kinds of

gam.es and puzzles. Human levels have not yet been

nearly reached by programs that have a complex per-

ceptual "front end": visual scene recognizers, speech

understanders, robots that have to maneuver in real

space and time. Nevertheless, impressive progress has

been made, and a large body of experience assembled
about these difficult tasks.

We do not have deep theoretical explanations for

the particular pattern of performance that has emerged.

On empirical grounds, however, we might draw two

conclusions. First, fi'om what has been learned about

hum.an expert performance in tasks like chess, it is

likely that any system capable of matching that per-

form.ance will have to have access, in its memories, to

very large stores of semantic information. Second,

some part of the human superiority in tasks with a

large perceptual component can be attributed to the

speciaLpurpose built-in parallel processing structure of
the human eye and ear.

In any case, the quality of perfbrm.ance must neces-

124

sadly depend on the characteristics both of' the problem

domair~s and of the symbol systems ~.~sed to tackle

them. For most rcaI It% domains i~ which we are in-

terested, the dornaiu structure has not proved suffi-

ciently simple to yield (so iar) theorems about com-.

plexity, or to tell us, other than e rip rieatly~ how large

real worId problems are in relatioia to the abilities of

our symbol systems to solve them, Th;~t situation may

change, but until it does, we rnust rely upon empirical

explorations, using< the best problem solvers we know

how to buihff, as a principal source of know!edge about

the magnitude and characteristics of problem difficulty.

Even in high!y structured areas tike linear program~

ruing, theory has been m.uch more useful in strengthen.-

ing the heuristics that underlie the most powerful

solution algorithms than in providing a deep analysis
of complexity.

h~tellige~me Without Much Search

Our analysis of intelligence equated it with ability

to extract and use information about the structure of

the probtem space, so as to enable a problem solution

to be generated as quickly and directly as possible. New

directions for improving the problem-solving capabilL

ties of symbol systerns can be equated, then, with new

ways of extracting and using information. At least
three such ways can be identified.

Nonlocal Use of hformatiom First, it has been noted

by several investigators that information gathered in

the course off tree search is usually oniy used Iocaffy, to

help make decisions at the specific node where the

information was generated. Infnrmation about a chess

poskion, obtained by dynamic analysis of a subtree of

contb.uations, is usually -used to evaluate just that

position, not to evaluate other positions that may

contain many of the same features. }-{ence, the same

facts have to be rediscovered repeatedly at diff%rent

nodes of the search tree. Simply to take the infbrmation

out of the context in which it arose and use it genera[ty

does not solve the problem, for the information n'my

be valid only in a limited range of contexts. In recent

years, a few exploratory efforts have been made to

transport in%rmation from its context of origin to

other appropriate contexts. While it is still too early to

evaluate the power of this idea, or even exactly how it

is to be achieved, it shows considerable promise. An

important line of investigation that Berliner [1975] has

been pursuing is to use causal analysis to determine

the range over which a particular piece of information

is valid. Thus if a weakness in a chess position can be

traced back to the move that made it, then the same

weakness can be expected in other positions descendant
from the same move.

The HEARSAY speech understanding system has

taken another approach to making in%rmation globally

avaiIable. That system seeks to recognize speech strings

by pursuing a parallel search at a number of different

Communications March 1976
of Volume 19
the ACM Number 3

levels: phonemic, lexical, syntactic, and semantic. As

each of these searches provides and evaluates hypothe-

ses, it supplics the information it has gained to a com-

mon "bl.ackboard" that can be read by all the sources.

This shared information can be used, for exam.pie, to

eliminate hypotheses, or even whole classes of hypothe-

ses, that woutd otherwise have to be searched by one

of the processes. Thus, increasing our ability to use

tree-search information norflocally offers promise for

raising the intelligence of problem-solving systems.

Semantic Recog~:ition Systems° A second active possi-

bility for raising intelligence is to supply the symbol

system wit?: a rich body of semantic information about

the task domain it is dealing with. For example, em-

pirical research on the skill of chess masters shows that

a major source of" the rnaster's skill is stored informa-

tion that enables him to recognize a large number of

specific f?atures and patterns of features on a chess

board, and information that uses this recognition to

propose actions appropriate to the features recognized.

This general idea has, of course, been incorporated in

chess programs alnn.ost from the beginning. What is

new is the realization of the number of such patterns

and associated information that may have to be stored

for master-level play: something of the order of 50,000.

The possibility of substituting recognition for search

arises because a particular, and especially a rare, pattern

can contain an enormous amount of information, pro-

vided that it is closely linked to the structure of the

problem space. When that structure is "irregular,"

and not subject to simple mathematical description,

then knowledge of a large number of relevant patterns

may be the key to intelligent behavior. Whether this is

so in any particular task domain is a question more

easily settled by empirical investigation than by theory.

Our experience with symbol systems richly endowed

with semantic information and pattern-recognizing

capabilities for accessing it is still extremely limited.

The discussion above re%rs specifically to semantic

information associated with a recognition system. Of

course, there is also a whole large area of A1 research

on semantic information processing and the organiza-

tion of semantic memories that falls outside the scope

of the topics we are discussing in this paper.

Selecting Appropriate Representations° A third line of

inquiry is concerned with the possibility that search

can be reduced or avoided by selecting an appropriate

problem space. A standard example that illustrates this

possibility dramatically is the mutilated checkerboard

problem. A standard 64 square checkerboard can be

covered exactly with 32 tiles, each a IX2 rectangle

covering exactly two squares. Suppose, now, that we

cut off squares at two diagonally opposite corners of

the checkerboard, leaving a total of 62 squares. Can

this mutilated board be covered exactly with 31 tiles?

With (literally) heavenly patience, the impossibility of

achieving such a covering can be demonstrated by

125

trying all possible arrangements. The alternative, for

those with less patience, arid more intelligence, is to

observe that the two diagonally opposite corners of a

checkerboard are of the same color. Hence, the mu-

tilated checkerboard has two less squares of one color

than of the other. But each tile covers one square of

one color and one square of' the other, and any set of

tiles must cover the same number of squares of each

color. Hence, there is no solution. How can a symbol

system discover this simple inductive argument as an

alternative to a hopeless attempt to solve the problem

by search among all possible coverings? We would

award a system that found the solution high marks for

intelligence.

Perhaps, however, in posing this problem we are

not escaping from search processes. We have simply

displaced the search from a space of possible problem

solutions to a space of possible representations. In any

event, the whole process of moving from one represen-

tation to another, and of discovering and evaluating

representations, is largely unexplored territory in the

domain of problem-solving research. The laws of quail

tative structure governing representations remain to be

discovered. The search for them is almost sure to

receive considerable attention in the coming decade.

Conclusion

That is our account of symbol systems and intelli-

gence. It has been a long road from Plato's Mer~o to

the present, but it is perhaps er:couraging that most of

the progress along that road has been made since the

turn of the twentieth century, and a large fraction of it

since the midpoint of the century. Thought was still

wholly intangible and ineffable until modern formal

logic interpreted it as the manipulation of formal

tokens. And it seemed still to inhabit mainly the heaven

of Platonic ideals, or the equally obscure spaces of the

human naiad, until computers taught us how symbols

could be processed by machines. A.M. Turing, whom

we memorialize this morning, made his great contribu-

tions at the mid-century crossroads of these develop-

ments that led from modern logic to the computer.

Physical Symbol Systems. The study of logic and com-

puters has revealed to us that intelligence resides in

physicat symbol systems. This is computer sciences's

most basic law of qualitative structure.
Symbol systems are collections of patterns and

processes, the latter being capable of producing, de-

stroying and modifying the former. The most important

properties of patterns is that they can designate objects,

processes, or other patterns, and that, when they

designate processes, they can be interpreted. Interpre-

tation means carrying out the designated process. The

two most significant classes of symbol systems with

which we are acquainted are human beings and

computers.

Communications March t976
of Volume 19
the ACM Number 3

Our present understanding of symbol systems grew,

as indicated earlier, through a sequence of stages.

Forrnal logic familiarized us with symbols, treated

syntactically, as the raw material of thought, and with

the idea of manipulating them according to carefully

defined formal processes. The Turing machine made

the syntactic processing of symbols truly machine-like,

and affirmed the potential universality of strictly de-

fined symbol systems. The stored-program concept for

computers reaffirmed the interpretability of syrnbols,

already implicit in the Turing machine. List processing

brought to the forefront the denotational capackies of

symbols, and defined symbol processing in ways that

allowed independence from the fixed structt~re of the

underlying physical machine. By 1956 all of these

concepts were available, together with hardware for

implementing them. The study of the inte]ligence of

symbol systems, the subject of artificial intelligence,

could begin.

Heuristic Search. A second law of qualitative structure

for A1 is that symbol systems solve problems by gener-

ating potential solutions and testing them, that is, by

searching. Solutions are usually sought by creating

symbolic expressions and modifying them sequentially

until they satisfy the conditions for a solution. Hence

symbol systems solve problems by searching. Since

they have finite resources, the search cannot be carried

out all at once, but must be sequential. It leaves behind

it either a single path from starting point to goal or, if

correction and backup are necessary, a whole tree of

such paths.

Symbol systems cannot appear intelligent when

they are surrounded by pure chaos. They exercise in-

telligence by extracting information from a problem

domain and using that information to guide their

search, avoiding wrong turns and circuitous bypaths.

The problem domain must contain information, that

is, some degree of order and structure, for the method

to work. The paradox of the Meno is solved by the

observation that information may be remembered, but

new information may also be extracted Prom the domain

that the symbols designate. In both cases, the ultimate

source of the information is the task domain.

The EmpMeal Base. Artificial intelligence research is

concerned with how symbol systems must be organized

in order to behave intelligently. Twenty years of work

in the area has accumulated a considerable body of

knowledge, enough to fill several books (it already has),

and most of it in the form of rather concrete experience

about the behavior of specific classes of symbol systems

in specific task domains. Out of this experience, how-

ever, there have also emerged some generalizations,

cutting across task domains and systems, about the

general characteristics of intelligence and its methods

of implementation.

We have tried to state some of these generalizations

this morning. They are mostly qualitative rather than

mathcrru~ticat~ They have ntorc the flavor o£ geology or

evolutionary b iobgy than the t]avor of theoretical

physics. They are suflici:ntly strong to enable us today

to design and build moderately intelligent systems for a

considerable range of task dom;.~ius, as welt as to gain

a rather deep understamling oF how human intelligence

works i~a ma~y situations.

What Next? In our accntmt today, we have mentioned

open questions as well as settbd on es there are many

of' both. We see no abatement of the excitement of

exploration that has surcoundcd this field over the past

quarter century. Two resource limits will determine the

rate of progress over the next suc]n period. One is the

amount of computing power that will be available. "The

second, and probably the rnore important, is the

number of talerlted young computer scientists who will

be attracted to this area o[" research as the most chal-

lenging they can tackle.

A.M. Turing concluded this famous paper on "Com-

puting Machinery and httelligence" with the words:

"We can only see a short distance ahead, but we

can see plenty there that needs to be done."

Many of the things Turing saw in 1950 that needed

to be done have been done, but the agenda is as full as

ever. Perhaps we read too much into his simple state-

m ent above, but we like to think that in it Turing rec-

ognized the fundamental truth that all computer sci-

entists instinctively know. For all physical symbol

systems, condemned as we are to serial search of the

problem environment, the critical question is always:

What to do next?

References
Berliner, H. [1975]. Chess as problem solving: the development

of a tactics analyzer. Ph.D. Tin., Computer $ci. Dep., Carnegie-
Mellon U. (unpublished).

McCarthy, J. [19601. Recursive functions of symbolic expressions
and their computation by machine. Comm. A C M 33, 4 (April
196(/), 184-195.

McCulloch, W.S. [19611. What is a number, that a man may know
it, and a man, that he may know a number. General Nemanfics

BMlet#z Nos. 26 and 27 (1961), 7-18.
Nilsson, N.£ [1971]. Problem Solvitzg Methods in Artificial

Imelligence. McGraw-Hill, New York.
Turing, A.M. [1950]. Computing machinery and intelligence.

Mind 59 (Oct. 1950), 433-4660.

126 Communications March 1976
of Volume 19
the ACM Number 3

REPORT

COMPUTING AS A DISCIPLINE

The final report of the Task Force on the Core of Computer Science presents
a new intellectual framework for the discipline of computing and a new
basis for computing curricula. This report has been endorsed and approved
for release by the ACM Education Board.

PETER J. DENNING (CHAIRMAN), DOUGLAS E. COMER, DAVID GRIES, MICHAEL C. MULDER,
ALLEN TUCKER, A. JOE TURNER, and PAUL R. YOUNG

It is ACM’s 42nd year and an old debate continues. Is
computer science a science? An engineering discipline?

Or merely a technology, an inventor and purveyor of
computing commodities? What is the intellectual sub-
stance of the discipline? Is it lasting, or will it fade
within a generation? Do core curricula in computer
science and engineering accurately reflect the field?

How can theory and lab work be integrated in a com-
puting curriculum? Do core curricula foster compe-
tence in computing?

We project an image of a technology-oriented disci-
pline whose fundamentals are in mathematics and
engineering-for example, we represent algorithms as

the most basic objects of concern and programming and
hardware design as the primary activities. The view
that “computer science equals programming” is espe-
cially strong in most of our current curricula: the intro-
ductory course is programming, the technology is in
our core courses, and the science is in our electives.

This view blocks progress in reorganizing the curricu-
lum and turns away the best students, who want a
greater challenge. It denies a coherent approach to

making experimental and theoretical computer science
integral and harmonious parts of a curriculum.

Those in the discipline know that computer science
encompasses far more than programming-for example,

hardware design, system architecture, designing operat-
ing system layers, structuring a database for a specific

application, and validating models are all part of the
discipline, but are not programming. The emphasis on
programming arises from our long-standing belief that

programming languages are excellent vehicles for gain-
ing access to the rest of the field, a belief that limits our
ability to speak about the discipline in terms that reveal
its full breadth and richness.

0,989 ACM 0001.0782/89/0100-0009 $1.50

The field has matured enough that it is now possible
to describe its intellectual substance in a new and com-
pelling way. This realization arose in discussions

among the heads of the Ph.D.-granting departments of
computer science and engineering in their meeting in
Snowbird, Utah, in July 1984. These and other similar

discussions prompted ACM and the IEEE Computer
Society to form task forces to create a new approach.

In the spring of 1985, ACM President Adele Goldberg
and ACM Education Board Chairman Robert Aiken ap-
pointed this task force on the core of computer science
with the enthusiastic cooperation of the IEEE Computer
Society. At the same time, the Computer Society
formed a task force on computing laboratories with the
enthusiastic cooperation of the ACM.

We hope that the work of the core task force, embod-
ied in this report, will produce benefits beyond the
original charter. By identifying a common core of sub-

ject matter, we hope to streamline the processes of de-
veloping curricula and model programs in the two soci-
eties. The report can be the basis for future discussions
of computer science and engineering as a profession,
stimulate improvements in secondary school courses in
computing, and can lead to a greater widespread appre-
ciation of computing as a discipline.

Our goal has been to create a new way of thinking
about the field. Hoping to inspire general inquiry into

This article has been condensed from the Report of the ACM

Task Force on the Core of Computer Science. Copies of the

report in its entirety may be ordered, prepaid, from

ACM Order Department

P.O. Box 64145
Baltimore, MD 21264

Please specify order #201880. Prices are $7.00 for ACM

members, and $12.00 for nonmembers.

Janua y 1989 Volume 32 Number I Communications of the ACM 9

Report

the nature of our discipline, we sought a framework,
not a prescription; a guideline, not an instruction. We
invite you to adopt this framework and adapt it to your
own situation.

We are pleased to present a new intellectual frame-
work for our discipline and a new basis for our
curricula.

CHARTER OF THE TASK FORCE
The task force was given three general charges:

1. Present a description of computer science that em-
phasizes fundamental questions and significant ac-
complishments. The definition should recognize that
the field is constantly changing and that what is said
is merely a snapshot of an ongoing process of growth.

2. Propose a teaching paradigm for computer science
that conforms to traditional scientific standards,
emphasizes the development of competence in the
field, and harmoniously integrates theory, experi-
mentation, and design.

3. Give a detailed example of an introductory course
sequence in computer science based on the curricu-
lum model and the disciplinary description.

We immediately extended our task to encompass both
computer science and computer engineering, because
we concluded that no fundamental difference exists be-
tween the two fields in the core material. The differ-
ences are manifested in the way the two disciplines
elaborate the core: computer science focuses on analy-
sis and abstraction; computer engineering on abstrac-
tion and design. The phrase discipline of computing is
used here to embrace all of computer science and
engineering.

Two important issues are outside the charter of this
task force. First, the curriculum recommendations in
this report deal only with the introductory course se-
quence. It does not address the important, larger ques-
tion of the design of the entire core curriculum, and
indeed the suggested introductory course would be
meaningless without a new design for the rest of the
core. Second, our specification of an introductory
course is intended to be an example of an approach to
introduce students to the whole discipline in a rigorous
and challenging way, an “existence proof” that our def-
inition of computing can be put to work. We leave it to
individual departments to apply the framework to de-
velop their own introductory courses that meet local
needs.

PARADIGMS FOR THE DISCIPLINE
The three major paradigms, or cultural styles, by which
we approach our work provide a context for our defini-
tion of the discipline of computing. The first paradigm,
theory, is rooted in mathematics and consists of four
steps followed in the development of a coherent, valid
theory:

(1) characterize objects of study (definition);
(2) hypothesize possible relationships among them

(theorem);

(3) determine whether the relationships are true
(proof);

(4) interpret results.

A mathematician expects to iterate these steps (e.g.,
when errors or inconsistencies are discovered.

The second paradigm, abstraction (modeling), is rooted
in the experimental scientific method and consists of
four stages that are followed in the investigation of a
phenomenon:

(1) form a hypothesis;
(2) construct a model and make a prediction;
(3) design an experiment and collect data;
(4) analyze results.

A scientist expects to iterate these steps (e.g., when a
model’s predictions disagree with experimental evi-
dence). Even though “modeling” and “experimentation”
might be appropriate substitutes, we have chosen the
word “abstraction” for this paradigm because this usage
is common in the discipline.

The third paradigm, design, is rooted in engineering
and consists of four steps followed in the construction
of a system (or device) to solve a given problem:

(1) state requirements;
(2) state specifications;
(3) design and implement the system;
(4) test the system.

An engineer expects to iterate these steps (e.g., when
tests reveal that the latest version of the system does
not satisfactorily meet the requirements).

Theory is the bedrock of the mathematical sciences:
applied mathematicians share the notion that science
advances only on a foundation of sound mathematics.
Abstraction (modeling) is the bedrock of the natural
sciences: scientists share the notion that scientific prog-
ress is achieved primarily by formulating hypotheses
and systematically following the modeling process to
verify and validate them. Likewise, design is the bed-
rock of engineering: engineers share the notion that
progress is achieved primarily by posing problems and
systematically following the design process to construct
systems that solve them. Many debates about the rela-
tive merits of mathematics, science, and engineering
are implicitly based on an assumption that one of the
three processes (theory, abstraction, or design) is the
most fundamental.

Closer examination, however, reveals that in com-
puting the three processes are so intricately intertwined
that it is irrational to say that any one is fundamental.
Instances of theory appear at every stage of abstraction
and design, instances of modeling at every s,tage of the-
ory and design, and instances of design at every stage of
theory and abstraction.

Despite their inseparability, the three paradigms are
distinct from one another because they represent sepa-
rate areas of competence. Theory is concerned with the
ability to describe and prove relationships among ob-
jects. Abstraction is concerned with the ability to use
those relationships to make predictions that can be

10 Communications of the ACM January 1989 Volume 32 Number 1

Report

compared with the world. Design is concerned with the
ability to implement specific instances of those relation-
ships and use them to perform useful actions. Applied
mathematicians, computational scientists, and design
engineers generally do not have interchangeable skills.

Moreover, in computing we tend to study computa-
tional aids that support people engaged in information-

transforming processes. On the design side, for exam-

ple, sophisticated VLSI design and simulation systems
enable the efficient and correct design of microcir-
cuitry, and programming environments enable the

efficient design of software. On the modeling side, su-
percomputers evaluate mathematical models and make

predictions about the world, and networks help dissem-
inate findings from scientific experiments. On the the-

ory side, computers help prove theorems, check the
consistency of specifications, check for counterexam-
ples, and demonstrate test cases.

Computing sits at the crossroads among the central
processes of applied mathematics, science, and engi-
neering. The three processes are of equal-and funda-
mental-importance in the discipline, which is a
unique blend of interaction among theory, abstraction,
and design. The binding forces are a common interest
in experimentation and design as information trans-
formers, a common interest in computational support of
the stages of those processes, and a common interest in
efficiency.

THE ROLE OF PROGRAMMING
Many activities in computing are not programming-for
example, hardware design, system architecture, operat-

ing system structure, designing a database application,
and validating models-therefore the notion that “com-

puter science equals programming” is misleading. What
is the role of programming in the discipline? In the
curriculum?

Clearly programming is part of the standard practices
of the discipline and every computing major should
achieve competence in it. This does not, however, im-
ply that the curriculum should be based on program-

ming or that the introductory courses should be pro-
gramming courses.

It is also clear that access to the distinctions of any
domain is given through language, and that most of the
distinctions of computing are embodied in program-
ming notations. Programming languages are useful tools
for gaining access to the distinctions of the discipline.
We recommend, therefore, that programming be a part
of the competence sought by the core curriculum, and
that programming languages be treated as useful vehi-
cles for gaining access to important distinctions of

computing.

A DESCRIPTION OF COMPUTING

Our description of computing as a discipline consists
of four parts: (1) requirements; (2) short definition;
(3) division into subareas; and (4) elaboration of suba-
reas. Our presentation consists of four passes, each

going to a greater level of detail.
What we say here is merely a snapshot of a changing

and dynamic field. We intend this to be a “living defini-

tion,” that can be revised from time to time to reflect
maturity and change in the field. We expect revisions

to occur most frequently in the details of the subareas,
occasionally in the list of subareas, and rarely in the
short definition.

Requirements
There are many possible ways to formulate a definition.
We set five requirements for ours:

1. It should be understandable by people outside the
field.

2. It should be a rallying point for people inside the
field.

3. It should be concrete and specific,

4. It should elucidate the historical roots of the disci-
pline in mathematics, logic, and engineering.

5. It should set forth the fundamental questions and
significant accomplishments in each area of the
discipline.

In the process of formulating a description, we consid-
ered several other previous definitions and concluded
that a description meeting these requirements must
have several levels of complexity. The other definitions
are briefly summarized here.

In 1967, Newell, Perlis, and Simon [5] argued that

computer science is the study of computers and the
major phenomena that surround them, and that all the
common objections to this definition could just as well
be used to demonstrate that other sciences are not sci-
ence. Despite their eloquence, too many people view
this as a circular definition that seems flippant to out-
siders. It is, however, a good starting point because
the definition we present later can be viewed as an
enumeration of the major phenomena surrounding
computers.

A slightly more elaborate version of this idea was
recently used by the Computing Sciences Accreditation
Board (CSAB), which said, “Computer science is the
body of knowledge concerned with computers and
computation. It has theoretical, experimental, and de-

sign components and includes (1) theories for under-
standing computing devices, programs, and systems;
(2) experimentation for the development and testing of
concepts; (3) design methodology, algorithms, and tools
for practical realization; and (4) methods of analysis for
verifying that these realizations meet requirements.”

A third definition is, “Computer science is the study
of knowledge representations and their implementa-
tions.” This definition suffers from excessive abstrac-
tion and few people would agree on the meaning of
knowledge representation. A related example that suf-
fers the same fate is, “Computer science is the study of

abstraction and the mastering of complexity,” a state-
ment that also applies to physics, mathematics, or
philosophy.

A final observation comes from Abelson and Suss-
man, who say, “The computer revolution is a revolu-
tion in the way we think and in the way we express

what we think. The essence of this change is the emer-

[anua y 1989 Volume 32 Number 1 Communications of the ACM 11

Report

gence of what might best be called procedural espiste-
mology-the study of the structure of knowledge from
an imperative point of view, as opposed to the more
decla:rative point of view taken by classical mathemati-

cal subjects. Mathematics provides a framework for
dealing precisely with notions of ‘what is.’ Computation
provides a framework for dealing precisely with notions

of ‘how to’ [I].”

Short Definition
The d.iscipline of computing is the systematic study of

algorithmic processes that describe and transform infor-
mation: their theory, analysis, design, efficiency, imple-
mentation, and application. The fundamental question

underlying all of computing is, “What can be (effi-
ciently) automated?”

Division into Subareas
We grappled at some length with the question of divid-
ing the discipline into subareas. We began with a pref-

erence for a small number of subareas, such as model
versu.s implementation, or algorithm versus machine.

However, the various candidates we devised were too
abstract, the boundaries between divisions were too
fuzzy, and most people would not have identified com-
fortably with them.

Then we realized that the fundamentals of the disci-
pline are contained in three basic processes-theory,
abstraction, and design-that are used by the discipli-
nary subareas to accomplish their goals. Thus, a de-
scription of the discipline’s subareas and their relation

to these three basic processes would be useful. To qual-
ify as a subarea, a segment of the discipline must satisfy
four criteria:

(I) underlying unity of subject matter;

(2) substantial theoretical component;
(3) significant abstractions;
(4) important design and implementation issues.

Moreover, we felt that each subarea should be identi-
fied with a research community, or set of related com-

munities, that sustains its own literature.
Theory includes the processes for developing

the underlying mathematics of the subarea. These

processes are supported by theory from other areas. For
example, the subarea of algorithms and data structures
contains complexity theory and is supported by graph
theory. Abstraction deals with modeling potential im-
plementations. These models suppress detail while re-

taining essential features; they are amenable to analysis
and provide means for calculating predictions of the
modeled system’s behavior. Design deals with the proc-
ess of specifying a problem, transforming the problem
statement into a design specification, and repeatedly
inventing and investigating alternative solutions until a
reliable, maintainable, documented, and tested design

that meets cost criteria is achieved.
We discerned nine subareas that cover the field:

1. Algorithms and data structures
2. Programming languages

3. Architecture

4. Numerical and symbolic computation
5. Operating systems
6. Software methodology and engineering

7. Database and information retrieval systems
8. Artificial intelligence and robotics

9. Human-computer communication

Elaboration of Subareas
To present the content of the subareas, we found it

useful to think of a 9 x 3 matrix, as shown in Figure 1.

Each row is associated with a subarea, and theory, ab-

straction, and design each define a column.
Each square of the matrix will be filled in with spe-

cific statements about that subarea component; these

statements will describe issues of concern and signifi-
cant accomplishments.

Certain affinity groups in which there is scientific

literature are not shown as subareas because they are
basic concerns throughout the discipline. For example,
parallelism surfaces in all subareas (there are parallel

algorithms, parallel languages, parallel architectures,
etc.) and in theory, abstraction, and design. !Similar con-
clusions hold for security, reliability, and performance

evaluation.
Computer scientists will tend to associate with the

first two columns of the matrix, and computer engi-
neers with the last two. The full description of comput-

ing, as specified here, is given in the appendix.

CURRICULUM MODEL

Competence in the Discipline
The goal of education is to develop compete:nce in a
domain. Competence, the capability for effective action

1 Algorithms and data

structures

Theory Abstraction Design

2 Programming languages

3 Architecture

4 Numerical and symbolic

computation

5 Operating systems

6 Software methodology and

engineering

7 Databases and information

retrieval

8 Artificial intelligence and

robotics

9 Human-computer

communication

FIGURE 1. Definition Matrix for the Computing Discipline

12 Communications of the ACM]anuary 1989 Volume .32 Number 2

Report

is an assessment of individual performance against the
standard practices of the field. The criteria for assess-
ment are grounded in the history of the field. The edu-
cational process that leads to competence has five steps:
(1) motivate the domain; (2) demonstrate what can be
accomplished in the domain; (3) expose the distinctions
of the domain; (4) ground the distinctions in history;
and (5) practice the distinctions [4].

This model has interesting implications for curricu-
lum design. The first question it leads to is, In what
areas of computing must majors be competent? There
are two broad areas of competence:

1. Discipline-Oriented Thinking: The ability to invent
new distinctions in the field, leading to new modes
of action and new tools that make those distinctions
available for others to use.

2. Tool Use: The ability to use the tools of the field for
effective action in other domains.

We suggest that discipline-oriented thinking is the pri-
mary goal of a curriculum for computing majors, and
that majors must be familiar enough with the tools to
work effectively with people in other disciplines to help
design modes of effective action in those disciplines.

The inquiry into competence reveals a number of
areas where current core curricula in computing is
inadequate. For example, the historical context of the
computing field is often deemphasized, leaving many
graduates ignorant of computing history and destined to
repeat its mistakes. Many computing graduates wind up
in business data processing, a domain in which most
computing curricula do not seek to develop compe-
tence; whether computing departments or business de-
partments should develop that competence is an old
controversy. Discipline-oriented thinking must be based
on solid mathematical foundations, yet theory is not an
integral part of most computing curricula. The standard
practices of the computing field include setting up and
conducting experiments, contributing to team projects,
and interacting with other disciplines to support their
interests in effective use of computing, but most curric-
ula neglect laboratory exercises, team projects, or inter-
disciplinary studies.

The question of what results should be achieved by
computing curricula has not been explored thoroughly
in past discussions, and we will not attempt a thorough
analysis here. We do strongly recommend that this
question be among the first considered in the design of
new core curricula for computing.

Lifelong Learning
The curriculum should be designed to develop an ap-
preciation for learning which graduates will carry with
them throughout their careers. Many courses are de-
signed with a paradigm that presents “answers” in a
lecture format, rather than focusing on the process of
questioning that underlies all learning. We recommend
that the follow-on committee consider other teaching
paradigms which involve processes of inquiry, an ori-
entation to using the computing literature, and the

development of a commitment to a lifelong process of
learning.

INTRODUCTORY SEQUENCE
In this curriculum model, the motivation and demon-
stration of the domain must precede instruction and
practice in the domain. The purpose of the introductory
course sequence is precisely this. The principal areas of
computing-in which majors must develop compe-
tence-must be presented to students with sufficient
depth and rigor that they can appreciate the power of
the areas and the benefits from achieving competence
in them. The remainder of the curriculum must be
carefully designed to systematically explore those
areas, exposing new concepts and distinctions, and
giving students practice in them.

We therefore recommend that the introductory
course consist of regular lectures and a closely coordi-
nated weekly laboratory. The lectures should empha-
size fundamentals; the laboratories technology and
know-how.

This model is traditional in the physical sciences and
engineering: lectures emphasize enduring principles
and concepts while laboratories emphasize the tran-
sient material and skills relating to the current technol-
ogy. For example, lectures would discuss the design
and analysis of algorithms, or the organization of net-
work protocols in functional layers. In the correspond-
ing laboratory sessions, students would write programs
for algorithms analyzed in lecture and measure their
running times, or instal and test network interfaces and
measure their packet throughputs.

Within this recommendation, the first courses in
computer science would not only introduce program-
ming, algorithms, and data structures, but introduce
material from all the other subdisciplines as well.
Mathematics and other theory would be well integrated
into the lectures at appropriate points.

We recommend that the introductory course contain
a rigorous, challenging survey of the whole discipline.
The physics model, exemplified by the Feynman Lec-
tures in Physics, is a paradigm for the introductory
course we envisage.

We emphasize that simply redesigning the introduc-
tory course sequence following this recommendation
without redesigning the entire undergraduate curricu-
lum would be a serious mistake. The experience of
physics departments contains many lessons for comput-
ing departments in this regard.

Prerequisites
We assume that computing majors have a modest back-
ground in programming in some language and some
experience with computer-based tools such as word
processors, spreadsheets, and databases. Given the
widening use of computers in high schools and at
home, it might seem that universities could assume
that most incoming students have such a background
and provide a “remedial” course in programming for
the others. We have found, however, that the assump-
tion of adequate high school preparation in program-

]anuary 1989 Volume 32 Number 1 Communications of the ACM 13

Report

ming is quite controversial and there is evidence that
adequate preparation is rare. We therefore recommend

that c:omputing departments offer an introduction to
programming and computer tools that would be a pre-
requisite (or corequisite) for the introductory courses.

We further recommend that departments provide an
advanced placement procedure so that students with

adequate high school preparation can bypass this
course.

Formal prerequisites and corequisites in mathematics
are more difficult to state and will depend on local

circumstances. However, accrediting boards in comput-

ing require considerable mathematics, including dis-
crete mathematics, differential and integral calculus,

and probability and statistics. These requirements are
often exceeded in the better undergraduate programs.
In our description of a beginning computing curricu-

lum, we have spelled out in some detail what mathe-
matics is applicable in each of the nine identified areas
of computing. Where possible we have displayed the
required mathematical background for each of the
teaching modules we describe. This will allow individ-
ual departments to synchronize their own mathemati-
cal requirements and courses with the material in the
modules. In some cases it may be appropriate to intro-
duce appropriate underlying mathematical topics as
needed for the development of particular topics in com-

puting. In general, we recommend that students see
applications of relevant mathematics as early as possi-
ble in their computing studies.

Modular Organization

The introductory sequence should bring out the under-
lying unity of the field and should flow from topic to
topic in a pedagogically natural way. It would therefore
be inadequate to organize the course as a sequence of
nine sections, one for each of the subareas; such a map-
ping would appear to be a hodge-podge, with difficult
transitions between sections. An ordering of topics that

meet these requirements is:

Fundamental algorithm concepts
Computer organization (“von Neumann”)
Mathematical programming

Data structures and abstraction
Limits of computability
Operating systems and security

Distributed computing and networks
Models in artificial intelligence
File and database systems
Parallel computation
Human interface

We have grouped the topics into 11 modules. Each
module includes challenging material representative of
the subject matter without becoming a superficial sur-
vey of every aspect or topic. Each module draws mate-
rial from several squares of the definition matrix as
appropriate. As a result, many modules will not corre-
spond one-to-one with rows of the definition matrix.
For example, the first module in our example course is

entitled Fundamental Algorithm Concepts. It covers the
role of formalism and theory, methods in programming,

programming concepts, efficiency, and specific algo-

rithms, draws information from the first, second,
fourth, and sixth rows of the definition matrix and

deals only with sequential algorithms. Later modules,
on Distributed Computing and Networks, and on Paral-
lel Computation, extend the material in the first mod-

ule and draw new material from the third and fifth
rows of the definition matrix.

As a general approach, each module contains lectures

that cover the required theory and most abstractions.
Theory is generally not introduced until it is: needed.
Each module is closely coupled with laboratory ses-

sions, and the nature of the laboratory assignments is
included with the module specifications. Our specifica-
tion is drawn up for a three-semester course sequence
containing 42 lectures and 35 scheduled laboratory ses-
sions per semester. Our specification is not included
here, but is in the full report.

We reemphasize that this specification is intended
only to be an example of a mapping from the discipli-
nary description to an introductory course sequence,
not a prescription for all introductory courses. Other
approaches are exemplified by existing introductory

curricula at selected colleges and universities.

LABORATORIES
We have described a curriculum that separates princi-
ples from technology while maintaining coh.erence be-
tween the two. We have recommended that lectures

deal with principles and laboratories with technology,
with the two being closely coordinated.

The laboratories serve three purposes:

Laboratories should demonstrate how principles cov-
ered in the lectures apply to the design, implementa-
tion, and testing of practical software and hardware.
They should provide concrete experiences that help
students understand abstract concepts. These experi-
ences are essential to sharpen students’ intuition
about practical computing, and to empha.size the in-
tellectual effort in building correct, efficient com-
puter programs and systems.

Laboratories should emphasize processes leading to
good computing know-how. They should emphasize
programming, not programs; laboratory techniques;

understanding of hardware capabilities; correct use
of software tools; correct use of documentation; and
proper documentation of experiments and projects.
Many software tools will be required on host com-
puters to assist in constructing, controlling, and
monitoring experiments on attached subsystems; the
laboratory should teach proper use of these tools:
Laboratories should introduce experimental meth-
ods, including use and design of experiments, soft-
ware and hardware ‘monitors, statistical #analysis of
results, and proper presentation of findings. Students

should learn to distinguish careful experiments from
casual observations.

14 Communications of the ACM January 1989 Volume 32 Number 1

To meet these goals, laboratory work should be care-
fully planned and supervised. Students should attend
labs at specified times, nominally three hours per week.
Lab assignments should be planned, and written de-
scriptions of the purposes and methodology of each
experiment should be given to the students. The depth

of description should be commensurate with students’
prior lab experience: more detail is required in early
laboratories. Lab assignments should be carried out un-
der the guidance of a lab instructor who ensures that

each student follows correct methodology.

2. Hardware and software must be fully maintained,

Malfunctioning equipment will frustrate students
and interfere with learning. Appropriate staff must
be available to maintain the hardware and software
used in the lab. The situation is analogous to labora-
tories in other disciplines.

The labs associated with the introductory courses

will require close supervision and should contain well-
planned activities. This implies that more staff will be
required per student for these laboratories than for
more advanced ones.

The lab problems should be coordinated with mate-
rial in the lecture parts of the course. Individual lab

problems in general will deal with combinations of

hardware and software. Some lab assignments empha-
size technologies and tools that ease the software devel-

opment process. Others emphasize analyzing and
measuring existing software or comparing known algo-
rithms. Others emphasize program development based
on principles learned in class.

3. Full functionality is important. (This includes ade-

quate response time on shared systems.) Restricting
students to small subsets of a language or system
may be useful in initial contacts, but the restrictions
should be lifted as the students progress.

4. Good programming tools are needed. Compilers get a
lot of attention, but other programming tools are
used as often. In UNIX systems, for example, stu-
dents should use editors like emacs and learn to use
tools like the shell, grep, awk, and make. Storage

and processing facilities must be sufficient to make
such tools available for use in the lab.

5. Adequate support for hardware and instrumentation

must be provided. Some projects may require stu-
dents to connect hardware units together, take
measurements of signals, monitor data paths, and
the like. A sufficient supply of small parts, connec-
tors, cables, monitoring devices, and test instruments
must be available.

Laboratory assignments should be self-contained in
the sense that an average student should be able to
complete the work in the time allocated. Laboratory

assignments should encourage students to discover and
learn things for themselves. Students should be re-
quired to maintain a proper lab book documenting ex-
periments, observations, and data. Students should also
be required to maintain their software and to build
libraries that can be used in later lab projects.

We expect that, in labs as in lectures, students will
be assigned homework that will require using com-
puters outside the supervised realm of a laboratory. In
other words, organized laboratory sessions will supple-
ment, not replace, the usual programming and other

written assignments.

The IEEE Computer Society Task Force on Goal Ori-

ented Laboratory Development has studied this subject
in depth. Their report includes a discussion of the re-
sources (i.e., staff and facilities) needed for laboratories
at all levels of the curriculum.

ACCREDITATION
This work has been conducted with the intent that
example courses be consistent with current guidelines

of the Computing Sciences Accreditation Board (CSAB).
The details of the mapping of this content to CSAB
guidelines does not fall within the scope of this com-
mittee.

In a substantial number of labs dealing with program
development, the assignment should be to modify or

complete an existing program supplied by the instruc-

tor. This forces the student to read well-written pro-
grams, provides experience with integration of soft-

ware, and results in a larger and more satisfying
program for the student.

CONCLUSION

Computing technology constantly changes. It is diffi-
cult, therefore, to give a detailed specification of the

hardware systems, software systems, instruments, and
tools that ought to be in a laboratory. The choice of
equipment and staffing in laboratories should be guided

by the following principles:

This report has been designed to provoke new thinking
about computing as a discipline by exhibiting the disci-
pline’s content in a way that emphasizes the funda-

mental concepts, principles, and distinctions. It has also
suggested a redesign of the core curriculum according
to an education model used in other disciplines: dem-

onstrating the existence of useful distinctions followed
by practice that develops competence. The method is
illustrated by a rigorous introductory course that puts
the concepts and principles into the lectures and tech-
nology into closely coordinated laboratories.

1. Laboratories should be equipped with up-to-date
systems and languages. Programming languages have
a significant effect on shaping a student’s view of
computing. Laboratories should deploy systems that
encourage good habits in students; it is especially
important to avoid outdated systems (hardware and
software) in core courses.

A department cannot simply replace its current intro-
ductory sequence with the new one; it must redesign
the curriculum so that the new introduction is part of a
coherent whole. For this reason, we recommend that
the ACM establish a follow-on committee to complete
the redesign of the core curriculum.

Many practical problems must be dealt with before a
new curriculum model can become part of the field.

January 1989 Volume 32 Number 1 Communications of the ACM

Report

15

Report

For example,

1. Faculties will need to redesign their curricula based

on a new conceotual formulation.

4. Teaching assistants and faculty are not familiar with
the new view.

5. Good high school preparation in computing is rare.

2. No textbooks or educational materials based on the We recognize that many of our recommendations are

fra.mework proposed here are currently available. challenging and will require substantial work to imple-

3. Most departments have inadequate laboratories, ment. We are convinced that the improvements in

facilities, and materials for the educational task computing education from the proposals here are worth

suggested here. the effort, and invite you to join us in achieving them.

APPENDIX

A DEFINITION OF COMPUTING AS A DISCIPLINE

Computer science and engineering is the systematic
study of algorithmic processes-their theory, analysis,
design, efficiency, implementation, and application-
that describe and transform information. The funda-
mental question underlying all of computing is, What
can be (efficiently) automated [Z, 31. This discipline was

born in the early 1940s with the joining together of
algorithm theory, mathematical logic, and the inven-
tion of the stored-program electronic computer.

The roots of computing extend deeply into mathe-
matics and engineering. Mathematics imparts analysis

to the field; engineering imparts design. The discipline
embraces its own theory, experimental method, and
engineering, in contrast with most physical sciences,
which are separate from the engineering disciplines
that apply their findings (e.g., chemistry and chemical

engineering principles). The science and engineering
are inseparable because of the fundamental interplay
between the scientific and engineering paradigms
within the discipline.

For several thousand years, calculation has been a

principal concern of mathematics. Many models of
physical phenomena have been used to derive equa-
tions .whose solutions yield predictions of those phe-
nomena-for example, calculations of orbital trajecto-
ries, weather forecasts, and fluid flows. Many general
methods for solving such equations have been de-
vised-for example, algorithms for systems of linear

equations, differential equations, and integrating func-
tions. For almost the same period, calculations that aid
in the design of mechanical systems have been a princi-

pal concern of engineering. Examples include algo-
rithms for evaluating stresses in static objects, calculat-

ing momenta of moving objects, and measuring
distances much larger or smaller than our immediate
perception.

One product of the long interaction between engi-
neering and mathematics has been mechanical aids for
calculating. Some surveyors’ and navigators’ instru-

ments date back a thousand years. Pascal and Leibniz
built arithmetic calculators in the middle 1600s. In the
183Os, Babbage conceived of an “analytical engine” that
could mechanically and without error evaluate loga-
rithms, trigonometric functions, and other general
arithmetic functions. His machine, never completed,
served as an inspiration for later work. In the 192Os,

Bush constructed an electronic analog computer for
solving general systems of differential equations. In the

same period, electromechanical calculating machines
capable of addition, subtraction, multiplicati.on, divi-
sion, and square root computation became available.
The electronic flip-flop provided a natural bridge from

these machines to digital versions with no moving
parts.

Logic is a branch of mathematics concerned with cri-
teria of validity of inference and formal principles of
reasoning. Since the days of Euclid, it has been a tool

for rigorous mathematical and scientific argument. In
the 19th century a search began for a universal system
of logic that would be free of the incompletenesses ob-
served in known deductive systems. In a complete sys-
tem, it would be possible to determine mechanically

whether any given statement is either true or false. In
1931, Godel published his “incompleteness theorem,”
showing that there is no such system. In the late 193Os,
Turing explored the idea of a universal computer that

could simulate any step-by-step procedure of any other
computing machine. His findings were similar to
Godel’s: some well-defined problems cannot be solved
by any mechanical procedure. Logic is important not
only because of its deep insight into the limits of auto-
matic calculation, but also because of its ins:ight that

strings of symbols, perhaps encoded as numbers, can be
interpreted both as data and as programs.

This insight is the key idea that distinguishes the
stored program computer from calculating machines.

The steps of the algorithm are encoded in a machine
representation and stored in the memory for later de-
coding and execution by the processor. The machine

code can be derived mechanically from a higher-level
symbolic form, the programming language.

It is the explicit and intricate intertwining of the an-

cient threads of calculation and logical symb’ol manipu-
lation, together with the modern threads of electronics

and electronic representation of information, that gave
birth to the discipline of computing.

We identified nine subareas of computing:

1. Algorithms and data structures

2. Programming languages
3. Architecture
4. Numerical and symbolic computation

16 Communications of the ACM Ianuary 1989 Volume 32 Number 1

Report

5. Operating systems
6. Software methodology and engineering
7. Databases and information retrieval
8. Artificial intelligence and robotics
9. Human-Computer communication

Each has an underlying unity of subject matter, a sub-
stantial theoretical component, significant abstractions,
and substantial design and implementation issues. The-
ory deals with the underlying mathematical develop-
ment of the subarea and includes supporting theory
such as graph theory, combinatorics, or formal lan-
guages. Abstraction (or modeling) deals with models of
potential implementations; the models suppress detail,
while retaining essential features, and provide means
for predicting future behavior. Design deals with the
process of specifying a problem, deriving requirements
and specifications, iterating and testing prototypes, and
implementing a system. Design includes the experi-
mental method, which in computing comes in several
styles: measuring programs and systems, validating hy-
potheses, and prototyping to extend abstractions to
practice.

Although software methodology is essentially con-
cerned with design, it also contains substantial ele-
ments of theory and abstraction. For this reason, we
have identified it as a subarea. On the other hand,
parallel and distributed computation are issues that
pervade all the subareas and all their components (the-
ory, abstraction, and design); they have been identified
neither as subareas nor as subarea components.

The subsequent numbered sections provide the de-
tails of each subarea in three parts-theory, abstrac-
tion, and design. The boundaries between theory and
abstraction, and between abstraction and design, are
necessarily fuzzy; it is a matter of personal taste where
some of the items go.

Our intention is to provide a guide to the discipline
by showing its main features, not a detailed map. It is
important to remember that this guide to the discipline
is not a plan for a course or a curriculum; it is merely a
framework in which a curriculum can be designed. It is
also important to remember that this guide to the disci-
pline is a snapshot of an organism undergoing constant
change. It will require reevaluation and revision at reg-
ular intervals.

1. ALGORITHMS AND DATA STRUCTURES
This area deals with specific classes of problems and
their efficient solutions. Fundamental questions in-
clude: For given classes of problems, what are the best
algorithms? How much storage and time do they re-
quire? What is the tradeoff between space and time?
What is the best way to access the data? What is
the worst case of the best algorithms? How well do
algorithms behave on average? How general are algo-
rithms-i.e., what classes of problems can be dealt with
by similar methods?

1.1 Theory
Major elements of theory in the area of algorithms and
data structures are:

1.

2.

3.

4.

5.

6.

7.

8.

Computability theory, which defines what machines
can and cannot do.
Computational complexity theory, which tells how
to measure the time and space requirements of com-
putable functions and relates a problem’s size with
the best- or worst-case performance of algorithms
that solve that problem, and provides methods for
proving lower bounds on any possible solution to a
problem.
Time and space bounds for algorithms and classes of
algorithms.
Levels of intractability: for example, classes of prob-
lems solvable deterministically in polynomially
bounded time (P-problems); those solvable nondeter-
ministically in polynomially bounded time (NP-
problems); and those solvable efficiently by parallel
machines (NC-problems).
Parallel computation, lower bounds, and mappings
from dataflow requirements of algorithms into com-
munication paths of machines.
Probabilistic algorithms, which give results correct
with sufficiently high probabilities much more effi-
ciently (in time and space) than determinate algo-
rithms that guarantee their results. Monte Carlo
methods.
Cryptography.
The supporting areas of graph theory, recursive
functions, recurrence relations, combinatorics, cal-
culus, induction, predicate and temporal logic, se-
mantics, probability, and statistics.

1.2 Abstraction
Major elements of abstraction in the area of algorithms
and data structures are

1. Efficient, optimal algorithms for important classes of
problems and analyses for best, worst, and average
performance.
Classifications of the effects of control and data
structure on time and space requirements for var-
ious classes of problems.
Important classes of techniques such as divide-and-
conquer, Greedy algorithms, dynamic programming,
finite state machine interpreters, and stack machine
interpreters.
Parallel and distributed algorithms; methods of parti-
tioning problems into tasks that can be executed in
separate processors.

1.3 Design
Major elements of design and experimentation in the
area of algorithms and data structures are:

1. Selection, implementation, and testing of algorithms
for important classes of problems such as searching,

January 1989 Volume 32 Number 1 Communications of the ACM 17

Report

sorting, random-number generation, and textual
pattern matching.

2. Implementation and testing of general methods
applicable across many classes of problems, such as
hashing, graphs, and trees.

3. Implementation and testing of distributed algorithms
such as network protocols, distributed data updates,
semaphores, deadlock detectors, and synchroniza-
tion methods.

4. Implementation and testing of storage managers such
as garbage collection, buddy system, lists, tables, and

p@w
6. Extensive experimental testing of heuristic algo-

rithms for combinatorial problems.
6. Cryptographic protocols that permit secure authen-

tication and secret communication.

2. PROGRAMMING LANGUAGES
This area deals with notations for virtual machines that
execute algorithms, with notations for algorithms and
data, and with efficient translations from high-level
languages into machine codes. Fundamental questions
include: What are possible organizations of the virtual
mach:ine presented by the language (data types, opera-
tions, control structures, mechanisms for introducing
new types and operations)? How are these abstractions
implemented on computers? What notation (syntax)
can be used effectively and efficiently to specify what
the computer should do?

2.1 Theory
Major elements of theory in the area of programming
languages are:

1. Formal languages and automata, including theories
of parsing and language translation.

2, Turing machines (base for procedural languages),
Post Systems (base for string processing languages),
X-calculus (base for functional languages).

3. Formal semantics: methods for defining mathemati-
cal models of computers and the relationships
among the models, language syntax, and implemen-
tation. Primary methods include denotational, alge-
braic, operational, and axiomatic semantics.

4. As supporting areas: predicate logic, temporal logic,
modern algebra and mathematical induction.

2.2 Abstraction

Major elements of abstraction in the area of program-
ming languages include:

1. Classification of languages based on their syntactic
and dynamic semantic models; e.g., static typing,
dynamic typing, functional, procedural, object-
oriented, logic, specification, message passing, and
dataflow.

2. Classification of languages according to intended
application area; e.g., business data processing, sim-
ulation, list processing, and graphics.

3. Classification of major syntactic and semantic
models for program structure; e.g., procedure hierar-
chies, functional composition, abstract data types,
and communicating parallel processes.

4. Abstract implementation models for each major type
of language.

5. Methods for parsing, compiling, interpretation, and
code optimization.

6. Methods for automatic generation of parsers, scan-
ners, compiler components, and compilers.

2.3 Design
Major elements of design and experimentation in the
area of programming languages are:

1.

2.

3.
4.

5.

6.

Specific languages that bring together a particular
abstract machine (semantics) and syntax to form a
coherent implementable whole. Examples: proce-
dural (COBOL, FORTRAN, ALGOL, Pascal, Ada, C),
functional (LISP), dataflow (SISAL, VAL), object-
oriented (Smalltalk, CLU), logic (Prolog), strings
(SNOBOL), and concurrency (CSP, Occam, Concur-
rent Pascal, Modula 2).
Specific implementation methods for partic:ular
classes of languages: run-time models, static and dy-
namic execution methods, typing checking, storage
and register allocation, compilers, cross compilers,
and interpreters, systems for finding parallelism in
programs.
Programming environments.
Parser and scanner generators (e.g., YACC, LEX),
compiler generators.
Programs for syntactic and semantic error checking,
profiling, debugging, and tracing.
Applications of programming-language methods to
document-processing functions such as c:reating
tables, graphs, chemical formulas, spreadsheets
equations, input and output, and data ha:ndling.
Other applications such as statistical processing.

3. ARCHITECTURE
This area deals with methods of organizing hardware
(and associated software) into efficient, relialble systems.
Fundamental questions include: What are good meth-
ods of implementing processors, memory, and commu-
nication in a machine? How do we design and control
large computational systems and convincingly demon-
strate that they work as intended despite errors and
failures? What types of architectures can efficiently
incorporate many processing elements that can work
concurrently on a computation? How do we measure
performance?

3.1 Theory
Major elements of theory in the area of architecture
are:

1. Boolean algebra.
2. Switching theory.

18 Communications of the ACh4 Januay 1989 Volume 32 Number 1

Report

3. Coding theory.
4. Finite state machine theory.
5. The supporting areas of statistics, probability,

queueing, reliability theory, discrete mathematics,
number theory, and arithmetic in different number
systems.

3.2 Abstraction
Major elements of abstraction in the area of architec-
ture are:

1,

2.

3.

4.

5.

6.

7.

8.

9.

Finite state machine and Boolean algebraic models
of circuits that relate function to behavior.
Other general methods of synthesizing systems from
basic components.
Models of circuits and finite state machines for com-
puting arithmetic functions over finite fields.
Models for data path and control structures.
Optimizing instruction sets for various models and
workloads.
Hardware reliability: redundancy, error detection,
recovery, and testing.
Space, time, and organizational tradeoffs in the
design of VLSI devices.
Organization of machines for various computational
models: sequential, dataflow, list processing, array
processing, vector processing, and message-passing.
Identification of design levels; e.g., configuration,
program, instruction set, register, and gate.

3.3 Design
Major elements of design and experimentation in the
area of architecture are:

1.

2.

3.

4.

5.

6.

7.

4.

Hardware units for fast computation; e.g., arithmetic
function units, cache.
The so-called von Neumann machine (the single-
instruction sequence stored program computer);
RISC and CISC implementations.
Efficient methods of storing and recording informa-
tion, and detecting and correcting errors.
Specific approaches to responding to errors: recov-
ery, diagnostics, reconfiguration, and backup proce-
dures.
Computer aided design (CAD) systems and logic sim-
ulations for the design of VLSI circuits. Production
programs for layout, fault diagnosis. Silicon compi-
lers.
Implementing machines in various computational
models; e.g., dataflow, tree, LISP, hypercube, vector,
and multiprocessor.
Supercomputers, such as the Cray and Cyber ma-
chines.

NUMERICAL AND SYMBOLIC COMPUTATION
This area deals with general methods of efficiently and 4. Symbolic manipulators, such as MACSYMA and RE-
accurately solving equations resulting from mathemati- DUCE, capable of powerful and nonobvious manipu-
cal models of systems. Fundamental questions include: lations, notably differentiations, integrations, and
How can we accurately approximate continuous or infi- reductions of expressions to minimal terms.

nite processes by finite discrete processes? How do we
cope with the errors arising from these approximations?
How rapidly can a given class of equations be solved for
a given level of accuracy? How can symbolic manipula-
tions on equations, such as integration, differentiation,
and reduction to minimal terms, be carried out? How
can the answers to these questions be incorporated into
efficient, reliable, high-quality mathematical software
packages?

4.1 Theory
Major elements of theory in the area of numerical and
symbolic computation are:

1. Number theory.
2. Linear algebra.
3. Numerical analysis.
4. Nonlinear dynamics.
5. The supporting areas of calculus, real analysis, com-

plex analysis, and algebra.

4.2 Abstraction
Major elements of abstraction in the area of numerical
and symbolic computation are:

Formulations of physical problems as models in con-
tinuous (and sometimes discrete) mathematics.
Discrete approximations to continuous problems. In
this context, backward error analysis, error propaga-
tion and stability in the solution of linear and non-
linear systems. Special methods in special cases,
such as Fast Fourier Transform and Poisson solvers.
The finite element model for a large class of prob-
lems specifiable by regular meshes and boundary
values. Associated iterative methods and conver-
gence theory: direct, implicit, multigrids, rates of
convergence. Parallel solution methods. Automatic
grid refinement during numerical integration.
Symbolic integration and differentiation.

4.3 Design
Major elements of design and experimentation in the
area of numerical and symbolic computation are:

1. High-level problem formulation systems such as
CHEM and WEB.

2. Specific libraries and packages for linear algebra,
ordinary differential equations, statistics, nonlinear
equations, and optimizations; e.g., LINPACK,
EISPACK, ELLPACK.

3. Methods of mapping finite element algorithms to
specific architectures-e.g., multigrids on hyper-
cubes.

January 1989 Volume 32 Number 1 Communications of the ACM 19

Report

5. OIPERATING SYSTEMS

This area deals with control mechanisms that allow
multiple resources to be efficiently coordinated in the
execution of programs. Fundamental questions include:
Whai. are the visible objects and permissible operations
at each level in the operation of a computer system?
For each class of resource (objects visible at some
level), what is a minimal set of operations that permit
their effective use? How can interfaces be organized so
that users deal only with abstract versions of resources
and not with physical details of hardware? What are
effective control strategies for job scheduling, memory
management, communications, access to software re-
sources, communication among concurrent tasks, relia-
bility, and security? What are the principles by which
systems can be extended in function by repeated appli-
cation of a small number of construction rules? How
should distributed computations be organized so that
many autonomous machines connected by a communi-
cation network can participate in a computation, with
the details of network protocols, host locations, band-
widths, and resource naming being mostly invisible?

5.1 Theory 7.

Major elements of theory in the area of operating sys-
tems are:

1.

2.

3.

4.
5.

Concurrency theory: synchronization, determinacy,
and deadlocks.
Scheduling theory, especially processor scheduling.
Program behavior and memory management theory,
inc:luding optimal policies for storage allocation.
Performance modeling and analysis.
The supporting areas of bin packing, probability,
queueing theory, queueing networks, communica-
tion and information theory, temporal logic, and
cryptography.

5.2 Abstraction
Major elements of abstraction in the area of operating
systems are:

1.

2.

3.

4.

5.

Abstraction principles that permit users to operate
on idealized versions of resources without concern
for physical details (e.g., process rather than proces-
sor, virtual memory rather than main-secondary
hierarchy, files rather than disks).
Binding of objects perceived at the user interface to
internal computational structures.
Models for important subproblems such as process
ma.nagement, memory management, job scheduling,
secondary storage management, and performance
analysis.
Models for distributed computation; e.g., clients and
servers, cooperating sequential processes, message-
passing, and remote procedure calls.
Models for secure computing; e.g., access controls,
authentication, and communication.

6. Networking, including layered protocols, naming,
remote resource usage, help services, and local net-
work protocols such as token-passing and shared
buses.

5.3 Design
Major elements of design and experimentation in the
area of operating systems are:

1.

2.

3.

4.

5.

6.

Prototypes of time sharing systems, automatic stor-
age allocators, multilevel schedulers, memory man-
agers, hierarchical file systems and other important
system components that have served as bases for
commercial systems.
Techniques for building operating system.s such as
UNIX, Multics, Mach, VMS, and MS-DOS.
Techniques for building libraries of utilities; e.g.,
editors, document formatters, compilers, linkers, and
device drivers.
Files and file systems.
Queueing network modeling and simulation pack-
ages to evaluate performance of real systems.
Network architectures such as ethernet, FDDI, token
ring nets, SNA, and DECNET.
Protocol techniques embodied in the Department of
Defense protocol suite (TCP/IP), virtual circuit pro-
tocols, internet, real time conferencing, and X.25.

6. SOFTWARE METHODOLOGY AND

ENGINEERING
This area deals with the design of programs and large
software systems that meet specifications and are safe,
secure, reliable, and dependable. Fundamental ques-
tions include: What are the principles behind the de-
velopment of programs and programming systems? How
does one prove that a program or system meets its spec-
ifications? How does one develop specifications that
do not omit important cases and can be anal.yzed for
safety? How do software systems evolve through dif-
ferent generations? How can software be designed for
understandability and modifiability?

6.1 Theory
Major elements of theory in the area of software meth-
odology and tools are:

1. Program verification and proof.
2. Temporal logic.
5. Reliability theory.
4. The supporting areas of predicate calculus, axio-

matic semantics, and cognitive psychology.

6.2 Abstraction
Major elements of abstraction in the area of software
methodology and tools are:

1. Specification methods, such as predicate trans-
formers, programming calculi, abstract data types,
and Floyd-Hoare axiomatic notations.

2. Methodologies such as stepwise refinement, modular

20 Communications of the ACM January 1989 Volume 32 Number 1

3.

4.

5.
6.

7.

8.

design, modules, separate compilation, information-
hiding, dataflow, and layers of abstraction.
Methods for automating program development; e.g.,
text editors, syntax-directed editors, and screen edi-
tors.
Methodologies for dependable computing; e.g., fault
tolerance, security, reliability, recovery, N-version
programming, multiple-way redundancy, and check-
pointing.
Software tools and programming environments.
Measurement and evaluation of programs and sys-
tems.
Matching problem domains through software sys-
tems to particular machine architectures.
Life cycle models of software projects.

6.3 Design
Major elements of design and experimentation in the
area of software methodology and tools are:

1.

2.

3.

4.

5.

Specification languages (e.g., PSL 2, IMA JO), config-
uration management systems (e.g., in Ada APSE),
and revision control systems (e.g., RCS, SCCS).
Syntax directed editors, line editors, screen editors,
and word processing systems.
Specific methodologies advocated and used in prac-
tice for software development; e.g., HDM and those
advocated by Dijkstra, Jackson, Mills, or Yourdon.
Procedures and practices for testing (e.g., walk-
through, hand simulation, checking of interfaces be-
tween modules, program path enumerations for test
sets, and event tracing), quality assurance, and proj-
ect management.
Software tools for program development and debug-
ging, profiling, text formatting, and database manip-
ulation.

6. Specification of criteria levels and validation proce-
dures for secure computing systems, e.g., Depart-
ment of Defense.

7.

8.

Design of user interfaces.
Methods for designing very large systems that are
reliable, fault tolerant, and dependable.

7. DATABASE AND INFORMATION RETRIEVAL

SYSTEMS
This area deals with the organization of large sets of
persistent, shared data for efficient query and update.
Fundamental questions include: What modeling con-
cepts should be used to represent data elements and
their relationships? How can basic operations such as
store, locate, match, and retrieve be combined into ef-
fective transactions? How can these transactions inter-
act effectively with the user? How can high-level quer-
ies be translated into high-performance programs?
What machine architectures lead to efficient retrieval
and update? How can data be protected against unau-
thorized access, disclosure, or destruction? How can
large databases be protected from inconsistencies due
to simultaneous update? How can protection and per-

Report

formance be achieved when the data are distributed
among many machines? How can text be indexed and
classified for efficient retrieval?

7.1 Theory
Major elements of theory in the area of databases and
information retrieval systems are:

1.

2.

3.

Relational algebra and relational calculus.
Dependency theory.
Concurrency theory, especially serializable transac-
tions, deadlocks, and synchronized updates of multi-
ple copies.

4. Statistical inference.
5. Sorting and searching.
6. Performance analysis
7. As supporting theory: cryptography.

7.2 Abstraction

Major elements of abstraction in the area of databases
and information retrieval systems are:

1.

2.

3.

4.

5.

6.

7.

Models for representing the logical structure of data
and relations among the data elements, including
the relational and entity-relationship models.
Representations of files for fast retrieval, such as
indexes, trees, inversions, and associative stores.
Methods for assuring integrity (consistency) of the
database under updates, including concurrent up-
dates of multiple copies.
Methods for preventing unauthorized disclosure or
alteration and for minimizing statistical inference.
Languages for posing queries over databases of dif-
ferent kinds (e.g., hypertext, text, spatial, pictures,
images, rule-sets). Similarly for information retrieval
systems.
Models, such as hypertext, which allow documents
to contain text at multiple levels and to include
video, graphics, and voice.
Human factors and interface issues.

7.3 Design
Major elements of design in the area of database and
information retrieval systems are:

1. Techniques for designing databases for relational,
hierarchical, network, and distributed implementa-
tions.

2. Techniques for designing database systems such as
INGRES, System R, dBase III, and DB-2.

3. Techniques for designing information retrieval sys-
tems such as LEXIS, Osiris, and Medline.

4. Design of secure database systems.
5. Hypertext systems such as NLS, NoteCards, Interme-

dia, and Xanadu.
6. Techniques to map large databases to magnetic disk

stores.
7. Techniques for mapping large, read-only databases

onto optical storage media-e.g., CD/ROM and
WORMS.

January 1989 Volume 32 Number 1 Communications of the ACM 21

Report

8. AIRTIFICIAL INTELLIGENCE AND ROBOTICS

This area deals with the modeling of animal and hu-
man (intelligent) behavior. Fundamental questions in-
clude: What are basic models of behavior and how do
we build machines that simulate them? To what extent
is intelligence described by rule evaluation, inference,
deduction, and pattern computation? What is the ulti-
mate performance of machines that simulate behavior
by these methods? How are sensory data encoded so
that similar patterns have similar codes? How are
motor codes associated with sensory codes? What are
architectures for learning systems, and how do those
systems represent their knowledge of the world?

8.1 Theory

Major elements of theory in the area of artificial intelli-
gence and robotics are:

1.

2.
3.
4.

5.

6.

Logic; e.g., monotonic, nonmonotonic, and fuzzy.
Conceptual dependency.
Cognition.
Syntactic and semantic models for natural language
understanding.
Kinematics and dynamics of robot motion and world
models used by robots.
The supporting areas of structural mechanics, graph
theory, formal grammars, linguistics, philosophy,
and psychology.

8.2 Abstraction
Major elements of abstraction in the area of artificial
intelligence and robotics are:

1.

2.

3.

4.

5.

6.

7.

Knowledge representation (e.g., rules, frames, logic)
and methods of processing them (e.g., deduction,
inference).
Models of natural language understanding and natu-
ral language representations, including phoneme
representations; machine translation.
Speech recognition and synthesis, translation of text
to speech.
Reasoning and learning models; e.g., uncertainty,
nonmonotonic logic, Bayesian inference, beliefs.
Heuristic search methods, branch and bound, con-
trol search.
Machine architectures that imitate biological sys-
tems, e.g., neural networks, connectionism, sparse
distributed memory.
Models of human memory, autonomous learning,
and other elements of robot systems.

8.3 Design
Major elements of design and experimentation in artifi-
cial intelligence and robotics include:

1. Techniques for designing software systems for logic
programming, theorem proving, and rule evaluation.

2. Techniques for expert systems in narrow domains
(e.g., Mycin, Xcon) and expert system shells that can
be programmed for new domains.

3. Implementations of logic programming (e.g,
PROLOG).

4. Natural language understanding systems (e.g., Mar-
gie, SHRDLU, and preference semantics).

5. Implementations of neural networks and sparse dis-
tributed memories.

6. Programs that play checkers, chess, and other games
of strategy.

7. Working speech synthesizers, recognizers.
8. Working robotic machines, static and mobile.

9. HUMAN-COMPUTER COMMUNICATION
This area deals with the efficient transfer of informa-
tion between humans and machines via various
human-like sensors and motors, and with information
structures that reflect human conceptualizations. Fun-
damental questions include: What are efficient methods
of representing objects and automatically creating pic-
tures for viewing? What are effective methods for re-
ceiving input or presenting output? How ca:n the risk of
misperception and subsequent human error be mini-
mized? How can graphics and other tools be used to
understand physical phenomena through information
stored in data sets?

9.1 Theory

Major elements of theory in human-computer commu-
nication are:

1. Geometry of two and higher dimensions including
analytic, projective, affine, and computational
geometries.

2. Color theory.
3. Cognitive psychology.
4. The supporting areas of Fourier analysis, linear alge-

bra, graph theory, automata, physics, and analysis.

9.2 Abstraction
Major elements of abstraction in the area of human-
computer communication are:

1.

2.
3.
4.

5.

Algorithms for displaying pictures including meth-
ods for smoothing, shading, hidden lines, ray tracing,
hidden surfaces, transparent surfaces, shadows,
lighting, edges, color maps, representations by
splines, rendering, texturing, antialiasing, coherence,
fractals, animation, representing pictures as hierar-
chies of objects.
Models for computer-aided design (CAD).
Computer representations of physical objects.
Image processing and enhancement methods.
Man-machine communication, including psycholog-
ical studies of modes of interaction that reduce hu-
man error and increase human productivity.

22 Comnamications of the ACM January 1989 Volume 32 Number 1

Report

9.3 Design 4.
Major elements of design and experimentation in the
area of human-computer communication are:

Implementation of graphics algorithms on various
graphics devices, including vector and raster dis-
plays and a range of hardcopy devices.
Design and implementation of experimental graphics
algorithms for a growing range of models and phe-
nomena.
Proper use of color graphics for displays; accurate
reproduction of colors on displays and hardcopy
devices.

5.

6.

7.

6.

Graphics standards (e.g., GKS, PHIGS, VDI), graphics
languages (e.g., PostScript), and special graphics
packages (e.g., MOGLI for chemistry).
Implementation of various user interface techniques
including direct manipulation on bitmapped devices
and screen techniques for character devices.
Implementation of various standard file interchange
formats for information transfer between differing
systems and machines.
Working CAD systems.
Working image enhancement systems (e.g., at JPL for
pictures received from space probes).

ACKNOWLEDGMENTS

Many people generously provided written comments in response to drafts of this report. Although it was not possible to

accommodate every comment in detail, we did take every comment into account in revising this report. We are grateful to the

following people for sending us their comments:

Paul Abrahams Richard Epstein

J. Mack Adams Frank Friedman

Robert Aiken C. W. Gear

Donald Bagert Robert Glass

Alan Biermann Nice Habermann

Frank Boesch Judy Hankins

Richard Botting Charles Kelemen

Albert Briggs, Jr. Ken Kennedy

Judy Brown Elliot Koffman

Rick Carlson Barry Kurtz

Thomas Cheatham Doris Lidtke

Neal Coulter Michael Loui

Steve Cunningham Paul Luker

Verlynda Dobbs Susan Merritt

Caroline Eastman John Motil

REFERENCES
1. Abelson, H., and Sussman, G. Structure and interpretation of Computer

Programs. MIT Press, Cambridge, Mass., 1985.
2. Arden. B., ed. See What Can Be Automated? Report of the NSF Com-

puter Science and Engineering Research Study (COSERS). MIT
Press, Cambridge, Mass., 1980.

J. Paul Myers

Bob Noonan
Alan Perks

Jesse Poore

Terrence Pratt

Jean Rogers
Jean Sammet

Mary Shaw

J. W. Smith

Dennis Smolarski

Ed Upchurch
Garret White

Gio Wiederhold

Stuart Zweben

3. Denning, P. What is computer science? Am. Sci. 73 (Jan.-Feb. X985),
16-19.

4. Flares, F., and Graves, M. Education. (working paper available from
Logonet, Inc., 2200 Powell Street, 11th Floor, Emeryville. Calif.
94608.)

5. Newell, A., Perlis, A., and Simon, H. What is computer science? Sci.

157 (1967),1373-1374. (reprinted in Abacus 4, 4 (Summer 1987), 32.)

January 1989 Volume 32 Number 1 Communications of the ACM 23

