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1975 A C M  F u r i n g  

A w a r d  t , ec tu re  

The 1975 ACM Turing Award was presented jointly to Allen 
Newell and Herbert A. Simon at the ACM Annual Conference in 
Mim?eapolis, October 20. In introducing the recipients, Bernard A. 
Gaiter, Chairman of the Turing Award Cotamittee, read tile %l- 
lowing citation: 

"It  is a privilege to be able to present the ACM Turing Award 
to two f?iends of long standing, Professors Allen Newell and 
Herbert A. Simon, both of Carnegie-Mellon University. 

"In joint scientific efforts extending over twenty years, initially 
in collaboration with J.C. Shaw at the RAND Corporation, and 
subsequently with numerous faculty and student colleague{ at 
Carnegie-Mellon University, tlney have made basic contributions 
to artificial intelligence, the psychology of human cognition, and 
list processing. 

"In artificial intelligence, they contributed to the establishment 
of the field as an area of scientific endeavor, to the development of 
heuristic programming generally, and of heuristic search, means- 
ends analysis, and methods of induction, in particular; providing 

demonstrations of tile sufI~,ciency of these mechanisms to solve 
interesting problems. 

"In psychology, they were principal instigators of the idea that 
human cognition can be described in terms of a symbol system, and 
they have developed detailed theories fbr human problem solving, 
verbal learning and inductive behavior in a number of task domains, 
using computer programs embodying these theories to simulate tile 
human behavior, 

"They were apparently the inventors of list processing, and 

have been major contributors to both software technology and the 

development of the concept of tlne computer as a system of manipu- 

lating symbolic structures and not just as a processor of numerical 

data. 

"It  is an honor tbr Professors Newell and Simon to be given 

this award, but it is also an honor for ACM to be able to add their 

names to our list of recipients, since by their presence, they will add 

to the prestige and importance of the ACM Turing Award." 

Completer Science asEmp rical Inquiry: 
Symbols and Search 

Allen Newel1 and Herbert A. Simon 

C o m p u t e r  science is the s tudy of  the p h e n o m e n a  

s u r r o u n d i n g  c o m p u t e r s .  The  founders  o f  this socie ty  

unde r s tood  this very well when  they called themse lves  

the A s s o c i a t i o n  for  C o m p u t i n g  Mac h ine r y .  T h e  

mach ine - - -no t  j u s t  the h a r d w a r e ,  but  the p r o g r a m m e d ,  

l iving m a c h i n e - - i s  the o r g a n i s m  we study. 

This  is the tenth  T u r i n g  Lec ture .  The  n ine  pe r sons  

who preceded  us on this p l a t f o r m  have  p re sen ted  n ine  

different  views of  c o m p u t e r  science. F o r  ou r  o rgan i sm,  

the machine ,  can  be s tud ied  at m a n y  levels  and f rom 

m a n y  sides. W e  are d e e p l y  h o n o r e d  to a p p e a r  lhere 

today  and to p resen t  yet  a n o t h e r  view, the one  that  has  

pe rmea ted  the scientific w o r k  for which we have  been  
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cited. Wc wish to speak oFcolnputcr science as empirical 

inqttily. 

()u~ view is only one of Jmu~y; thc prcx.ious lc'ctures 

m:xkc th~,l clc~r. }lowcvcr, c,/cn takeli together tile ice 

[kl[cs fail ~o cover the whole scope of our science. Many 

Rmdamcntai aspucts of" it have not bccn represcutcd h~ 

thcsu tun ~ts~ards, Aml  il' the time cvcr arrives, surely 

lie( booi!, whcll the cOill[)ass has bcc~] boxed~ w)le~l coln- 

ptm:r sck'uce has b(c~l discussed Fronl every side, it wil l  

bc tinnt t~ Start tile cycIe ;l~xliN. t::;oy the hsYc ~ts lect i l tcr  

s'~ili l~avc to nmk~: ~.tt~ annual sprim to o~ert~.~kc the 

cumulat ion of srmdt, i~}cremcntal gains tiu~t the tortoise 

of' scientific und tcchnic~ll development i~as achieved ill 

his stcudy murch, }]ach war  wil l  create a r~ew gap a~rcl 

caU For :x new sprint, For irt science there is rio ihml word. 

(;omputcr science is un empirical discipline. We would 

havu called it arl cxperJtncntal science, but like as- 

honou~y, cc'~u~omk:s, :rod gcolo.gy, some of its uuiquc 

forms of obscrvation and experience do not fit a marrow 

stereotype of the expcrimc'ntal meGod. None thc less, 

they arc uxpt'rimcuts. }}uch new nmchinc that is built is 

an experiment. Actu~Aly cons/ructi~g the machine poses 

~1 qucStioI1 to  ~l,.'Htlre; a t ld  we  listen for the a~Jswer by 

observing thc machhle irl operation and analyzing it by 

~dl amdytic:~l amt me,inurement mcuns available. Kach 

nuw progr:.~m that is built is :u~l cxpcrmient, It poses a 

ctucsticm h) ~ra:h~ic. a~rd its bchuvior oflkxs cities to arl 

u,swcr. Nuithcr machi~lcs nor progr,:m~s are black 

boxes: they arc artiIi~cl.s that have bccn dcsigi~cd, both 

hi~rdwarc ',ill<:] SO]'{w;~ue, al ld we ,ca~r open thorn up arid 

look hlsidc, Wc can relate their structure to their bc- 

huvi,,n' .and draw many lessons Frout a single experiment. 

\~c don't  have to build I00 copies of, say, a thcoreln 

prover, to dcmorsshate statistically that it has not over- 

come the combim~toria] explosion of search in the way 

hoped t ) r .  Inspection of the program in the light of a 

R:w runs reveals the flaw and lets us proceed to file next 
a ttcntpt. 

We build computers and prograrns f'or many reasons. 

Wc build thern to serve society and as tools For carrying 

out the ccJoi} ([)[~ ic tasks of society. But as basic scientists 

wc build machines and programs .as a way of discovering 

new phenomena and analyzing phenome~m we already 

know about. Society often becomes confused about this, 

believing dial computers and programs are to be con- 

structed only tk}r the economic use that can be made of 

them (or as intermediate items in a developmental 

sequence leading to such use). It needs to understand 

that the phenomena surrounding computers are deep 

and obscure, requiring much experimentation to assess 

their nature, It needs to understand that, as in any 
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science, fine gains thut accrue from stlch experimentatio~l 

and unclerstandir~g pay off in the p e r m a n e n t  acquisition 

oF ncw techniques; and that it is these techniques that 

will create the instruments to help soc ie ty  in achieving 

its goals. 

Our purpose here, however, is n o t  to plead for 

understanding f'rom an outside world, ill is to examine 

one aspect of our science, the deve lopmen t  of' new basic 

uuderstandhlg by empirical inquiry. 7 h i s  is best done: 

by illustrations. We will be pardoned if, presuming upon 

the occasion, we choose our examples  Q o m  the area of  

our own research. As will become apparent, these 

examples involve the whole d e v e l o p m e n t  off artificial 

intelligence, especially in its early years .  3f'hey rest on 

much more than our own personal co~ t r i bu t i ons .  And  

even where we have made direct  c o n t r i b u t i o n s ,  this has 

bee~r doue in cooperat ion witin others. O u r  collaborators 

have included especially Cliff Shaw, with whom wc 

Formed a team of" three through the exc i t ing  period of  

tire late fifties. But we have also w.orked with a great 

many colleagues and students at Carnegie-Mellon 

U n ivcrsity. 

Time permits taking up just  two examples .  The first 

is the development of the notion off a symbol ic  system. 

The second is die development of  the n o t i o n  of heuristic 

search. Both conceptions have deep significance for 

uuclerstal~ding how information is processed and how 

intelligence is achieved. However,  t h e y  do not come 

close to exhausting the flull scope o f  artificial intelli- 

gence, though they seem to us to be useful  for exhibiting 

the nature of fundamental  knowledge  in this part of  

computer science. 

I. Symbols and Physical Symbol Systems 

One of tile fundamental contributions to knowledge 

of computer science has been to explain, at a rather 

basic level, what symbols are. This explanation is a 

scientific proposition about Nature. It is empirically 

derived, with a long and gradual development.  

Symbols lie at the root of intelligent action, which 

is, of course, the primary topic of artificial intelligence. 

For that matter, it is a primary question for all of com- 

puter science. For all information is processed by com- 

puters in the service of ends, and we measure the in- 

telligence of a system by its ability to  achieve stated 

ends in the face of variations, difficulties and com- 

plexities posed by the task environment.  This general 

investment of computer science in attaining intelligence 

is obscured when the tasks being accomplished are 
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limited in scope, for then the full variations in the en- 

vironment car? be accurately foreseen. It becomes more 

obvious as we extend cornpttters to more global, com- 

plex and k]~owledgeintensive tasks as we attempt to 

nlake them our agents, capable of handling on their 

own tile full contingencies of the natura[ world. 

Our understanding of tile systems requirements for 

intelligent action cnnerges slowly. It is composite, for 

no single elementary thing accounts for intelligence in 

all its m.anifcstations. There is no "intelligence prin- 

ciple," just as there is no "vital principle" that conveys 

by its very nature the essence of life. But the lack of a 

simple dc'u.s' e £  t n a c h M a  does not imply that there are 

no structural requirements for intelligence. One such 

requirement is the ability to store and manipulate 

symbols. To put the scientific question, we may para: 

phrase the title of a famous paper by Warren McCul- 

loch [1961]: What  is a symbol, that intelligence may 

use it, and intelligence, that it may use a symbol? 

Laws of Qualitative Structure 

All sciences characterize the essential nature of the 

systems they study. These characterizations are in- 

variably qualitative in nature, for they set the terms 

within which more detailed knowledge can be devel- 

oped. Their essence can often be captured in very 

short, very general statements. One might judge these 

general laws, due to their limited specificity, as making 

relatively little contribution to the sum of a science, 

were it not for the historical evidence that shows them 

to be results of the greatest importance. 

The Cell Doctrine in Biology~ A good example of a 

law of qualitative structure is the cell doctrine in biol- 

ogy, which states that the basic building block of all 

living organisms is the cell. Cells come in a large variety 

of forms, though they all have a nucleus surrounded 

by protoplasm, the whole encased by a membrane. But 

this internal structure was not, historically, part  of the 

specification of the cell doctrine; it was subsequent 

specificity developed by intensive investigation. The 

cell doctrine can be conveyed almost entirely by the 

statement we gave above, along with some vague 

notions about what size a cell can be. The impact of 

this law on biology, however, has been tremendous, 

and the lost motion in the field prior to its gradual 

acceptance was considerable. 

Plate Tectonics in Geology. Geology provides an inter- 

esting example of a qualitative structure law, interest- 

ing because it has gained acceptance in the last decade 

and so its rise in status is still fresh in memory. The 

theory of plate tectonics asserts that the surface of the 

globe is a collection of huge plates--a few dozen in 

all which move (at geological speeds) against, over, 

and under each other into tile center of the earth, 

where they lose their identity. 't"he movements of the 

plates account for the shapes and relative locations of  

tile continents arid oceans, for tile areas of volcanic 

and earthquake activity, for the deep sea ridges, arid 

so on. With a few additional particulars as to speed 

and size, the essential theory has been specified, it was 

of course not accepted until it succeeded in exphfining 

a number of details, all of which hung together (e.g. 

accounting for flora, fauna, and stratification agree- 

ments between West Africa and Northeast  South 

America). The plate tectonics theory is highly qualita- 

tive, Now that it is accepted, the whole earth seems to 

offer evidence for it everywhere, for we see the world 

in its terms. 

The Germ Theory of Disease. It is little more than a 

century since Pasteur enunciated the germ theory of 

disease, a law of qualitative structure that produced a 

revolution in medicine. The theory proposes that most  

diseases are caused by tile presence and multiplication 

in the body of tiny single-celled living organisms, and 

that contagion consists :in the transmission of these 

organisms from one host to another. A large part of 

the elaboration of the theory consisted in identifying 

the organisms associated with specific diseases, de- 

scribing them, and tracing their life histories. The fact 

that the law has many exceptions--that many diseases 

are no t  produced by germs--does not detract from its 

importance. The law tells us to took for a particular 

kind of cause; it does not insist that we will always 

find it. 

The Doctrine of Atomism. The doctrine of atomism 

offers an interesting contrast to the three laws of quali- 

tative structure we have just described. As it emerged 

from the work of Dalton and his demonstrations that 

the chemicals combined in fixed proportions, the law 

provided a typical example of qualitative structure: 

the elements are composed of small, uniform particles, 

differing from one element to another. But because the 

underlying species of atoms are so simple and limited 

in their variety, quantitative theories were soon for- 

mulated which assimilated all the general structure in 

the original qualitative hypothesis. With ceils, tectonic 

plates, and germs, the variety of structure is so great 

that the underlying qualitative principle remains dis- 

tinct, and its contribution to the total theory clearly 

discernible. 
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Co~elusion. Laws of qualitative structure are seen 

everywhere in science. Some o[" our greatest scientific 

discoveries are to be found among them. As the exam- 

ples illustrate, they often set the terms on which a 

whole science operates, 

Physical Symbol Systems 

Let us retur~ to the topic of symbols, and define a 

!~04ice/ symbol s3",slem. The adjective "physical" tie- 

notes two hnportant  features: (1) Such systems clearly 

obey the laws o{ physics t h e y  are realizable by engin- 

eered systems made of engineered cornponerlts; (2) 

although our use of the term "symbol"  prefigures our 

intended interpretation, it is not restricted to human 

symbol systems. 

A physical symbol system consists of a set o[ en- 

tides, called symbols, which arc physical patterns that 

can occur as components of another type of entity 

called an expression (or symbol structure). Thus, a 

symbol structure is corn.posed of 'a number o[' instances 

(or tokens) of" symbols related in some physical way 

(such as ore: token being next to another). At any 

i~stant of time the system will contain a collection of' 

d~c, se symbol structures. Besides these structures, tile 

system also contains a collectiml of' processes that 

operate o~t, expressions to produce other expressions: 

process,cs of creation, modification, reproduction and 

destructi<m. A physical symbol system is a machine 

d~at produces through time an evolving collection of 

syntbot structures. Such a system exists in a world of" 

objects wider than just these symbolic expressions 
themselves. 

Two notions are central to this structure o[ ex- 

pressions, symbols, and objects: designation and 
interprctatio,~. 

Desig,talion. An expression designates an ob- 

ject if, given the e:xpression, the system can either 

affect the object itself' or behave in ways depend- 
ent ,.m the ,object. 

1~ either case, access to tile object via. the expres- 

sion has been obtained, which is the essence of 
designation. 

lnterpre/alimt. The systern can interpret an ex- 

pression iI' the express!on designates a process 

and if, given the expression, tile system can 
carry out the process. 

E'~terpretation implies a special form o{" dependent 

action : given an expression the system, cart perform the 

indicated process, which is to say, it can evoke and 

execute its own processes from expressions that  desig- 
nate them, 

A system capable of  designation and interpretation, 

in the sense just indicated, must also meet a number  of 

adctitiona] requirenmnts, of completeness and closure. 

We will have space only to mention these briefly; all 
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of them are impor tan t  and have £a>.rcaching conse_ 

quences. 

(t) A symbol  may be used to designate any expres_ 

sion whatsoever.  Tha t  is, given a symbol ,  it is no t  

prescribed a priori what  expressions it can designate. 

This arbitrariness pertains only to symbols ;  the symbol 

tokens and their mutual  relations detcrmine wJnat object; 

is designated by a cornpiex expression. (2) ] 'here  exist 

expressions that  designate every process of  which t}'~e 

machine is capable. (3) There exist processes for creating 

any expression and for modifying any expression its 

arbitrary ways. (4) Expressions are stable; once created 

they will continue to exist until explicitly modified or  

deleted. (5) The  number  of expressions that  fine system 

can hold is essentially unbounded.  

The "type of system we have just defined is not u~> 

familiar to computer  scientists. It bears a s t rong  family 

resemblance to sit general purpose computers .  If u. 

symbol manipulat ion language, such as I . lSP,  is taken 

as defining a machine,  then the kinship becomes truly 

brotherly. Our intent in laying out such a sys tem is no~ 

to propose something new. Just  the opposi te :  it is t o  

show what is now known and hypothes ized  abou t  

systems that satisf) such a characterizat ion.  

We can now state a general scientific hypothesis  --a 

law of qualitative structure for symbol  systems: 

The Physical Symbol System Hypothesis. A phys-. 

ical symbol system has the necessary and sufl% 

cient means for general intelligent action. 

By "necessary"  we mean that any system tha t  

exhibits general intelligence will prove upon  analysis 

to be a physical symbol system. By "suff icient"  we mear~ 

that any physical symbol  system of sufficient size can 

be organized further to exhibit general intelligence. By 

"general intelligent ac t ion"  we wish to indicate the 

sarne scope of intelligence as we see in humian  a.ctio~a: 

that in any real situation behavior  a p p r o p r a t e  to the 

ends of  the system and adaptive to the demands  of the 

environment  can occur, within som.e limits of  speed 

and complexity. 

The Physical Symbol  System Hypothes is  clearly is 

a law of qualitative structure. It  specifies a general  class 

of systems within which one will find those capable  o f  

intelligent action. 

This is an empirical  hypothesis.  W e  have defined a 

class of  systems; we wish to ask whether that class 

accounts for a set of  phenomena we find in the real 

world. Intelligent action is everywhere a r o u n d  us in 

the biological world, most ly  in human  behavior .  I t  is :a 

form of behavior  we can recognize by its effects whether  

it is performed by humans  or not. The  hypothes is  

could indeed be false. Intelligent behav ior  is not so  

easy to produce that any system will exhibit  it wil ly- 

nilly, Indeed, there are people whose analyses lead them 

to conclude either on philosophical or on scientific 

grounds that the hypothesis is false. Scientifically, one 
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can attack or defend it only by bringing forth empirical 

evidence about  the natural world. 

Wc r~ow need to trace the development of this 

hypothesis and look at the evidence for it. 

Develepme~t of the Symho~ System Hypothesis 

A physical symbol system is an instance of a uni- 

versal machine, Thus the symbol system hypothesis 

implies that intelligence will be realized by a universal 

computer, However, the hypothesis goes far beyond 

the argument, of'ten made on general grounds o1" physi- 

cal determinism, that any computation that is realizable 

ca~ be realized by a universal machine, provided that 

it is specified. For it asserts specifically that the intelli- 

gent machine is a symbol system, thus making a specific 

architectural assertion about the nature of intelligent 

systems. It is im.portant to understand how this addi- 

tional specificity arose. 

Formal Logic. The roots of the hypothesis go back to 

the program of Yrege and of Whitehead and Russell 

for formalizing logic: capturing the basic conceptual 

notions of mathematics in logic and putting the no- 

tions of proof" and deduction on a secure footing. This 

effort culminated in mathematical logic--.-our familiar 

propositional, first-order, and higher-order logics. It 

developed a characteristic view, of Ren referred to as 

tile %ymbo] game."  Logic, and by incorporation all of 

mathematics, was a game played with meaningless 

tokens according to certain purely syntactic rules. All 

meaning had been purged. One had a mechanical, 

though permissive (we would now say nondeterminis- 

tic), system about  which various things could be proved. 

Thus progress was first made by walking away from 

all that seemed relevant to meaning and human sym- 

bols. We could ca11 this the stage of formal symbol 

manipulation. 

This general attitude is well reflected in the deveI- 

opment of information theory. It was pointed out 

time and again that Shannon had defined a system 

that was useful only for communication and selection, 

and which had nothing to do with meaning. Regrets 

were expressed that such a general name as "informa- 

tion theory" had been given to the field, and attempts 

were made to rechristen it as "the theory of selective 

in format ion"- - to  no avail, of course. 

Turing Machines and the Digital Computer. The devel- 

opment of the first digital computers and of automata 

theory, starting with Turing's own work in the '30s, 

can be treated together. They agree in their view of 

what is essential. Let us use Turing's own model, for it 

shows the features well. 

A Turing machine consists of two memories: an un- 

bounded tape and a finite state control. The tape holds 

data, i.e. the famous zeroes and ones. The machine 

has a very small set of proper operations---read, write, 

and scan opera t ions- -on  the tape. The read operation 

is not a data operation, but provides conditional 
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branching to a control state as a function of the data 

under the read head. As we all know, this model con- 

tains the essentials of all computers, in terms of what 

they can do, though other computers with different mem- 

ories and operations might carry out the same computa- 

tions with different requirements of space and time. In 

particular, the model of a Turing machine contains 

within it the notions both of what cannot be computed 

and of universal machines---computers that can do 

anything that can be done by any machine. 

We should marvel that two of our deepest insights 

into information processing were achieved in the 

thirties, before modern computers came into being. It 

is a tribute to the genius of Alan Turing. It is also a 

tribute to the development of mathematical logic at 

the time, and testimony to the depth of computer 

science's obligation to it. Concurrently with Turing's 

work appeared the work of the logicians Emil Post and 

(independently) Alonzo Church. Starting from inde- 

pendent notions of logistic systems (Post productions 

and recursive functions, respectively) they arrived at 

analogous results on undecidability and universality ..... 

results that were soon shown to imply that all three 

systems were equivalent. Indeed, the convergence of all 

these attempts to define ttle m.ost general class of infor- 

mation processing systems provides some of the force 

of  our conviction that we have captured the essentials 

of  information processing in these models. 

In none of these systems is there, on tile surface, a 

concept of the symbol as something that designates. 

The data are regarded as just strings of zeroes and 

ones-Andeed that data be inert is essential to the re- 

duction of computation to physical process. The finite 

state control system was always viewed as a small con- 

troller, and logical games were played to see how small 

a state system could be used without destroying the 

universality of the machine. No games, as far as we 

can tell, were ever played to add new states dynamically 

to the finite control-~to think of' the control memory 

as holding tile bulk of the system's knowledge. What 

was accomplished at this stage was half the principle 

of interpretation--showing that a machine could be 

run from a description. Thus, this is tile stage of auto- 

matic formal symbol manipulation. 

The Stored Program Concept. With the development of 

the second generation of electronic machines in the 

mid-forties (after the Eniac) came the stored program 

concept. This was rightfully hailed as a milestone, both 

conceptually and practically. Programs now can be 

data, and can be operated on as data. This capability 

is, of course, already implicit in the model of Turing: 

the descriptions are on the very same tape as the data. 

Yet the idea was realized only when machines acquired 

enough memory to make it practicable to locate actual 

programs in some internal place. After all, the Eniac 

had only twenty registers. 

The stored program concept embodies the second 
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half of the interpretation principle, the part that says 

that the system's own data can be interpreted. But it 

does not yet contain the notion of designatio~ -of the 

physical relation that underlies meaning. 

List Processi~g° The next step, taken in 1956, was list 

processing. The contents of the data structures were 

now symbols, in the sense of our physical symbol 

system: patterns that designated, that had referents. 

I.ists held addresses which permitted access to other 

lists thus the ilotion of list structures. That this was 

a new view was demonstrated to us many times in the 

early days of' ]ist processing when colleagues would ask 

where the data were-- that  is, which list finally held 

the collections of bits that were the content of the 

system. They found it strange that there were no such 

bits, there were only symbols that designated yet other 

symbol structures. 
List processing is simultaneously three things in thc 

development of computer science. (1) ~t is the creation 

of a genuine dynamic memory structure in a machine 

that had heretofore been perceived as having fixed 

structure. It added to our ensemble of operations those 

that built and modified structure in addition to those 

that replaced and changed content. (2) It was an early 

demonstration of the basic abstraction that a computer 

consists of a set of data types and a set of operations 

proper to these data types, so that a computational 

system should employ whatever data types are appro- 

priate to the application, independent of the underlying 

machine. (3) List processing produced a model of des- 

ignation, thus defining symbol manipulation in the 

sense in which we use this concept in computer science 

today. 

As often occurs, the practice of the time already 

anticipated all the elements of list processing: addresses 

are obviously used to gain access, the drum machines 

used linked programs (so called one-plus-one address- 

ing), and so on. But the conception of list processing 

as an abstraction created a new world in which desig- 

nation and dynamic symbolic structure were the de- 

fining characteristics. The embedding of the early list 

processing systems in languages (the 1PLs, LISP) is 

often decried as having been a barrier to the diffusion 

of iist processing techniques throughout programming 

practice; but it was the vehicle that held the abstraction 

together. 

LISP° One more step is worth noting: McCarthy's 

creation of LISP in 1959-60 [McCarthy, 1960]. It com- 

pleted the act of abstraction, lifting list structures out 

of their embedding in concrete machines, creating a 

new formal system with S-expressions, which could be 

shown to be equivalent to the other universal schemes 

of computation. 

Conclusion. That tile concept of the designating 

symbol and symbol manipulation does not emerge 

until the mid-fifties does not mean that the earlier steps 

were either inessential or less important. The total 
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co,lcept is the join of computability, physical realiza- 

bility (and by muhiple technologies), universality, the 

symbolic represe~m~tio~l of processes (i.e. interpreta_ 

biiity), and~ fi~l:H]y, sylr~bolic stiuct~re and designation. 

Each of the steps ptovided an csse~tiat part of the 

whole. 

The first step i~i this chs~iia, ~mthored by Turing, is 

theoretically motivated, but thc others all have deep 

empirical roots. We have been led by the evolution of 

the computer itself. The stored program principle arose 

out of the experience with Eniac. I.ist processing arose 

out of the attempt to construct intelligent programs. 

itt took its cue fl'om the emergence of random access 

memories, which provided a clear physical realization 

of a designating symbol in the address. I.~SP arose out 

of the evolving experience with list processing. 

The Evidence 

We come now to the evidence for the hypothesis 

that physical symbol systems are capable of intelligent 

action, and that general intelligent actio,1 calls ['or a 

physical symbol system. Tile hypothesis is an em.pirical 

generalization and not a theorem. We know of no way 

of demonstrating the connection between symbol sys- 

tems and intelligence on purely logical grounds. Lack- 

ing such a demonstration, we must look at the facts. 

Our central aim, however, is not to review the evidence 

in detail, but to use the example before us to illustrate 

the proposition that computer  science is a field of 

empirical inquiry. Hence, we will only indicate what 

kinds of evidence there is, and the general nature of 

the testing process. 

The notion of physical symbol system had taken 

essentially its present form by the middle of the 1950% 

and one can date from that time the growth of arti- 

ficial intelligence as a coherent subfield of computer 

science. The twenty years of work since then has seen 

a continuous accumulation of empirical evidence of two 

main varieties. The first addresses itself to the su~i- 
cie~cy of physical symbol systems for producing intelli- 

gence, attempting to construct and test specific systems 

that have such a capability. The second kind of evidence 

addresses itself to the tTecessity of having a physical 

symbol system wherever intelligence is exhibited. It 

starts with Man, the intelligent system best known to 

us, and attempts to discover whether his cognitive 

activity can be explained as the working of a physical 

symbol system. There are other forms of evidence, 

which we will comment upon briefly later, but these 

two are the important ones. We will consider them in 

turn. The first is generally called artificial intelligence, 

the second, research in cognitive psychology. 

Constructing Intelligent Systems. The basic paradigm 

for the initial testing of the germ theory of disease was: 

identify a disease; then look for the germ. An analogous 

paradigm has inspired much of the research in artificial 

intelligence: identify a task domain calling for intelli- 

gence; then construct a program for a digital computer 
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that can handle tasks in that domain. The easy and 

well struct~:red tasks were iooked at first: puzzles and 

games, operations research probtems of scheduling and 

allocating resources, simple inductiorl tasks. Scores, if 

not hundreds, of programs of these kinds have by now 

been constructed, each capable of some measure of 

intelligent action in the appropriate domain. 

Of course intelligence is not an all-or-none matter, 

and there has been steady progress toward higher levels 

of performance in specific domains, as well as toward 

widening the range of those domains. Early chess 

programs, for example, were deemed successful if they 

could play the game legaily and with some indication 

of purpose; a little later, they reached the level of 

human beginners; within ten or fifteen years, they 

began to compete with serious amateurs. Progress has 

been slow (and the total programming effort invested 

small) but continuous, and the paradigm of construct- 

and-test proceeds in a regular cycle - the whole research 

activity mimicking at a macroscopic level the basic 

generate-and-test cycle of many of the AI programs. 

]'here is a steadily widening area within which intel- 

ligent action is attainable. From the original tasks, 

research has extended to building systems that handle 

and understand natural language in a variety of ways, 

systems for interpreting visual scenes, systems for 

hand eye coordination, systems that design, systems 

that write computer programs, systems for speech 

understanding -the list is, if not endless, at least very 

long. If there are limits beyond which the hypothesis 

will not carry us, they have not yet become apparent. 

Up to the present, the rate of progress has been gov- 

erned mainly by the rather modest quantity of scientific 

resources that have been applied and the inevitable 

requirement of a substantial system-building effort for 

each new major undertaking. 

Much more has been going on, of course, than 

simply a piling up of examples of intelligent systems 

adapted to specific task domains. It would be sur- 

prising and unappealing if it turned out that the AI 

programs performing these diverse tasks had nothing 

in common beyond their being instances of physical 

symbol systems. Hence, there has been great interest in 

searching for mechanisms possessed of generality, and 

for common components among programs performing 

a variety of tasks. This search carries the theory beyond 

the initial symbol system hypothesis to a more com- 

plete characterization of the particular kinds of symbol 

systems that are effective in artificial intelligence. In 

the second section of this paper, we will discuss o n e  

example of a hypothesis at this second level of speci- 

ficity: the heuristic search hypothesis. 

The search for generality spawned a series of pro- 

grams designed to separate out general problem-solving 

mechanisms from the requirements of particular task 

domains. The General Problem Solver (GPS) was 

perhaps the first of these; while among its descendants 

are such contemporary systems as PLANNER and 

CONNIVER. The search for common components has 

led to generalized schemes of representation for goals 

and plans, methods for constructing discrimination 

nets, procedures for the control of tree search, pattern- 

matching mechanisms, and language-parsing systems. 

Experiments are at present under way to find conven- 

ient devices for representing sequences of time and 

tense, movement, causality and the like. More and 

-more, it becomes possible to assemble large intelli- 

gent systems in a modular way from such basic 

components. 

We can gain some perspective on what is going on 

by turning, again, to the analogy of the germ theory. 

If  the first burst of research stimulated by that theory 

consisted largely in finding the germ to go with each 

disease, subsequent effort turned to learning what a 

germ was---to building on the basic qualitative law a 

new level of structure, tn artificial intelligence, an 

initial burst of activity aimed at building intelligent 

programs for a wide variey of almost randomly selected 

tasks is giving way to more sharply targeted research 

aimed at understanding the common mechanisms of 

such systems. 

T h e  Modeling of Human Symbolic Behavior. The 

symbol system hypothesis implies that the symbolic 

behavior of man arises because he has the character- 

istics of a physical symbol system. Hence, the results 

of efforts to model human behavior with symbol systems 

become an important part of the evidence for the hy- 

pothesis, and research in artificial intelligence goes on 

in close collaboration with research in information 

processing psychology, as it is usually called. 

The search for explanations of man's intelligent 

behavior in terms of symbol systems has had a large 

measure of success over the past twenty years; to the 

point where information processing theory is the lead- 

ing contemporary point of view in cognitive psychol- 

ogy. Especially in the areas of problem solving, concept 

attainment, and long-term memory, symbol manipu- 

lation models now dominate the scene. 

Research in information processing psychology 

involves two main kinds of empirical activity. The first 

is the conduct of observations and experiments on 

human behavior in tasks requiring intelligence. The 

second, very similar to the parallel activity in artificial 

intelligence, is the programming of symbol systems to 

model the observed human behavior. The psychologi- 

cal observations and experiments lead to the formula- 

tion of hypotheses about the symbolic processes the 

subjects are using, and these are an important source 

of the ideas that go into the construction of the pro- 

grams. Thus, many of the ideas for the basic mecha- 

nisms of GPS were derived from care%l analysis of the 

protocols that human subjects produced while thinking 

aloud during the performance of a problem-solving 
task. 

The empirical character of computer science is 

nowhere more evident than in this alliance with psy- 
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chology. Not only are psychological experimmltS re-. 

quired t.o test the veridicality of the simulation models 

as explanations of the human behavior, but out of the 

experiments come new ideas for tile design and con- 

struction of physical symbol systems. 

Other Evidence. The principal body of evidence for the 

symbol system, hypothesis that we have not consid-. 

ered is negative evidence: the absence of specific com- 

peting hypotheses as to how intelligent activity might 

be accomplished.- whether by man or machine. Most 

attempts to build such hypotheses have taken place 

within the field of psychology. Here we have had a 

continuum of theories from the points of view usually 

labeled "behaviorism" to those usually labeled "Gestalt 

theory." Neither of these points of" view stands as a 

real competitor to the syrnbol system hypothesis, and 

this for two reasons. }:;its% neither behaviorism nor 

Gestalt theory has demonstrated, or even shown how 

to demonstrate, that the explanatory mechanisms it 

postulates are suflicie~t t:o account for intelligent 

behavior in complex tasks. Second, neither theory has 

been form.ulated with anything like the specificity of 

artificial programs. As a matter of f;~ct, the alternative 

theories are sufficiently vague so that it is not terribly 

difficult to give them informatior~ processing interpre- 

tations, and thereby assinfitate ttlem to the symbol 

system hypothesis. 

Conclusion 

We have tried to use the example of the Physical 

Symbol System [typothesis to illustrate concretely that 

corn.purer science is a scientific e~lterprise in the usual 

meaning of" that term: that if develops scientific hypothe 

ses which it then seeks to verify by empMca/ inquiry. 

We ]lad a second reason, however, for choosing this 

particular example to illustrate our point. The Physical 

Symbol System tlypothesis is itself a substantial sciem 

tific hypothesis of" the kind that we earlier dubbed 

"laws of" qualitative structure." It represents an im- 

portant discovery off computer science, which if borne 

out by the empirical evidence, as in {'act appears to be 

occurring, will have major continuing impact on the 

field. 

We turn now to a second example, the role ofsearcll 

in intelligence. TMs topic, and the particular hypothesis 

about it that we shall examine, have also played a 

centraI role in computer science, in general, and arti- 

ficial intelligence, in particular. 

IL Heuristic Search 

Knowing that physical symbol systems provide the 

matrix for intelligent action does not tell us how they 

accomplish this. Our second example of a law of" quail  

tative structure in computer science addresses this 

latter question, asserting that symbol systems solve 

problems by using the processes of heuristic search. 
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'['his generalization, like the previous one, rests on em- 

pirical evidence, and has not been derived formally 

from other premises. However, we sIna]l see in a moment 

that it does have some logical connection with the 

symbol system hypothesis, and perhaps we can look 

forward to formalization of the connection at some 

time in the fu, ture. dntiI that time arrives, our storx 

must again be one of" empirical inquiry. Wc will describe 

what is known about heurist.ic search and review the 

empirical findings that show tnow it enables action to be 

intelligent. We begin by stating this law of qualitative 

structure, the Heuristic Search I Iypothesis~ 

]tez#'Ls'tic Search H3:potkeMr. The sohations to 

problems are represented as symbol structures. 

A physical symbol system exercises its intelli- 

gence in problem solving by s e a r c h - t h a t  is, by 

generating arid progressively modifying symbol 

structures until it produces a solution structure, 

Physical symbol systems must use heuristic search 

to solve problems because such systems have lirnJted 

processing resources; in a finite number o£ steps, and 

over a finite interval of time, they can execute otfiy a 

finite number of processes. Of course that is riot a very 

strong limitation, for all universal Turing machines 

suffer from it. We intencl the limitation, however, in a 

stronger sense: we mean /)tactically limited. We can 

conceive of systems that arc not limited ill a practical 

way, but are capable, for example, of searching in 

parallel the nodes of an exponentially expanding tree 

at a constant rate for each unit advance in depth. We 

wilt not be concerned here with such systems, but w[tl~ 

systems whose computing resources are scarce relative 

to the complexity of the situations with which they are 

confronted. The restriction will not exclude any real 

symbol systems, in cornputer or man, in the context o[" 

real tasks. The fact of' limited resources allows us, ['or 

most purposes, to view a symbol system as though it 

were a serial, one-.process-at-a-time device, if it can 

accomplish only a small amount of processing in any 

short time interval, then we might as well regard it as 

doing th.ings one at a time, "["has "limited resouroe 

symbol system" and "serial symbol system" are prac- 

tically synonymous. The problem of allocating a 

scarce resource from moment to moment can usually 

be treated, if the moment is short enough, as a problem 

of scheduling a serial machine. 

Problem Solving 

Since ability to solve problems is generally taken 

as a prime indicator that a system has intelligence, it 

is natural that much of the history of artificial intdli- 

genre is taken up with attempts to build and understand 

problem-solving systems. Problem solving has been 

discussed by philosophers and psychologists for two 

millenia, in discourses dense with the sense of mystery. 

If you think there is nothing problematic oi" mysterious 

about a symbol system solving problems, then you are 
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a child of today, wtnosc views have been ~ormed since 

midcentury.  Plato (and, by his account, Socrates) 

{buud .dilSculty understanding even how problems 

could be e,~tertai~zed, much less how they could be 

solved. Le[ me remind you of how he posed the conum 

dlqlnl in the Meflo: 

Meno: And how will you inquire, Socrates, 

into that which you know not? What will you 

put f'orth as the subject of inquiry? And if you 

find what you want, how will you ever know that 

this is what you did not know? 

To deal with this puzzle, Plato invented his famous 

theory of recollection: when you think you are discov- 

eri~lg or ]earning something, you are really just recalling 

what you already knew in a previous existence, tf you 

find this explanation preposterous, there is a much 

simpIer one available today, based upon our under- 

standing of symbol systems. An approximate statement 

of it is: 

To state a problem is to designate (1) a test 

for a class of symbol structures (solutions of the 

problem), and (2) a gee~erator of symbol struc- 

tures (potential solutions). To solve a problem is 

to generate a structure, using (2), that satisfies 

the test of (1). 

We have a problem if we know what we want to do 

(the test), and if we don' t  know immediately how to do 

it (our generator does not immediately produce a 

symbol structure satisfying the test). A synlbol system 

cat~ state and solve problems (sometimes) because it 

can generate and test. 

If  that is all there is to problem solving, why not 

simply generate at once an expression that satisfies the 

test? This is, in Fact, what we do when we wish and 

dream. " I f  wishes were horses, beggars might ride." 

But outside the world of dream.s, it isn't possible. To 

know how we would test something, once constructed, 

does not mean that we know how to construct i t - - that  

we have any generator for doing so. 

For example, it is well known what it means to 

"solve" the problem of playing winning chess. A 

simple test exists for noticing winning positions, the 

test for checkmate of the enemy King. In the world of 

dreams one simply generates a strategy that leads to 

checkmate for all counter strategies of the opponent. 

Alas, no generator that will do this is known to existing 

symbol systems (man or machine). Instead, good moves 

in chess are sought by generating various alternatives, 

and painstakingly evaluating them with the use of 

approximate, and often erroneous, measures that are 

supposed to indicate the likelihood that a particular 

line of play is on the route to a winning position. Move 

generators there are; winning move generators there 

are not. 

Before there can be a move generator for a problem, 

there must be a problem space: a space of symbol 

structures in which probIem situations, including the 

initial and goal situations, can be represented. Move 

gerterators are processes for modifying one situation in 

the problem space into another. The basic character- 

istics of physical symbol systems guarantee that they 

can represent problem spaces and that they possess 

move generators. }:tow, in any concrete situation they 

synthesize a problem space and move generators ap- 

propr:iate to that situation is a question that is still 

very much on the frontier of artificial intelligence 

research. 

The task that a symbol system, is faced with, then, 

when it is presented with a problem and a problem 

space, is to use its limited processing resources to gen- 

erate possible solutions, one after another, until it finds 

one that satisfies the problem-defining test. if  the system 

had some control over the order in which potential 

solutions were generated, then it would be desirable to 

arrange this order of generation so that actual solutions 

would have a high likelihood of appearing early. A 

symbol system would exhibit intelligence to the extent 

that it succeeded in doing this. Intelligence for a system 

with limited processing resources consists in making 

wise choices or" what to do next. 

Search in Problem Solving 

During the first decade or so of artificial intelligence 

research, the study of problem solving was almost 

synonymous with the study of search processes. From 

our characterization of problems and problem solving, 

it is easy to see why this was so. In fact, it might be 

asked whether it could be otherwise. But before we 

try to answer that question, we must explore further 

the nature of' search processes as it revealed itself during 

that decade of activity. 

Extracting Information from the Problem Space. Con- 

sider a :set of symbol structures, some small subset 

of" which are solutions to a given problem. Suppose, 

further, that the solutions are distributed randomly 

through the entire set. By this we mean that no informa- 

tion exists that would enable any search generator to 

perform, better than a random search. Then no symbol 

system could exhibit more intelligence (or less intelli- 

gence) than any other in solving the problem, al- 

though one might experience better luck than another. 

A condition, then, for the appearance of intelligence 

is that the distribution of solutions be not entirely 

random, that the space of symbol structures exhibit at 

least some degree of order and pattern. A second condi- 

tion is that pattern in the space of symbol structures be 

more or less detectible. A third condition is that the 

generator of  potential solutions be able to behave dif- 

ferentially, depending on what pattern it detected. 

There must be information in the problem space, and 

the symbol system must be .capable of extracting and 

using it. Let us look first at a very simple example, 

where the intelligence is easy to come by. 
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Consider the problem of solving a simple algebraic 

eq,,mtion: 

/X+ B : CX+ D 

The test defines a solution as any expression of the 

Form, X = 2Z, such that AE -% B .... C E +  D. Now 

one could use as generator any process that would 

produce numbers which could then be tested by sub- 

s t int ing in the latter equation. We would not call this 

an intelligent generator. 

Alternative]y, one could use generators that would 

make use of the fact that the original equation can be 

modified.~by adding or subtracting equal quantities 

from both sides, or multiplying or dividing both sides 

by the same quantity--without changing its solutions. 

But, of course, we can obtain even more information 

to guide the generator by comparing the original ex- 

pression with the form. of the solution, and making 

precisely those changes in the equation that leave its 

solution unchanged, while at the same time, bringing 

it into the desired form. Such a generator could notice 

that there was an unwanted CX on the right-hand side 

of the original equation, subtract it from both sides 

and collect terms again. It could then notice that there 

was an unwanted B on the left-hand side and subtract 

that. Finally, it could get rid of the unwanted coefi% 

cient (A - C) on the left-hand side by dividing. 

Thus by this procedure, which now exhibits con- 

siderable intelligence, tlhe generator produces successive 

symbol structures, each obtained by modifying the 

previous one; and the modifications are aimed at 

reducing the differences between the form of the input 

structure and the form of the test expression, while 

maintaining the other conditions for a solution. 

This simple example already illustrates many of the 

main mechanisms that are used by symbol systems for 

intelligent problem solving. First, each successive ex- 

pression is not generated independently, but is produced 

by modifying one produced previously. Second, the 

modifications are not haphazard, but depend upon two 

kinds of information. They depend on information 

that is constant over this whole class of algebra prob- 

lems, and that is built into the structure of the generator 

itself: all modifications of expressions must leave the 

equation's solution unchanged. They also depend on 

information that changes at each step: detection of the 

differences in Form that remain between the current 

expression and the desired expression. In effect, the 

generator incorporates some of the tests the solution 

must satisfy, so that expressions that don't meet these 

tests will never be generated. Using the first kind of 

information guarantees that only a tiny subset of all 

possible expressions is actually generated, but without 

losing the solution expression from this subset. Using 

the second kind of information arrives at the desired 

solution by a succession of approximations, employing 

a simple form of means-ends analysis to give direction 
to the search. 
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There is no mystery where the information that 

guided the search came frorm We need not Follow Plato 

in endowing the symbol systern with a previous exist- 

ence in which it ah'eady knew the solution. A moder- 

ately sophisticated gei~erator-test system did the trick 

without invokit~g reincarmltion. 

Search Trees° The sinapte algebra problem may seem 

an unusual, even pathological, example of search. It is 

certainly not trial-and-error search, for though there 

were a few trials, there was no error. We are more 

accustomed to thinking of problem-solving search as 

generating lushly branching trees of partial solution 

possibilities which may grow to thousands, or even 

millions, of branches, before they yietd a solution. Thus, 

if fl-om each expression it produces, the generator 

creates B new branches, then the tree will grow as BD, 

where D is its depth. The tree grow~ FOr the algebra 

problem had the peculiarity that its branchiness, B, 
equaled unity. 

Programs that play ctness typically grow broad 

search trees, amounting in some cases to a million 

branches or more. (Although this example will serve to 

illustrate our points about tree search, we should note 

that the purpose of search in chess is not to generate 

proposed solutions, but to evaluate (test) them.) One 

line of research into game-playing programs has been 

centrally concerned with improving the representation 

of the chess board, and the processes for making moves 

on it, so as to speed up search and make it possible to 

search larger trees. The rationale for this direction, of 

course, is that the deeper the dynamic search, the more 

accurate should be the evaluations at the end of it. On 

the other hand, there is good empirical evidence that 

the strongest human players, grandmasters, seldom 

explore trees of more than one hundred branches. 

This economy is achieved not so much by searching 

less deeply than do chess-playing programs, but by 

branching very sparsely and selectively at each node. 

This is only possible, without causing a deterioration 

of the evaluations, by having more of the selectivity 

built into the generator itself, so that it is able to select 

for generation just those branches that are very likely 

to yield important relevant information about the 
position. 

The somewhat paradoxical-sounding conclusion to 

which this discussion leads is that search--successive 

generation of potentional solution structures--is a fun- 

damental aspect of a symbol system's exercise of intel- 

ligence in problem solving but that amount of search 

is not a measure of the amount  of intelligence being 

exhibited. What makes a problem aproblem is not that 

a large amount of search is required for its solution, 

but that a large amount would be required if a requisite 

level of intelligence were not apptied. When the sym- 

bolic system that is endeavoring to solve a problem 

knows enough about what to do, it simply proceeds 

directly towards its goat; but whenever its knowledge 

becomes inadequate, when it enters terra incognita, it 
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is faced with the threat of going through large amounts 

of searcl-i before it finds its way again. 

The potential for the exponential explosion of the 

search tree that is present in every scheme for gener- 

ating problem sot utions warns us against depending on 

the brute force of computers-~---even the biggest and 

fastest computers---as a compensation for the ignorance 

and unselectivity of their generators. The hope is still 

periodically ignited in some human breasts that a 

computer can be found that is fast enough, and that 

can be programmed cleverly enough, to play good 

chess by brute-force search. There is nothing known in 

theory about the game of chess that rules out this pos- 

sibility. Empirical studies on the management of search 

in sizable trees with only modest results make this a 

much less promising direction than it was when chess 

was first chosen as an appropriate task for artificial 

intelligence. We must regard this as one of the important 

empirical findings of research with chess programs° 

The Forms of Intelligence. The task of intelligence, 

then, is to avert the ever-present threat of the exponen- 

tial explosion of search. How can this be accomplished? 

The first route, already illustrated by the algebra 

example, and by chess programs that only generate 

"plausible" moves for further analysis, is to build 

selectivity into the generator: to generate only struc- 

tures that show promise of being solutions or of being 

along the path toward solutions. The usual consequence 

of doing this is to decrease the rate of branching, not 

to prevent it entirely. Ultimate exponential explosion is 

not avoided--save in exceptionally highly structured 

situations like the algebra example--but only post- 

poned. Hence, an intelligent system generally needs to 

supplement the selectivity of its solution generator with 

other information-using techniques to guide search. 

Twenty years of experience with managing tree 

search in a variety of task environments has produced 

a small kit of general techniques which is part of the 

equipment of every researcher in artificial intelligence 

today. Since these techniques have been described in 

general works like that of Nilsson [1971], they can be 

summarized very briefly here. 

In serial heuristic search, the basic question always 

is: what shall be done next? In tree search, that ques- 

tion, in turn, has two components: (1) from what node 

in the tree shall we search next, and (2) what direction 

shaft we take from that node? Information helpful in 

answering the first question may be interpreted as 

measuring the relative distance of different nodes from 

the goal. Best-first search calls for searching next from 

the node that appears closest to the goal. Information 

helpful in answering the second question--in what 

direction to search--is often obtained, as in the algebra 

example, by detecting specific differences between the 

current nodal structure and the goal structure de- 

scribed by the test of a solution, and selecting actions 

that are relevant to reducing these particular kinds of 

123 

differences. This is the technique known as means-ends 

analysis, which plays a central role in the structure of 

the General Problem Solver. 

The importance of empirical studies as a source of 

general ideas in Ai research can be demonstrated clearly 

by tracing the history, through large numbers of prob- 

lem solving programs, of these two central ideas: 

best-first search and means-ends analysis. Rudiments 

of best-first search were already present, though un- 

named, in the Logic Theorist in 1955. The General 

Problem Solver, embodying means-ends analysis, ap-- 

peared about 1957--but combined it with modified 

depth-first search rather than best-first search. Chess 

programs were generally wedded, for reasons of econ- 

omy of memory, to depth-first search, supplemented 

after about 1958 by the powerful alpha beta pruning 

procedure. Each of these techniques appears to have 

been reinvented a number of times, and it is hard to 

find general, task-independent theoretical discussions 

of problem solving in terms of these concepts until the 

middle or late 1960's. The amount of formal buttressing 

they have received from mathematical theory is still 

miniscule:some theorems about the reduction in searctl 

that can be secured from using the alpha-beta heuristic, 

a couple of theorems (reviewed by Nilsson {1971]) 

about shortest-path search, and some very recent 

theorems on best-first search with a probabilistic 

evaluation function. 

"Weak"  and "Strong" Methods. The techniques we 

have been discussing are dedicated to the control of 

exponential expansion rather than its preventi.on. For 

this reason, they have been properly called "weak 

methods"--methods to be used when the symbol 

system's knowledge or the amount of structure actually 

contained in the problem space are inadequate to 

permit search to be avoided entirely. It is instructive 

to contrast a highly structured situation, which can be 

formulated, say, as a linear programming problem, 

with the less structured situations .of combinatorial 

problems like the traveling salesman problem or sched- 

uling problems. ("Less structured" here refers to the 

insufficiency or nonexistence of relevant theory about 

the structure of the problem space.) 

In solving linear programming problems, a sub- 

stantial amount of computation may be required, but 

the search does not branch. Every step is a step along 

the way to a solution. In solving combinatorial prob- 

lems or in proving theorems, tree search can seldom 

be avoided, and success depends on heuristic search 

methods of the sort we have been describing. 

Not all streams of AI problem-solving research 

have followed the path we have been outlining. An 

example of a somewhat different point is provided by 

the work on theorem-proving systems. Here, ideas 

imported :from mathematics and logic have had a strong 

influence on the direction of inquiry. For example, the 

use of heuristics was resisted when properties of corn- 
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pleteness could not be proved (a bit ironic, since most 

interesting matherraticaI systems are known to he 

undecidable). Since completeness can seldom be proved 

for best-first search heuristics, or for many kinds of 

selective generators, the effect of this requirement was 

rather inhibiting. When theorem-.proving programs 

were continualIy incapacitated by the combinatorial 

explosion of their search trees, thought began to be 

given to sekctive heuristics, which in many cases 

proved to be analogues of heuristics used in general 

problem-seining prog-rams. The set-of-support heuris- 

tic, for example, :is a form of" working backwards, 

adapted to the resolution theorem proving environ- 

meri t ,  

A Smnmary of the Experience° We have now described 

the workings of our second ]aw of qualitative struc-. 

Sure, which asserts that physical symbol systems solve 

problems by means of heuristic search. Beyond that, 

we have examined some subsidiary characteristics of 

heuristic search, in particular the threat that it always 

faces of exponential explosion of the search tree, and 

some of the means it uses to avert that threat. Opinions 

differ as to how effective heuristic search has been as a 

problem solving mechanism---the opinions depending 

on what task domains are considered and what criterion 

of' adequacy is adopted. Success can be guaranteed by 

setting aspiration levels love--or failure by setting them 

high. The evidence might be summed up about as 

follows. Few programs are solving problems at "expert" 

professional levels. Samuel's checker program and 

Feigenbaum and Lederberg's DENDRAL are perhaps 

the best-known exceptions, but one could point also to 

a number of heuristic search programs for such opera- 

tions research problem domains as scheduling and 

integer programming. In a number of domains, pro.- 

grams perform at the level of competent amateurs: 

chess, some theorem--proving domains, many kinds of 

gam.es and puzzles. Human levels have not yet been 

nearly reached by programs that have a complex per- 

ceptual "front end": visual scene recognizers, speech 

understanders, robots that have to maneuver in real 

space and time. Nevertheless, impressive progress has 

been made, and a large body of experience assembled 
about these difficult tasks. 

We do not have deep theoretical explanations for 

the particular pattern of performance that has emerged. 

On empirical grounds, however, we might draw two 

conclusions. First, fi'om what has been learned about 

hum.an expert performance in tasks like chess, it is 

likely that any system capable of matching that per- 

form.ance will have to have access, in its memories, to 

very large stores of semantic information. Second, 

some part of the human superiority in tasks with a 

large perceptual component can be attributed to the 

speciaLpurpose built-in parallel processing structure of 
the human eye and ear. 

In any case, the quality of perfbrm.ance must neces- 
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sadly depend on the characteristics both of' the problem 

domair~s and of the symbol systems ~.~sed to tackle 

them. For most rcaI It% domains i~ which we are in- 

terested, the dornaiu structure has not proved suffi- 

ciently simple to yield (so iar) theorems about com-. 

plexity, or to tell us, other than e rip rieatly~ how large 

real worId problems are in relatioia to the abilities of 

our symbol systems to solve them, Th;~t situation may 

change, but until it does, we rnust rely upon empirical 

explorations, using< the best problem solvers we know 

how to buihff, as a principal source of know!edge about 

the magnitude and characteristics of problem difficulty. 

Even in high!y structured areas tike linear program~ 

ruing, theory has been m.uch more useful in strengthen.- 

ing the heuristics that underlie the most powerful 

solution algorithms than in providing a deep analysis 
of complexity. 

h~tellige~me Without Much Search 

Our analysis of intelligence equated it with ability 

to extract and use information about the structure of 

the probtem space, so as to enable a problem solution 

to be generated as quickly and directly as possible. New 

directions for improving the problem-solving capabilL 

ties of symbol systerns can be equated, then, with new 

ways of extracting and using information. At least 
three such ways can be identified. 

Nonlocal Use of hformatiom First, it has been noted 

by several investigators that information gathered in 

the course off tree search is usually oniy used Iocaffy, to 

help make decisions at the specific node where the 

information was generated. Infnrmation about a chess 

poskion, obtained by dynamic analysis of a subtree of 

contb.uations, is usually -used to evaluate just that 

position, not to evaluate other positions that may 

contain many of the same features. }-{ence, the same 

facts have to be rediscovered repeatedly at diff%rent 

nodes of the search tree. Simply to take the infbrmation 

out of the context in which it arose and use it genera[ty 

does not solve the problem, for the information n'my 

be valid only in a limited range of contexts. In recent 

years, a few exploratory efforts have been made to 

transport in%rmation from its context of origin to 

other appropriate contexts. While it is still too early to 

evaluate the power of this idea, or even exactly how it 

is to be achieved, it shows considerable promise. An 

important line of investigation that Berliner [1975] has 

been pursuing is to use causal analysis to determine 

the range over which a particular piece of information 

is valid. Thus if a weakness in a chess position can be 

traced back to the move that made it, then the same 

weakness can be expected in other positions descendant 
from the same move. 

The HEARSAY speech understanding system has 

taken another approach to making in%rmation globally 

avaiIable. That system seeks to recognize speech strings 

by pursuing a parallel search at a number of different 
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levels: phonemic, lexical, syntactic, and semantic. As 

each of these searches provides and evaluates hypothe- 

ses, it supplics the information it has gained to a com- 

mon "bl.ackboard" that can be read by all the sources. 

This shared information can be used, for exam.pie, to 

eliminate hypotheses, or even whole classes of hypothe- 

ses, that woutd otherwise have to be searched by one 

of the processes. Thus, increasing our ability to use 

tree-search information norflocally offers promise for 

raising the intelligence of problem-solving systems. 

Semantic Recog~:ition Systems° A second active possi- 

bility for raising intelligence is to supply the symbol 

system wit?: a rich body of semantic information about 

the task domain it is dealing with. For example, em- 

pirical research on the skill of chess masters shows that 

a major source of" the rnaster's skill is stored informa- 

tion that enables him to recognize a large number of 

specific f?atures and patterns of features on a chess 

board, and information that uses this recognition to 

propose actions appropriate to the features recognized. 

This general idea has, of course, been incorporated in 

chess programs alnn.ost from the beginning. What is 

new is the realization of the number of such patterns 

and associated information that may have to be stored 

for master-level play: something of the order of 50,000. 

The possibility of substituting recognition for search 

arises because a particular, and especially a rare, pattern 

can contain an enormous amount of information, pro- 

vided that it is closely linked to the structure of the 

problem space. When that structure is "irregular," 

and not subject to simple mathematical description, 

then knowledge of a large number of relevant patterns 

may be the key to intelligent behavior. Whether this is 

so in any particular task domain is a question more 

easily settled by empirical investigation than by theory. 

Our experience with symbol systems richly endowed 

with semantic information and pattern-recognizing 

capabilities for accessing it is still extremely limited. 

The discussion above re%rs specifically to semantic 

information associated with a recognition system. Of 

course, there is also a whole large area of A1 research 

on semantic information processing and the organiza- 

tion of semantic memories that falls outside the scope 

of the topics we are discussing in this paper. 

Selecting Appropriate Representations° A third line of 

inquiry is concerned with the possibility that search 

can be reduced or avoided by selecting an appropriate 

problem space. A standard example that illustrates this 

possibility dramatically is the mutilated checkerboard 

problem. A standard 64 square checkerboard can be 

covered exactly with 32 tiles, each a IX2 rectangle 

covering exactly two squares. Suppose, now, that we 

cut off squares at two diagonally opposite corners of 

the checkerboard, leaving a total of 62 squares. Can 

this mutilated board be covered exactly with 31 tiles? 

With (literally) heavenly patience, the impossibility of 

achieving such a covering can be demonstrated by 
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trying all possible arrangements. The alternative, for 

those with less patience, arid more intelligence, is to 

observe that the two diagonally opposite corners of a 

checkerboard are of the same color. Hence, the mu- 

tilated checkerboard has two less squares of one color 

than of the other. But each tile covers one square of 

one color and one square of' the other, and any set of 

tiles must cover the same number of squares of each 

color. Hence, there is no solution. How can a symbol 

system discover this simple inductive argument as an 

alternative to a hopeless attempt to solve the problem 

by search among all possible coverings? We would 

award a system that found the solution high marks for 

intelligence. 

Perhaps, however, in posing this problem we are 

not escaping from search processes. We have simply 

displaced the search from a space of possible problem 

solutions to a space of possible representations. In any 

event, the whole process of moving from one represen- 

tation to another, and of discovering and evaluating 

representations, is largely unexplored territory in the 

domain of problem-solving research. The laws of quail  

tative structure governing representations remain to be 

discovered. The search for them is almost sure to 

receive considerable attention in the coming decade. 

Conclusion 

That is our account of symbol systems and intelli- 

gence. It has been a long road from Plato's Mer~o to 

the present, but it is perhaps er:couraging that most of 

the progress along that road has been made since the 

turn of the twentieth century, and a large fraction of it 

since the midpoint of the century. Thought was still 

wholly intangible and ineffable until modern formal 

logic interpreted it as the manipulation of formal 

tokens. And it seemed still to inhabit mainly the heaven 

of Platonic ideals, or the equally obscure spaces of the 

human naiad, until computers taught us how symbols 

could be processed by machines. A.M. Turing, whom 

we memorialize this morning, made his great contribu- 

tions at the mid-century crossroads of these develop- 

ments that led from modern logic to the computer. 

Physical Symbol Systems. The study of logic and com- 

puters has revealed to us that intelligence resides in 

physicat symbol systems. This is computer sciences's 

most basic law of qualitative structure. 
Symbol systems are collections of patterns and 

processes, the latter being capable of producing, de- 

stroying and modifying the former. The most important 

properties of patterns is that they can designate objects, 

processes, or other patterns, and that, when they 

designate processes, they can be interpreted. Interpre- 

tation means carrying out the designated process. The 

two most significant classes of symbol systems with 

which we are acquainted are human beings and 

computers. 
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Our present understanding of symbol systems grew, 

as indicated earlier, through a sequence of stages. 

Forrnal logic familiarized us with symbols, treated 

syntactically, as the raw material of thought, and with 

the idea of manipulating them according to carefully 

defined formal processes. The Turing machine made 

the syntactic processing of symbols truly machine-like, 

and affirmed the potential universality of strictly de- 

fined symbol systems. The stored-program concept for 

computers reaffirmed the interpretability of syrnbols, 

already implicit in the Turing machine. List processing 

brought to the forefront the denotational capackies of 

symbols, and defined symbol processing in ways that 

allowed independence from the fixed structt~re of the 

underlying physical machine. By 1956 all of these 

concepts were available, together with hardware for 

implementing them. The study of the inte]ligence of 

symbol systems, the subject of artificial intelligence, 

could begin. 

Heuristic Search. A second law of qualitative structure 

for A1 is that symbol systems solve problems by gener- 

ating potential solutions and testing them, that is, by 

searching. Solutions are usually sought by creating 

symbolic expressions and modifying them sequentially 

until they satisfy the conditions for a solution. Hence 

symbol systems solve problems by searching. Since 

they have finite resources, the search cannot be carried 

out all at once, but must be sequential. It leaves behind 

it either a single path from starting point to goal or, if 

correction and backup are necessary, a whole tree of 

such paths. 

Symbol systems cannot appear intelligent when 

they are surrounded by pure chaos. They exercise in- 

telligence by extracting information from a problem 

domain and using that information to guide their 

search, avoiding wrong turns and circuitous bypaths. 

The problem domain must contain information, that 

is, some degree of order and structure, for the method 

to work. The paradox of the Meno  is solved by the 

observation that information may be remembered, but 

new information may also be extracted Prom the domain 

that the symbols designate. In both cases, the ultimate 

source of the information is the task domain. 

The EmpMeal Base. Artificial intelligence research is 

concerned with how symbol systems must be organized 

in order to behave intelligently. Twenty years of work 

in the area has accumulated a considerable body of 

knowledge, enough to fill several books (it already has), 

and most of it in the form of rather concrete experience 

about the behavior of specific classes of symbol systems 

in specific task domains. Out of this experience, how- 

ever, there have also emerged some generalizations, 

cutting across task domains and systems, about the 

general characteristics of intelligence and its methods 

of implementation. 

We have tried to state some of these generalizations 

this morning. They are mostly qualitative rather than 

mathcrru~ticat~ They have ntorc the flavor o£ geology or 

evolutionary b iobgy  than the t]avor of theoretical 

physics. They are suflici:ntly strong to enable us today 

to design and build moderately intelligent systems for a 

considerable range of task dom;.~ius, as welt as to gain 

a rather deep understamling oF how human intelligence 

works i~a ma~y situations. 

What Next? In our accntmt today, we have mentioned 

open questions as well as settbd on es  there are many 

of' both. We see no abatement of the excitement of 

exploration that has surcoundcd this field over the past 

quarter century. Two resource limits will determine the 

rate of progress over the next suc]n period. One is the 

amount of computing power that will be available. "The 

second, and probably the rnore important, is the 

number of talerlted young computer  scientists who will 

be attracted to this area o[" research as the most chal- 

lenging they can tackle. 

A.M. Turing concluded this famous paper on "Com- 

puting Machinery and httelligence" with the words: 

"We can only see a short distance ahead, but we 

can see plenty there that needs to be done." 

Many of the things Turing saw in 1950 that needed 

to be done have been done, but the agenda is as full as 

ever. Perhaps we read too much into his simple state- 

m ent above, but we like to think that in it Turing rec- 

ognized the fundamental truth that all computer sci- 

entists instinctively know. For  all physical symbol 

systems, condemned as we are to serial search of the 

problem environment, the critical question is always: 

What to do next? 
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It is ACM’s 42nd year and an old debate continues. Is 
computer science a science? An engineering discipline? 

Or merely a technology, an inventor and purveyor of 
computing commodities? What is the intellectual sub- 
stance of the discipline? Is it lasting, or will it fade 
within a generation? Do core curricula in computer 
science and engineering accurately reflect the field? 

How can theory and lab work be integrated in a com- 
puting curriculum? Do core curricula foster compe- 
tence in computing? 

We project an image of a technology-oriented disci- 
pline whose fundamentals are in mathematics and 
engineering-for example, we represent algorithms as 

the most basic objects of concern and programming and 
hardware design as the primary activities. The view 
that “computer science equals programming” is espe- 
cially strong in most of our current curricula: the intro- 
ductory course is programming, the technology is in 
our core courses, and the science is in our electives. 

This view blocks progress in reorganizing the curricu- 
lum and turns away the best students, who want a 
greater challenge. It denies a coherent approach to 

making experimental and theoretical computer science 
integral and harmonious parts of a curriculum. 

Those in the discipline know that computer science 
encompasses far more than programming-for example, 

hardware design, system architecture, designing operat- 
ing system layers, structuring a database for a specific 

application, and validating models are all part of the 
discipline, but are not programming. The emphasis on 
programming arises from our long-standing belief that 

programming languages are excellent vehicles for gain- 
ing access to the rest of the field, a belief that limits our 
ability to speak about the discipline in terms that reveal 
its full breadth and richness. 
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The field has matured enough that it is now possible 
to describe its intellectual substance in a new and com- 
pelling way. This realization arose in discussions 

among the heads of the Ph.D.-granting departments of 
computer science and engineering in their meeting in 
Snowbird, Utah, in July 1984. These and other similar 

discussions prompted ACM and the IEEE Computer 
Society to form task forces to create a new approach. 

In the spring of 1985, ACM President Adele Goldberg 
and ACM Education Board Chairman Robert Aiken ap- 
pointed this task force on the core of computer science 
with the enthusiastic cooperation of the IEEE Computer 
Society. At the same time, the Computer Society 
formed a task force on computing laboratories with the 
enthusiastic cooperation of the ACM. 

We hope that the work of the core task force, embod- 
ied in this report, will produce benefits beyond the 
original charter. By identifying a common core of sub- 

ject matter, we hope to streamline the processes of de- 
veloping curricula and model programs in the two soci- 
eties. The report can be the basis for future discussions 
of computer science and engineering as a profession, 
stimulate improvements in secondary school courses in 
computing, and can lead to a greater widespread appre- 
ciation of computing as a discipline. 

Our goal has been to create a new way of thinking 
about the field. Hoping to inspire general inquiry into 

This article has been condensed from the Report of the ACM 

Task Force on the Core of Computer Science. Copies of the 

report in its entirety may be ordered, prepaid, from 

ACM Order Department 

P.O. Box 64145 
Baltimore, MD 21264 

Please specify order #201880. Prices are $7.00 for ACM 

members, and $12.00 for nonmembers. 
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the nature of our discipline, we sought a framework, 
not a prescription; a guideline, not an instruction. We 
invite you to adopt this framework and adapt it to your 
own situation. 

We are pleased to present a new intellectual frame- 
work for our discipline and a new basis for our 
curricula. 

CHARTER OF THE TASK FORCE 
The task force was given three general charges: 

1. Present a description of computer science that em- 
phasizes fundamental questions and significant ac- 
complishments. The definition should recognize that 
the field is constantly changing and that what is said 
is merely a snapshot of an ongoing process of growth. 

2. Propose a teaching paradigm for computer science 
that conforms to traditional scientific standards, 
emphasizes the development of competence in the 
field, and harmoniously integrates theory, experi- 
mentation, and design. 

3. Give a detailed example of an introductory course 
sequence in computer science based on the curricu- 
lum model and the disciplinary description. 

We immediately extended our task to encompass both 
computer science and computer engineering, because 
we concluded that no fundamental difference exists be- 
tween the two fields in the core material. The differ- 
ences are manifested in the way the two disciplines 
elaborate the core: computer science focuses on analy- 
sis and abstraction; computer engineering on abstrac- 
tion and design. The phrase discipline of computing is 
used here to embrace all of computer science and 
engineering. 

Two important issues are outside the charter of this 
task force. First, the curriculum recommendations in 
this report deal only with the introductory course se- 
quence. It does not address the important, larger ques- 
tion of the design of the entire core curriculum, and 
indeed the suggested introductory course would be 
meaningless without a new design for the rest of the 
core. Second, our specification of an introductory 
course is intended to be an example of an approach to 
introduce students to the whole discipline in a rigorous 
and challenging way, an “existence proof” that our def- 
inition of computing can be put to work. We leave it to 
individual departments to apply the framework to de- 
velop their own introductory courses that meet local 
needs. 

PARADIGMS FOR THE DISCIPLINE 
The three major paradigms, or cultural styles, by which 
we approach our work provide a context for our defini- 
tion of the discipline of computing. The first paradigm, 
theory, is rooted in mathematics and consists of four 
steps followed in the development of a coherent, valid 
theory: 

(1) characterize objects of study (definition); 
(2) hypothesize possible relationships among them 

(theorem); 

(3) determine whether the relationships are true 
(proof); 

(4) interpret results. 

A mathematician expects to iterate these steps (e.g., 
when errors or inconsistencies are discovered. 

The second paradigm, abstraction (modeling), is rooted 
in the experimental scientific method and consists of 
four stages that are followed in the investigation of a 
phenomenon: 

(1) form a hypothesis; 
(2) construct a model and make a prediction; 
(3) design an experiment and collect data; 
(4) analyze results. 

A scientist expects to iterate these steps (e.g., when a 
model’s predictions disagree with experimental evi- 
dence). Even though “modeling” and “experimentation” 
might be appropriate substitutes, we have chosen the 
word “abstraction” for this paradigm because this usage 
is common in the discipline. 

The third paradigm, design, is rooted in engineering 
and consists of four steps followed in the construction 
of a system (or device) to solve a given problem: 

(1) state requirements; 
(2) state specifications; 
(3) design and implement the system; 
(4) test the system. 

An engineer expects to iterate these steps (e.g., when 
tests reveal that the latest version of the system does 
not satisfactorily meet the requirements). 

Theory is the bedrock of the mathematical sciences: 
applied mathematicians share the notion that science 
advances only on a foundation of sound mathematics. 
Abstraction (modeling) is the bedrock of the natural 
sciences: scientists share the notion that scientific prog- 
ress is achieved primarily by formulating hypotheses 
and systematically following the modeling process to 
verify and validate them. Likewise, design is the bed- 
rock of engineering: engineers share the notion that 
progress is achieved primarily by posing problems and 
systematically following the design process to construct 
systems that solve them. Many debates about the rela- 
tive merits of mathematics, science, and engineering 
are implicitly based on an assumption that one of the 
three processes (theory, abstraction, or design) is the 
most fundamental. 

Closer examination, however, reveals that in com- 
puting the three processes are so intricately intertwined 
that it is irrational to say that any one is fundamental. 
Instances of theory appear at every stage of abstraction 
and design, instances of modeling at every s,tage of the- 
ory and design, and instances of design at every stage of 
theory and abstraction. 

Despite their inseparability, the three paradigms are 
distinct from one another because they represent sepa- 
rate areas of competence. Theory is concerned with the 
ability to describe and prove relationships among ob- 
jects. Abstraction is concerned with the ability to use 
those relationships to make predictions that can be 
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compared with the world. Design is concerned with the 
ability to implement specific instances of those relation- 
ships and use them to perform useful actions. Applied 
mathematicians, computational scientists, and design 
engineers generally do not have interchangeable skills. 

Moreover, in computing we tend to study computa- 
tional aids that support people engaged in information- 

transforming processes. On the design side, for exam- 

ple, sophisticated VLSI design and simulation systems 
enable the efficient and correct design of microcir- 
cuitry, and programming environments enable the 

efficient design of software. On the modeling side, su- 
percomputers evaluate mathematical models and make 

predictions about the world, and networks help dissem- 
inate findings from scientific experiments. On the the- 

ory side, computers help prove theorems, check the 
consistency of specifications, check for counterexam- 
ples, and demonstrate test cases. 

Computing sits at the crossroads among the central 
processes of applied mathematics, science, and engi- 
neering. The three processes are of equal-and funda- 
mental-importance in the discipline, which is a 
unique blend of interaction among theory, abstraction, 
and design. The binding forces are a common interest 
in experimentation and design as information trans- 
formers, a common interest in computational support of 
the stages of those processes, and a common interest in 
efficiency. 

THE ROLE OF PROGRAMMING 
Many activities in computing are not programming-for 
example, hardware design, system architecture, operat- 

ing system structure, designing a database application, 
and validating models-therefore the notion that “com- 

puter science equals programming” is misleading. What 
is the role of programming in the discipline? In the 
curriculum? 

Clearly programming is part of the standard practices 
of the discipline and every computing major should 
achieve competence in it. This does not, however, im- 
ply that the curriculum should be based on program- 

ming or that the introductory courses should be pro- 
gramming courses. 

It is also clear that access to the distinctions of any 
domain is given through language, and that most of the 
distinctions of computing are embodied in program- 
ming notations. Programming languages are useful tools 
for gaining access to the distinctions of the discipline. 
We recommend, therefore, that programming be a part 
of the competence sought by the core curriculum, and 
that programming languages be treated as useful vehi- 
cles for gaining access to important distinctions of 

computing. 

A DESCRIPTION OF COMPUTING 

Our description of computing as a discipline consists 
of four parts: (1) requirements; (2) short definition; 
(3) division into subareas; and (4) elaboration of suba- 
reas. Our presentation consists of four passes, each 

going to a greater level of detail. 
What we say here is merely a snapshot of a changing 

and dynamic field. We intend this to be a “living defini- 

tion,” that can be revised from time to time to reflect 
maturity and change in the field. We expect revisions 

to occur most frequently in the details of the subareas, 
occasionally in the list of subareas, and rarely in the 
short definition. 

Requirements 
There are many possible ways to formulate a definition. 
We set five requirements for ours: 

1. It should be understandable by people outside the 
field. 

2. It should be a rallying point for people inside the 
field. 

3. It should be concrete and specific, 

4. It should elucidate the historical roots of the disci- 
pline in mathematics, logic, and engineering. 

5. It should set forth the fundamental questions and 
significant accomplishments in each area of the 
discipline. 

In the process of formulating a description, we consid- 
ered several other previous definitions and concluded 
that a description meeting these requirements must 
have several levels of complexity. The other definitions 
are briefly summarized here. 

In 1967, Newell, Perlis, and Simon [5] argued that 

computer science is the study of computers and the 
major phenomena that surround them, and that all the 
common objections to this definition could just as well 
be used to demonstrate that other sciences are not sci- 
ence. Despite their eloquence, too many people view 
this as a circular definition that seems flippant to out- 
siders. It is, however, a good starting point because 
the definition we present later can be viewed as an 
enumeration of the major phenomena surrounding 
computers. 

A slightly more elaborate version of this idea was 
recently used by the Computing Sciences Accreditation 
Board (CSAB), which said, “Computer science is the 
body of knowledge concerned with computers and 
computation. It has theoretical, experimental, and de- 

sign components and includes (1) theories for under- 
standing computing devices, programs, and systems; 
(2) experimentation for the development and testing of 
concepts; (3) design methodology, algorithms, and tools 
for practical realization; and (4) methods of analysis for 
verifying that these realizations meet requirements.” 

A third definition is, “Computer science is the study 
of knowledge representations and their implementa- 
tions.” This definition suffers from excessive abstrac- 
tion and few people would agree on the meaning of 
knowledge representation. A related example that suf- 
fers the same fate is, “Computer science is the study of 

abstraction and the mastering of complexity,” a state- 
ment that also applies to physics, mathematics, or 
philosophy. 

A final observation comes from Abelson and Suss- 
man, who say, “The computer revolution is a revolu- 
tion in the way we think and in the way we express 

what we think. The essence of this change is the emer- 
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gence of what might best be called procedural espiste- 
mology-the study of the structure of knowledge from 
an imperative point of view, as opposed to the more 
decla:rative point of view taken by classical mathemati- 

cal subjects. Mathematics provides a framework for 
dealing precisely with notions of ‘what is.’ Computation 
provides a framework for dealing precisely with notions 

of ‘how to’ [I].” 

Short Definition 
The d.iscipline of computing is the systematic study of 

algorithmic processes that describe and transform infor- 
mation: their theory, analysis, design, efficiency, imple- 
mentation, and application. The fundamental question 

underlying all of computing is, “What can be (effi- 
ciently) automated?” 

Division into Subareas 
We grappled at some length with the question of divid- 
ing the discipline into subareas. We began with a pref- 

erence for a small number of subareas, such as model 
versu.s implementation, or algorithm versus machine. 

However, the various candidates we devised were too 
abstract, the boundaries between divisions were too 
fuzzy, and most people would not have identified com- 
fortably with them. 

Then we realized that the fundamentals of the disci- 
pline are contained in three basic processes-theory, 
abstraction, and design-that are used by the discipli- 
nary subareas to accomplish their goals. Thus, a de- 
scription of the discipline’s subareas and their relation 

to these three basic processes would be useful. To qual- 
ify as a subarea, a segment of the discipline must satisfy 
four criteria: 

(I) underlying unity of subject matter; 

(2) substantial theoretical component; 
(3) significant abstractions; 
(4) important design and implementation issues. 

Moreover, we felt that each subarea should be identi- 
fied with a research community, or set of related com- 

munities, that sustains its own literature. 
Theory includes the processes for developing 

the underlying mathematics of the subarea. These 

processes are supported by theory from other areas. For 
example, the subarea of algorithms and data structures 
contains complexity theory and is supported by graph 
theory. Abstraction deals with modeling potential im- 
plementations. These models suppress detail while re- 

taining essential features; they are amenable to analysis 
and provide means for calculating predictions of the 
modeled system’s behavior. Design deals with the proc- 
ess of specifying a problem, transforming the problem 
statement into a design specification, and repeatedly 
inventing and investigating alternative solutions until a 
reliable, maintainable, documented, and tested design 

that meets cost criteria is achieved. 
We discerned nine subareas that cover the field: 

1. Algorithms and data structures 
2. Programming languages 

3. Architecture 

4. Numerical and symbolic computation 
5. Operating systems 
6. Software methodology and engineering 

7. Database and information retrieval systems 
8. Artificial intelligence and robotics 

9. Human-computer communication 

Elaboration of Subareas 
To present the content of the subareas, we found it 

useful to think of a 9 x 3 matrix, as shown in Figure 1. 

Each row is associated with a subarea, and theory, ab- 

straction, and design each define a column. 
Each square of the matrix will be filled in with spe- 

cific statements about that subarea component; these 

statements will describe issues of concern and signifi- 
cant accomplishments. 

Certain affinity groups in which there is scientific 

literature are not shown as subareas because they are 
basic concerns throughout the discipline. For example, 
parallelism surfaces in all subareas (there are parallel 

algorithms, parallel languages, parallel architectures, 
etc.) and in theory, abstraction, and design. !Similar con- 
clusions hold for security, reliability, and performance 

evaluation. 
Computer scientists will tend to associate with the 

first two columns of the matrix, and computer engi- 
neers with the last two. The full description of comput- 

ing, as specified here, is given in the appendix. 

CURRICULUM MODEL 

Competence in the Discipline 
The goal of education is to develop compete:nce in a 
domain. Competence, the capability for effective action 

1 Algorithms and data 

structures 

Theory Abstraction Design 

2 Programming languages 

3 Architecture 

4 Numerical and symbolic 

computation 

5 Operating systems 

6 Software methodology and 

engineering 

7 Databases and information 

retrieval 

8 Artificial intelligence and 

robotics 

9 Human-computer 

communication 

FIGURE 1. Definition Matrix for the Computing Discipline 
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is an assessment of individual performance against the 
standard practices of the field. The criteria for assess- 
ment are grounded in the history of the field. The edu- 
cational process that leads to competence has five steps: 
(1) motivate the domain; (2) demonstrate what can be 
accomplished in the domain; (3) expose the distinctions 
of the domain; (4) ground the distinctions in history; 
and (5) practice the distinctions [4]. 

This model has interesting implications for curricu- 
lum design. The first question it leads to is, In what 
areas of computing must majors be competent? There 
are two broad areas of competence: 

1. Discipline-Oriented Thinking: The ability to invent 
new distinctions in the field, leading to new modes 
of action and new tools that make those distinctions 
available for others to use. 

2. Tool Use: The ability to use the tools of the field for 
effective action in other domains. 

We suggest that discipline-oriented thinking is the pri- 
mary goal of a curriculum for computing majors, and 
that majors must be familiar enough with the tools to 
work effectively with people in other disciplines to help 
design modes of effective action in those disciplines. 

The inquiry into competence reveals a number of 
areas where current core curricula in computing is 
inadequate. For example, the historical context of the 
computing field is often deemphasized, leaving many 
graduates ignorant of computing history and destined to 
repeat its mistakes. Many computing graduates wind up 
in business data processing, a domain in which most 
computing curricula do not seek to develop compe- 
tence; whether computing departments or business de- 
partments should develop that competence is an old 
controversy. Discipline-oriented thinking must be based 
on solid mathematical foundations, yet theory is not an 
integral part of most computing curricula. The standard 
practices of the computing field include setting up and 
conducting experiments, contributing to team projects, 
and interacting with other disciplines to support their 
interests in effective use of computing, but most curric- 
ula neglect laboratory exercises, team projects, or inter- 
disciplinary studies. 

The question of what results should be achieved by 
computing curricula has not been explored thoroughly 
in past discussions, and we will not attempt a thorough 
analysis here. We do strongly recommend that this 
question be among the first considered in the design of 
new core curricula for computing. 

Lifelong Learning 
The curriculum should be designed to develop an ap- 
preciation for learning which graduates will carry with 
them throughout their careers. Many courses are de- 
signed with a paradigm that presents “answers” in a 
lecture format, rather than focusing on the process of 
questioning that underlies all learning. We recommend 
that the follow-on committee consider other teaching 
paradigms which involve processes of inquiry, an ori- 
entation to using the computing literature, and the 

development of a commitment to a lifelong process of 
learning. 

INTRODUCTORY SEQUENCE 
In this curriculum model, the motivation and demon- 
stration of the domain must precede instruction and 
practice in the domain. The purpose of the introductory 
course sequence is precisely this. The principal areas of 
computing-in which majors must develop compe- 
tence-must be presented to students with sufficient 
depth and rigor that they can appreciate the power of 
the areas and the benefits from achieving competence 
in them. The remainder of the curriculum must be 
carefully designed to systematically explore those 
areas, exposing new concepts and distinctions, and 
giving students practice in them. 

We therefore recommend that the introductory 
course consist of regular lectures and a closely coordi- 
nated weekly laboratory. The lectures should empha- 
size fundamentals; the laboratories technology and 
know-how. 

This model is traditional in the physical sciences and 
engineering: lectures emphasize enduring principles 
and concepts while laboratories emphasize the tran- 
sient material and skills relating to the current technol- 
ogy. For example, lectures would discuss the design 
and analysis of algorithms, or the organization of net- 
work protocols in functional layers. In the correspond- 
ing laboratory sessions, students would write programs 
for algorithms analyzed in lecture and measure their 
running times, or instal and test network interfaces and 
measure their packet throughputs. 

Within this recommendation, the first courses in 
computer science would not only introduce program- 
ming, algorithms, and data structures, but introduce 
material from all the other subdisciplines as well. 
Mathematics and other theory would be well integrated 
into the lectures at appropriate points. 

We recommend that the introductory course contain 
a rigorous, challenging survey of the whole discipline. 
The physics model, exemplified by the Feynman Lec- 
tures in Physics, is a paradigm for the introductory 
course we envisage. 

We emphasize that simply redesigning the introduc- 
tory course sequence following this recommendation 
without redesigning the entire undergraduate curricu- 
lum would be a serious mistake. The experience of 
physics departments contains many lessons for comput- 
ing departments in this regard. 

Prerequisites 
We assume that computing majors have a modest back- 
ground in programming in some language and some 
experience with computer-based tools such as word 
processors, spreadsheets, and databases. Given the 
widening use of computers in high schools and at 
home, it might seem that universities could assume 
that most incoming students have such a background 
and provide a “remedial” course in programming for 
the others. We have found, however, that the assump- 
tion of adequate high school preparation in program- 
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ming is quite controversial and there is evidence that 
adequate preparation is rare. We therefore recommend 

that c:omputing departments offer an introduction to 
programming and computer tools that would be a pre- 
requisite (or corequisite) for the introductory courses. 

We further recommend that departments provide an 
advanced placement procedure so that students with 

adequate high school preparation can bypass this 
course. 

Formal prerequisites and corequisites in mathematics 
are more difficult to state and will depend on local 

circumstances. However, accrediting boards in comput- 

ing require considerable mathematics, including dis- 
crete mathematics, differential and integral calculus, 

and probability and statistics. These requirements are 
often exceeded in the better undergraduate programs. 
In our description of a beginning computing curricu- 

lum, we have spelled out in some detail what mathe- 
matics is applicable in each of the nine identified areas 
of computing. Where possible we have displayed the 
required mathematical background for each of the 
teaching modules we describe. This will allow individ- 
ual departments to synchronize their own mathemati- 
cal requirements and courses with the material in the 
modules. In some cases it may be appropriate to intro- 
duce appropriate underlying mathematical topics as 
needed for the development of particular topics in com- 

puting. In general, we recommend that students see 
applications of relevant mathematics as early as possi- 
ble in their computing studies. 

Modular Organization 

The introductory sequence should bring out the under- 
lying unity of the field and should flow from topic to 
topic in a pedagogically natural way. It would therefore 
be inadequate to organize the course as a sequence of 
nine sections, one for each of the subareas; such a map- 
ping would appear to be a hodge-podge, with difficult 
transitions between sections. An ordering of topics that 

meet these requirements is: 

Fundamental algorithm concepts 
Computer organization (“von Neumann”) 
Mathematical programming 

Data structures and abstraction 
Limits of computability 
Operating systems and security 

Distributed computing and networks 
Models in artificial intelligence 
File and database systems 
Parallel computation 
Human interface 

We have grouped the topics into 11 modules. Each 
module includes challenging material representative of 
the subject matter without becoming a superficial sur- 
vey of every aspect or topic. Each module draws mate- 
rial from several squares of the definition matrix as 
appropriate. As a result, many modules will not corre- 
spond one-to-one with rows of the definition matrix. 
For example, the first module in our example course is 

entitled Fundamental Algorithm Concepts. It covers the 
role of formalism and theory, methods in programming, 

programming concepts, efficiency, and specific algo- 

rithms, draws information from the first, second, 
fourth, and sixth rows of the definition matrix and 

deals only with sequential algorithms. Later modules, 
on Distributed Computing and Networks, and on Paral- 
lel Computation, extend the material in the first mod- 

ule and draw new material from the third and fifth 
rows of the definition matrix. 

As a general approach, each module contains lectures 

that cover the required theory and most abstractions. 
Theory is generally not introduced until it is: needed. 
Each module is closely coupled with laboratory ses- 

sions, and the nature of the laboratory assignments is 
included with the module specifications. Our specifica- 
tion is drawn up for a three-semester course sequence 
containing 42 lectures and 35 scheduled laboratory ses- 
sions per semester. Our specification is not included 
here, but is in the full report. 

We reemphasize that this specification is intended 
only to be an example of a mapping from the discipli- 
nary description to an introductory course sequence, 
not a prescription for all introductory courses. Other 
approaches are exemplified by existing introductory 

curricula at selected colleges and universities. 

LABORATORIES 
We have described a curriculum that separates princi- 
ples from technology while maintaining coh.erence be- 
tween the two. We have recommended that lectures 

deal with principles and laboratories with technology, 
with the two being closely coordinated. 

The laboratories serve three purposes: 

Laboratories should demonstrate how principles cov- 
ered in the lectures apply to the design, implementa- 
tion, and testing of practical software and hardware. 
They should provide concrete experiences that help 
students understand abstract concepts. These experi- 
ences are essential to sharpen students’ intuition 
about practical computing, and to empha.size the in- 
tellectual effort in building correct, efficient com- 
puter programs and systems. 

Laboratories should emphasize processes leading to 
good computing know-how. They should emphasize 
programming, not programs; laboratory techniques; 

understanding of hardware capabilities; correct use 
of software tools; correct use of documentation; and 
proper documentation of experiments and projects. 
Many software tools will be required on host com- 
puters to assist in constructing, controlling, and 
monitoring experiments on attached subsystems; the 
laboratory should teach proper use of these tools: 
Laboratories should introduce experimental meth- 
ods, including use and design of experiments, soft- 
ware and hardware ‘monitors, statistical #analysis of 
results, and proper presentation of findings. Students 

should learn to distinguish careful experiments from 
casual observations. 

14 Communications of the ACM January 1989 Volume 32 Number 1 



To meet these goals, laboratory work should be care- 
fully planned and supervised. Students should attend 
labs at specified times, nominally three hours per week. 
Lab assignments should be planned, and written de- 
scriptions of the purposes and methodology of each 
experiment should be given to the students. The depth 

of description should be commensurate with students’ 
prior lab experience: more detail is required in early 
laboratories. Lab assignments should be carried out un- 
der the guidance of a lab instructor who ensures that 

each student follows correct methodology. 

2. Hardware and software must be fully maintained, 

Malfunctioning equipment will frustrate students 
and interfere with learning. Appropriate staff must 
be available to maintain the hardware and software 
used in the lab. The situation is analogous to labora- 
tories in other disciplines. 

The labs associated with the introductory courses 

will require close supervision and should contain well- 
planned activities. This implies that more staff will be 
required per student for these laboratories than for 
more advanced ones. 

The lab problems should be coordinated with mate- 
rial in the lecture parts of the course. Individual lab 

problems in general will deal with combinations of 

hardware and software. Some lab assignments empha- 
size technologies and tools that ease the software devel- 

opment process. Others emphasize analyzing and 
measuring existing software or comparing known algo- 
rithms. Others emphasize program development based 
on principles learned in class. 

3. Full functionality is important. (This includes ade- 

quate response time on shared systems.) Restricting 
students to small subsets of a language or system 
may be useful in initial contacts, but the restrictions 
should be lifted as the students progress. 

4. Good programming tools are needed. Compilers get a 
lot of attention, but other programming tools are 
used as often. In UNIX systems, for example, stu- 
dents should use editors like emacs and learn to use 
tools like the shell, grep, awk, and make. Storage 

and processing facilities must be sufficient to make 
such tools available for use in the lab. 

5. Adequate support for hardware and instrumentation 

must be provided. Some projects may require stu- 
dents to connect hardware units together, take 
measurements of signals, monitor data paths, and 
the like. A sufficient supply of small parts, connec- 
tors, cables, monitoring devices, and test instruments 
must be available. 

Laboratory assignments should be self-contained in 
the sense that an average student should be able to 
complete the work in the time allocated. Laboratory 

assignments should encourage students to discover and 
learn things for themselves. Students should be re- 
quired to maintain a proper lab book documenting ex- 
periments, observations, and data. Students should also 
be required to maintain their software and to build 
libraries that can be used in later lab projects. 

We expect that, in labs as in lectures, students will 
be assigned homework that will require using com- 
puters outside the supervised realm of a laboratory. In 
other words, organized laboratory sessions will supple- 
ment, not replace, the usual programming and other 

written assignments. 

The IEEE Computer Society Task Force on Goal Ori- 

ented Laboratory Development has studied this subject 
in depth. Their report includes a discussion of the re- 
sources (i.e., staff and facilities) needed for laboratories 
at all levels of the curriculum. 

ACCREDITATION 
This work has been conducted with the intent that 
example courses be consistent with current guidelines 

of the Computing Sciences Accreditation Board (CSAB). 
The details of the mapping of this content to CSAB 
guidelines does not fall within the scope of this com- 
mittee. 

In a substantial number of labs dealing with program 
development, the assignment should be to modify or 

complete an existing program supplied by the instruc- 

tor. This forces the student to read well-written pro- 
grams, provides experience with integration of soft- 

ware, and results in a larger and more satisfying 
program for the student. 

CONCLUSION 

Computing technology constantly changes. It is diffi- 
cult, therefore, to give a detailed specification of the 

hardware systems, software systems, instruments, and 
tools that ought to be in a laboratory. The choice of 
equipment and staffing in laboratories should be guided 

by the following principles: 

This report has been designed to provoke new thinking 
about computing as a discipline by exhibiting the disci- 
pline’s content in a way that emphasizes the funda- 

mental concepts, principles, and distinctions. It has also 
suggested a redesign of the core curriculum according 
to an education model used in other disciplines: dem- 

onstrating the existence of useful distinctions followed 
by practice that develops competence. The method is 
illustrated by a rigorous introductory course that puts 
the concepts and principles into the lectures and tech- 
nology into closely coordinated laboratories. 

1. Laboratories should be equipped with up-to-date 
systems and languages. Programming languages have 
a significant effect on shaping a student’s view of 
computing. Laboratories should deploy systems that 
encourage good habits in students; it is especially 
important to avoid outdated systems (hardware and 
software) in core courses. 

A department cannot simply replace its current intro- 
ductory sequence with the new one; it must redesign 
the curriculum so that the new introduction is part of a 
coherent whole. For this reason, we recommend that 
the ACM establish a follow-on committee to complete 
the redesign of the core curriculum. 

Many practical problems must be dealt with before a 
new curriculum model can become part of the field. 
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For example, 

1. Faculties will need to redesign their curricula based 

on a new conceotual formulation. 

4. Teaching assistants and faculty are not familiar with 
the new view. 

5. Good high school preparation in computing is rare. 

2. No textbooks or educational materials based on the We recognize that many of our recommendations are 

fra.mework proposed here are currently available. challenging and will require substantial work to imple- 

3. Most departments have inadequate laboratories, ment. We are convinced that the improvements in 

facilities, and materials for the educational task computing education from the proposals here are worth 

suggested here. the effort, and invite you to join us in achieving them. 

APPENDIX 

A DEFINITION OF COMPUTING AS A DISCIPLINE 

Computer science and engineering is the systematic 
study of algorithmic processes-their theory, analysis, 
design, efficiency, implementation, and application- 
that describe and transform information. The funda- 
mental question underlying all of computing is, What 
can be (efficiently) automated [Z, 31. This discipline was 

born in the early 1940s with the joining together of 
algorithm theory, mathematical logic, and the inven- 
tion of the stored-program electronic computer. 

The roots of computing extend deeply into mathe- 
matics and engineering. Mathematics imparts analysis 

to the field; engineering imparts design. The discipline 
embraces its own theory, experimental method, and 
engineering, in contrast with most physical sciences, 
which are separate from the engineering disciplines 
that apply their findings (e.g., chemistry and chemical 

engineering principles). The science and engineering 
are inseparable because of the fundamental interplay 
between the scientific and engineering paradigms 
within the discipline. 

For several thousand years, calculation has been a 

principal concern of mathematics. Many models of 
physical phenomena have been used to derive equa- 
tions .whose solutions yield predictions of those phe- 
nomena-for example, calculations of orbital trajecto- 
ries, weather forecasts, and fluid flows. Many general 
methods for solving such equations have been de- 
vised-for example, algorithms for systems of linear 

equations, differential equations, and integrating func- 
tions. For almost the same period, calculations that aid 
in the design of mechanical systems have been a princi- 

pal concern of engineering. Examples include algo- 
rithms for evaluating stresses in static objects, calculat- 

ing momenta of moving objects, and measuring 
distances much larger or smaller than our immediate 
perception. 

One product of the long interaction between engi- 
neering and mathematics has been mechanical aids for 
calculating. Some surveyors’ and navigators’ instru- 

ments date back a thousand years. Pascal and Leibniz 
built arithmetic calculators in the middle 1600s. In the 
183Os, Babbage conceived of an “analytical engine” that 
could mechanically and without error evaluate loga- 
rithms, trigonometric functions, and other general 
arithmetic functions. His machine, never completed, 
served as an inspiration for later work. In the 192Os, 

Bush constructed an electronic analog computer for 
solving general systems of differential equations. In the 

same period, electromechanical calculating machines 
capable of addition, subtraction, multiplicati.on, divi- 
sion, and square root computation became available. 
The electronic flip-flop provided a natural bridge from 

these machines to digital versions with no moving 
parts. 

Logic is a branch of mathematics concerned with cri- 
teria of validity of inference and formal principles of 
reasoning. Since the days of Euclid, it has been a tool 

for rigorous mathematical and scientific argument. In 
the 19th century a search began for a universal system 
of logic that would be free of the incompletenesses ob- 
served in known deductive systems. In a complete sys- 
tem, it would be possible to determine mechanically 

whether any given statement is either true or false. In 
1931, Godel published his “incompleteness theorem,” 
showing that there is no such system. In the late 193Os, 
Turing explored the idea of a universal computer that 

could simulate any step-by-step procedure of any other 
computing machine. His findings were similar to 
Godel’s: some well-defined problems cannot be solved 
by any mechanical procedure. Logic is important not 
only because of its deep insight into the limits of auto- 
matic calculation, but also because of its ins:ight that 

strings of symbols, perhaps encoded as numbers, can be 
interpreted both as data and as programs. 

This insight is the key idea that distinguishes the 
stored program computer from calculating machines. 

The steps of the algorithm are encoded in a machine 
representation and stored in the memory for later de- 
coding and execution by the processor. The machine 

code can be derived mechanically from a higher-level 
symbolic form, the programming language. 

It is the explicit and intricate intertwining of the an- 

cient threads of calculation and logical symb’ol manipu- 
lation, together with the modern threads of electronics 

and electronic representation of information, that gave 
birth to the discipline of computing. 

We identified nine subareas of computing: 

1. Algorithms and data structures 

2. Programming languages 
3. Architecture 
4. Numerical and symbolic computation 
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5. Operating systems 
6. Software methodology and engineering 
7. Databases and information retrieval 
8. Artificial intelligence and robotics 
9. Human-Computer communication 

Each has an underlying unity of subject matter, a sub- 
stantial theoretical component, significant abstractions, 
and substantial design and implementation issues. The- 
ory deals with the underlying mathematical develop- 
ment of the subarea and includes supporting theory 
such as graph theory, combinatorics, or formal lan- 
guages. Abstraction (or modeling) deals with models of 
potential implementations; the models suppress detail, 
while retaining essential features, and provide means 
for predicting future behavior. Design deals with the 
process of specifying a problem, deriving requirements 
and specifications, iterating and testing prototypes, and 
implementing a system. Design includes the experi- 
mental method, which in computing comes in several 
styles: measuring programs and systems, validating hy- 
potheses, and prototyping to extend abstractions to 
practice. 

Although software methodology is essentially con- 
cerned with design, it also contains substantial ele- 
ments of theory and abstraction. For this reason, we 
have identified it as a subarea. On the other hand, 
parallel and distributed computation are issues that 
pervade all the subareas and all their components (the- 
ory, abstraction, and design); they have been identified 
neither as subareas nor as subarea components. 

The subsequent numbered sections provide the de- 
tails of each subarea in three parts-theory, abstrac- 
tion, and design. The boundaries between theory and 
abstraction, and between abstraction and design, are 
necessarily fuzzy; it is a matter of personal taste where 
some of the items go. 

Our intention is to provide a guide to the discipline 
by showing its main features, not a detailed map. It is 
important to remember that this guide to the discipline 
is not a plan for a course or a curriculum; it is merely a 
framework in which a curriculum can be designed. It is 
also important to remember that this guide to the disci- 
pline is a snapshot of an organism undergoing constant 
change. It will require reevaluation and revision at reg- 
ular intervals. 

1. ALGORITHMS AND DATA STRUCTURES 
This area deals with specific classes of problems and 
their efficient solutions. Fundamental questions in- 
clude: For given classes of problems, what are the best 
algorithms? How much storage and time do they re- 
quire? What is the tradeoff between space and time? 
What is the best way to access the data? What is 
the worst case of the best algorithms? How well do 
algorithms behave on average? How general are algo- 
rithms-i.e., what classes of problems can be dealt with 
by similar methods? 

1.1 Theory 
Major elements of theory in the area of algorithms and 
data structures are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Computability theory, which defines what machines 
can and cannot do. 
Computational complexity theory, which tells how 
to measure the time and space requirements of com- 
putable functions and relates a problem’s size with 
the best- or worst-case performance of algorithms 
that solve that problem, and provides methods for 
proving lower bounds on any possible solution to a 
problem. 
Time and space bounds for algorithms and classes of 
algorithms. 
Levels of intractability: for example, classes of prob- 
lems solvable deterministically in polynomially 
bounded time (P-problems); those solvable nondeter- 
ministically in polynomially bounded time (NP- 
problems); and those solvable efficiently by parallel 
machines (NC-problems). 
Parallel computation, lower bounds, and mappings 
from dataflow requirements of algorithms into com- 
munication paths of machines. 
Probabilistic algorithms, which give results correct 
with sufficiently high probabilities much more effi- 
ciently (in time and space) than determinate algo- 
rithms that guarantee their results. Monte Carlo 
methods. 
Cryptography. 
The supporting areas of graph theory, recursive 
functions, recurrence relations, combinatorics, cal- 
culus, induction, predicate and temporal logic, se- 
mantics, probability, and statistics. 

1.2 Abstraction 
Major elements of abstraction in the area of algorithms 
and data structures are 

1. Efficient, optimal algorithms for important classes of 
problems and analyses for best, worst, and average 
performance. 
Classifications of the effects of control and data 
structure on time and space requirements for var- 
ious classes of problems. 
Important classes of techniques such as divide-and- 
conquer, Greedy algorithms, dynamic programming, 
finite state machine interpreters, and stack machine 
interpreters. 
Parallel and distributed algorithms; methods of parti- 
tioning problems into tasks that can be executed in 
separate processors. 

1.3 Design 
Major elements of design and experimentation in the 
area of algorithms and data structures are: 

1. Selection, implementation, and testing of algorithms 
for important classes of problems such as searching, 
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sorting, random-number generation, and textual 
pattern matching. 

2. Implementation and testing of general methods 
applicable across many classes of problems, such as 
hashing, graphs, and trees. 

3. Implementation and testing of distributed algorithms 
such as network protocols, distributed data updates, 
semaphores, deadlock detectors, and synchroniza- 
tion methods. 

4. Implementation and testing of storage managers such 
as garbage collection, buddy system, lists, tables, and 

p@w 
6. Extensive experimental testing of heuristic algo- 

rithms for combinatorial problems. 
6. Cryptographic protocols that permit secure authen- 

tication and secret communication. 

2. PROGRAMMING LANGUAGES 
This area deals with notations for virtual machines that 
execute algorithms, with notations for algorithms and 
data, and with efficient translations from high-level 
languages into machine codes. Fundamental questions 
include: What are possible organizations of the virtual 
mach:ine presented by the language (data types, opera- 
tions, control structures, mechanisms for introducing 
new types and operations)? How are these abstractions 
implemented on computers? What notation (syntax) 
can be used effectively and efficiently to specify what 
the computer should do? 

2.1 Theory 
Major elements of theory in the area of programming 
languages are: 

1. Formal languages and automata, including theories 
of parsing and language translation. 

2, Turing machines (base for procedural languages), 
Post Systems (base for string processing languages), 
X-calculus (base for functional languages). 

3. Formal semantics: methods for defining mathemati- 
cal models of computers and the relationships 
among the models, language syntax, and implemen- 
tation. Primary methods include denotational, alge- 
braic, operational, and axiomatic semantics. 

4. As supporting areas: predicate logic, temporal logic, 
modern algebra and mathematical induction. 

2.2 Abstraction 

Major elements of abstraction in the area of program- 
ming languages include: 

1. Classification of languages based on their syntactic 
and dynamic semantic models; e.g., static typing, 
dynamic typing, functional, procedural, object- 
oriented, logic, specification, message passing, and 
dataflow. 

2. Classification of languages according to intended 
application area; e.g., business data processing, sim- 
ulation, list processing, and graphics. 

3. Classification of major syntactic and semantic 
models for program structure; e.g., procedure hierar- 
chies, functional composition, abstract data types, 
and communicating parallel processes. 

4. Abstract implementation models for each major type 
of language. 

5. Methods for parsing, compiling, interpretation, and 
code optimization. 

6. Methods for automatic generation of parsers, scan- 
ners, compiler components, and compilers. 

2.3 Design 
Major elements of design and experimentation in the 
area of programming languages are: 

1. 

2. 

3. 
4. 

5. 

6. 

Specific languages that bring together a particular 
abstract machine (semantics) and syntax to form a 
coherent implementable whole. Examples: proce- 
dural (COBOL, FORTRAN, ALGOL, Pascal, Ada, C), 
functional (LISP), dataflow (SISAL, VAL), object- 
oriented (Smalltalk, CLU), logic (Prolog), strings 
(SNOBOL), and concurrency (CSP, Occam, Concur- 
rent Pascal, Modula 2). 
Specific implementation methods for partic:ular 
classes of languages: run-time models, static and dy- 
namic execution methods, typing checking, storage 
and register allocation, compilers, cross compilers, 
and interpreters, systems for finding parallelism in 
programs. 
Programming environments. 
Parser and scanner generators (e.g., YACC, LEX), 
compiler generators. 
Programs for syntactic and semantic error checking, 
profiling, debugging, and tracing. 
Applications of programming-language methods to 
document-processing functions such as c:reating 
tables, graphs, chemical formulas, spreadsheets 
equations, input and output, and data ha:ndling. 
Other applications such as statistical processing. 

3. ARCHITECTURE 
This area deals with methods of organizing hardware 
(and associated software) into efficient, relialble systems. 
Fundamental questions include: What are good meth- 
ods of implementing processors, memory, and commu- 
nication in a machine? How do we design and control 
large computational systems and convincingly demon- 
strate that they work as intended despite errors and 
failures? What types of architectures can efficiently 
incorporate many processing elements that can work 
concurrently on a computation? How do we measure 
performance? 

3.1 Theory 
Major elements of theory in the area of architecture 
are: 

1. Boolean algebra. 
2. Switching theory. 
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3. Coding theory. 
4. Finite state machine theory. 
5. The supporting areas of statistics, probability, 

queueing, reliability theory, discrete mathematics, 
number theory, and arithmetic in different number 
systems. 

3.2 Abstraction 
Major elements of abstraction in the area of architec- 
ture are: 

1, 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Finite state machine and Boolean algebraic models 
of circuits that relate function to behavior. 
Other general methods of synthesizing systems from 
basic components. 
Models of circuits and finite state machines for com- 
puting arithmetic functions over finite fields. 
Models for data path and control structures. 
Optimizing instruction sets for various models and 
workloads. 
Hardware reliability: redundancy, error detection, 
recovery, and testing. 
Space, time, and organizational tradeoffs in the 
design of VLSI devices. 
Organization of machines for various computational 
models: sequential, dataflow, list processing, array 
processing, vector processing, and message-passing. 
Identification of design levels; e.g., configuration, 
program, instruction set, register, and gate. 

3.3 Design 
Major elements of design and experimentation in the 
area of architecture are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

4. 

Hardware units for fast computation; e.g., arithmetic 
function units, cache. 
The so-called von Neumann machine (the single- 
instruction sequence stored program computer); 
RISC and CISC implementations. 
Efficient methods of storing and recording informa- 
tion, and detecting and correcting errors. 
Specific approaches to responding to errors: recov- 
ery, diagnostics, reconfiguration, and backup proce- 
dures. 
Computer aided design (CAD) systems and logic sim- 
ulations for the design of VLSI circuits. Production 
programs for layout, fault diagnosis. Silicon compi- 
lers. 
Implementing machines in various computational 
models; e.g., dataflow, tree, LISP, hypercube, vector, 
and multiprocessor. 
Supercomputers, such as the Cray and Cyber ma- 
chines. 

NUMERICAL AND SYMBOLIC COMPUTATION 
This area deals with general methods of efficiently and 4. Symbolic manipulators, such as MACSYMA and RE- 
accurately solving equations resulting from mathemati- DUCE, capable of powerful and nonobvious manipu- 
cal models of systems. Fundamental questions include: lations, notably differentiations, integrations, and 
How can we accurately approximate continuous or infi- reductions of expressions to minimal terms. 

nite processes by finite discrete processes? How do we 
cope with the errors arising from these approximations? 
How rapidly can a given class of equations be solved for 
a given level of accuracy? How can symbolic manipula- 
tions on equations, such as integration, differentiation, 
and reduction to minimal terms, be carried out? How 
can the answers to these questions be incorporated into 
efficient, reliable, high-quality mathematical software 
packages? 

4.1 Theory 
Major elements of theory in the area of numerical and 
symbolic computation are: 

1. Number theory. 
2. Linear algebra. 
3. Numerical analysis. 
4. Nonlinear dynamics. 
5. The supporting areas of calculus, real analysis, com- 

plex analysis, and algebra. 

4.2 Abstraction 
Major elements of abstraction in the area of numerical 
and symbolic computation are: 

Formulations of physical problems as models in con- 
tinuous (and sometimes discrete) mathematics. 
Discrete approximations to continuous problems. In 
this context, backward error analysis, error propaga- 
tion and stability in the solution of linear and non- 
linear systems. Special methods in special cases, 
such as Fast Fourier Transform and Poisson solvers. 
The finite element model for a large class of prob- 
lems specifiable by regular meshes and boundary 
values. Associated iterative methods and conver- 
gence theory: direct, implicit, multigrids, rates of 
convergence. Parallel solution methods. Automatic 
grid refinement during numerical integration. 
Symbolic integration and differentiation. 

4.3 Design 
Major elements of design and experimentation in the 
area of numerical and symbolic computation are: 

1. High-level problem formulation systems such as 
CHEM and WEB. 

2. Specific libraries and packages for linear algebra, 
ordinary differential equations, statistics, nonlinear 
equations, and optimizations; e.g., LINPACK, 
EISPACK, ELLPACK. 

3. Methods of mapping finite element algorithms to 
specific architectures-e.g., multigrids on hyper- 
cubes. 
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5. OIPERATING SYSTEMS 

This area deals with control mechanisms that allow 
multiple resources to be efficiently coordinated in the 
execution of programs. Fundamental questions include: 
Whai. are the visible objects and permissible operations 
at each level in the operation of a computer system? 
For each class of resource (objects visible at some 
level), what is a minimal set of operations that permit 
their effective use? How can interfaces be organized so 
that users deal only with abstract versions of resources 
and not with physical details of hardware? What are 
effective control strategies for job scheduling, memory 
management, communications, access to software re- 
sources, communication among concurrent tasks, relia- 
bility, and security? What are the principles by which 
systems can be extended in function by repeated appli- 
cation of a small number of construction rules? How 
should distributed computations be organized so that 
many autonomous machines connected by a communi- 
cation network can participate in a computation, with 
the details of network protocols, host locations, band- 
widths, and resource naming being mostly invisible? 

5.1 Theory 7. 

Major elements of theory in the area of operating sys- 
tems are: 

1. 

2. 

3. 

4. 
5. 

Concurrency theory: synchronization, determinacy, 
and deadlocks. 
Scheduling theory, especially processor scheduling. 
Program behavior and memory management theory, 
inc:luding optimal policies for storage allocation. 
Performance modeling and analysis. 
The supporting areas of bin packing, probability, 
queueing theory, queueing networks, communica- 
tion and information theory, temporal logic, and 
cryptography. 

5.2 Abstraction 
Major elements of abstraction in the area of operating 
systems are: 

1. 

2. 

3. 

4. 

5. 

Abstraction principles that permit users to operate 
on idealized versions of resources without concern 
for physical details (e.g., process rather than proces- 
sor, virtual memory rather than main-secondary 
hierarchy, files rather than disks). 
Binding of objects perceived at the user interface to 
internal computational structures. 
Models for important subproblems such as process 
ma.nagement, memory management, job scheduling, 
secondary storage management, and performance 
analysis. 
Models for distributed computation; e.g., clients and 
servers, cooperating sequential processes, message- 
passing, and remote procedure calls. 
Models for secure computing; e.g., access controls, 
authentication, and communication. 

6. Networking, including layered protocols, naming, 
remote resource usage, help services, and local net- 
work protocols such as token-passing and shared 
buses. 

5.3 Design 
Major elements of design and experimentation in the 
area of operating systems are: 

1. 

2. 

3. 

4. 

5. 

6. 

Prototypes of time sharing systems, automatic stor- 
age allocators, multilevel schedulers, memory man- 
agers, hierarchical file systems and other important 
system components that have served as bases for 
commercial systems. 
Techniques for building operating system.s such as 
UNIX, Multics, Mach, VMS, and MS-DOS. 
Techniques for building libraries of utilities; e.g., 
editors, document formatters, compilers, linkers, and 
device drivers. 
Files and file systems. 
Queueing network modeling and simulation pack- 
ages to evaluate performance of real systems. 
Network architectures such as ethernet, FDDI, token 
ring nets, SNA, and DECNET. 
Protocol techniques embodied in the Department of 
Defense protocol suite (TCP/IP), virtual circuit pro- 
tocols, internet, real time conferencing, and X.25. 

6. SOFTWARE METHODOLOGY AND 

ENGINEERING 
This area deals with the design of programs and large 
software systems that meet specifications and are safe, 
secure, reliable, and dependable. Fundamental ques- 
tions include: What are the principles behind the de- 
velopment of programs and programming systems? How 
does one prove that a program or system meets its spec- 
ifications? How does one develop specifications that 
do not omit important cases and can be anal.yzed for 
safety? How do software systems evolve through dif- 
ferent generations? How can software be designed for 
understandability and modifiability? 

6.1 Theory 
Major elements of theory in the area of software meth- 
odology and tools are: 

1. Program verification and proof. 
2. Temporal logic. 
5. Reliability theory. 
4. The supporting areas of predicate calculus, axio- 

matic semantics, and cognitive psychology. 

6.2 Abstraction 
Major elements of abstraction in the area of software 
methodology and tools are: 

1. Specification methods, such as predicate trans- 
formers, programming calculi, abstract data types, 
and Floyd-Hoare axiomatic notations. 

2. Methodologies such as stepwise refinement, modular 
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3. 

4. 

5. 
6. 

7. 

8. 

design, modules, separate compilation, information- 
hiding, dataflow, and layers of abstraction. 
Methods for automating program development; e.g., 
text editors, syntax-directed editors, and screen edi- 
tors. 
Methodologies for dependable computing; e.g., fault 
tolerance, security, reliability, recovery, N-version 
programming, multiple-way redundancy, and check- 
pointing. 
Software tools and programming environments. 
Measurement and evaluation of programs and sys- 
tems. 
Matching problem domains through software sys- 
tems to particular machine architectures. 
Life cycle models of software projects. 

6.3 Design 
Major elements of design and experimentation in the 
area of software methodology and tools are: 

1. 

2. 

3. 

4. 

5. 

Specification languages (e.g., PSL 2, IMA JO), config- 
uration management systems (e.g., in Ada APSE), 
and revision control systems (e.g., RCS, SCCS). 
Syntax directed editors, line editors, screen editors, 
and word processing systems. 
Specific methodologies advocated and used in prac- 
tice for software development; e.g., HDM and those 
advocated by Dijkstra, Jackson, Mills, or Yourdon. 
Procedures and practices for testing (e.g., walk- 
through, hand simulation, checking of interfaces be- 
tween modules, program path enumerations for test 
sets, and event tracing), quality assurance, and proj- 
ect management. 
Software tools for program development and debug- 
ging, profiling, text formatting, and database manip- 
ulation. 

6. Specification of criteria levels and validation proce- 
dures for secure computing systems, e.g., Depart- 
ment of Defense. 

7. 

8. 

Design of user interfaces. 
Methods for designing very large systems that are 
reliable, fault tolerant, and dependable. 

7. DATABASE AND INFORMATION RETRIEVAL 

SYSTEMS 
This area deals with the organization of large sets of 
persistent, shared data for efficient query and update. 
Fundamental questions include: What modeling con- 
cepts should be used to represent data elements and 
their relationships? How can basic operations such as 
store, locate, match, and retrieve be combined into ef- 
fective transactions? How can these transactions inter- 
act effectively with the user? How can high-level quer- 
ies be translated into high-performance programs? 
What machine architectures lead to efficient retrieval 
and update? How can data be protected against unau- 
thorized access, disclosure, or destruction? How can 
large databases be protected from inconsistencies due 
to simultaneous update? How can protection and per- 
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formance be achieved when the data are distributed 
among many machines? How can text be indexed and 
classified for efficient retrieval? 

7.1 Theory 
Major elements of theory in the area of databases and 
information retrieval systems are: 

1. 

2. 

3. 

Relational algebra and relational calculus. 
Dependency theory. 
Concurrency theory, especially serializable transac- 
tions, deadlocks, and synchronized updates of multi- 
ple copies. 

4. Statistical inference. 
5. Sorting and searching. 
6. Performance analysis 
7. As supporting theory: cryptography. 

7.2 Abstraction 

Major elements of abstraction in the area of databases 
and information retrieval systems are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Models for representing the logical structure of data 
and relations among the data elements, including 
the relational and entity-relationship models. 
Representations of files for fast retrieval, such as 
indexes, trees, inversions, and associative stores. 
Methods for assuring integrity (consistency) of the 
database under updates, including concurrent up- 
dates of multiple copies. 
Methods for preventing unauthorized disclosure or 
alteration and for minimizing statistical inference. 
Languages for posing queries over databases of dif- 
ferent kinds (e.g., hypertext, text, spatial, pictures, 
images, rule-sets). Similarly for information retrieval 
systems. 
Models, such as hypertext, which allow documents 
to contain text at multiple levels and to include 
video, graphics, and voice. 
Human factors and interface issues. 

7.3 Design 
Major elements of design in the area of database and 
information retrieval systems are: 

1. Techniques for designing databases for relational, 
hierarchical, network, and distributed implementa- 
tions. 

2. Techniques for designing database systems such as 
INGRES, System R, dBase III, and DB-2. 

3. Techniques for designing information retrieval sys- 
tems such as LEXIS, Osiris, and Medline. 

4. Design of secure database systems. 
5. Hypertext systems such as NLS, NoteCards, Interme- 

dia, and Xanadu. 
6. Techniques to map large databases to magnetic disk 

stores. 
7. Techniques for mapping large, read-only databases 

onto optical storage media-e.g., CD/ROM and 
WORMS. 
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8. AIRTIFICIAL INTELLIGENCE AND ROBOTICS 

This area deals with the modeling of animal and hu- 
man (intelligent) behavior. Fundamental questions in- 
clude: What are basic models of behavior and how do 
we build machines that simulate them? To what extent 
is intelligence described by rule evaluation, inference, 
deduction, and pattern computation? What is the ulti- 
mate performance of machines that simulate behavior 
by these methods? How are sensory data encoded so 
that similar patterns have similar codes? How are 
motor codes associated with sensory codes? What are 
architectures for learning systems, and how do those 
systems represent their knowledge of the world? 

8.1 Theory 

Major elements of theory in the area of artificial intelli- 
gence and robotics are: 

1. 

2. 
3. 
4. 

5. 

6. 

Logic; e.g., monotonic, nonmonotonic, and fuzzy. 
Conceptual dependency. 
Cognition. 
Syntactic and semantic models for natural language 
understanding. 
Kinematics and dynamics of robot motion and world 
models used by robots. 
The supporting areas of structural mechanics, graph 
theory, formal grammars, linguistics, philosophy, 
and psychology. 

8.2 Abstraction 
Major elements of abstraction in the area of artificial 
intelligence and robotics are: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Knowledge representation (e.g., rules, frames, logic) 
and methods of processing them (e.g., deduction, 
inference). 
Models of natural language understanding and natu- 
ral language representations, including phoneme 
representations; machine translation. 
Speech recognition and synthesis, translation of text 
to speech. 
Reasoning and learning models; e.g., uncertainty, 
nonmonotonic logic, Bayesian inference, beliefs. 
Heuristic search methods, branch and bound, con- 
trol search. 
Machine architectures that imitate biological sys- 
tems, e.g., neural networks, connectionism, sparse 
distributed memory. 
Models of human memory, autonomous learning, 
and other elements of robot systems. 

8.3 Design 
Major elements of design and experimentation in artifi- 
cial intelligence and robotics include: 

1. Techniques for designing software systems for logic 
programming, theorem proving, and rule evaluation. 

2. Techniques for expert systems in narrow domains 
(e.g., Mycin, Xcon) and expert system shells that can 
be programmed for new domains. 

3. Implementations of logic programming (e.g, 
PROLOG). 

4. Natural language understanding systems (e.g., Mar- 
gie, SHRDLU, and preference semantics). 

5. Implementations of neural networks and sparse dis- 
tributed memories. 

6. Programs that play checkers, chess, and other games 
of strategy. 

7. Working speech synthesizers, recognizers. 
8. Working robotic machines, static and mobile. 

9. HUMAN-COMPUTER COMMUNICATION 
This area deals with the efficient transfer of informa- 
tion between humans and machines via various 
human-like sensors and motors, and with information 
structures that reflect human conceptualizations. Fun- 
damental questions include: What are efficient methods 
of representing objects and automatically creating pic- 
tures for viewing? What are effective methods for re- 
ceiving input or presenting output? How ca:n the risk of 
misperception and subsequent human error be mini- 
mized? How can graphics and other tools be used to 
understand physical phenomena through information 
stored in data sets? 

9.1 Theory 

Major elements of theory in human-computer commu- 
nication are: 

1. Geometry of two and higher dimensions including 
analytic, projective, affine, and computational 
geometries. 

2. Color theory. 
3. Cognitive psychology. 
4. The supporting areas of Fourier analysis, linear alge- 

bra, graph theory, automata, physics, and analysis. 

9.2 Abstraction 
Major elements of abstraction in the area of human- 
computer communication are: 

1. 

2. 
3. 
4. 

5. 

Algorithms for displaying pictures including meth- 
ods for smoothing, shading, hidden lines, ray tracing, 
hidden surfaces, transparent surfaces, shadows, 
lighting, edges, color maps, representations by 
splines, rendering, texturing, antialiasing, coherence, 
fractals, animation, representing pictures as hierar- 
chies of objects. 
Models for computer-aided design (CAD). 
Computer representations of physical objects. 
Image processing and enhancement methods. 
Man-machine communication, including psycholog- 
ical studies of modes of interaction that reduce hu- 
man error and increase human productivity. 
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9.3 Design 4. 
Major elements of design and experimentation in the 
area of human-computer communication are: 

Implementation of graphics algorithms on various 
graphics devices, including vector and raster dis- 
plays and a range of hardcopy devices. 
Design and implementation of experimental graphics 
algorithms for a growing range of models and phe- 
nomena. 
Proper use of color graphics for displays; accurate 
reproduction of colors on displays and hardcopy 
devices. 

5. 

6. 

7. 

6. 

Graphics standards (e.g., GKS, PHIGS, VDI), graphics 
languages (e.g., PostScript), and special graphics 
packages (e.g., MOGLI for chemistry). 
Implementation of various user interface techniques 
including direct manipulation on bitmapped devices 
and screen techniques for character devices. 
Implementation of various standard file interchange 
formats for information transfer between differing 
systems and machines. 
Working CAD systems. 
Working image enhancement systems (e.g., at JPL for 
pictures received from space probes). 
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