Required Readings for CSE/PHI 4/584
Assigned 19 Jan 2007

Contents:

Newell, Allen; Perlis, Alan J.; & Simon, Herbert A. (1967), "Computer
Science", Science 157(3795) (22 September): 1373-1374.

Knuth, Donald (1974), "Computer Science and Its Relation to Mathematics",
American Mathematical Monthly 81(4) (April): 323-343.

Newell, Allen, & Simon, Herbert A. (1976), "Computer Science as
Empirical Inquiry: Symbols and Search", Communications of the ACM
19(3) (March): 113-126.

Denning, Peter J.; Comer, Douglas E.; Gries, David; Mulder, Michael C.;
Tucker, Allen; Turner, A. Joe; & Young, Paul R. (1989), "Computing as a
Discipline", Communications of the ACM 32(1) (January): 9-23.

lof2

Omnibus Language Proposal

Most physical scientists, particularly
gradoate students, need the “diction-
ary-hunt™ knowledge of two or three
foreign languages, despite the contrary
opinions and high costs cited by Nich-
ols and Everson (Letters, 23 June). I
have a suggestion that may seem bi-
zarre at first; it is based on comments
made by Fritz Zwicky at a symposiom
on Modern Methodology at Caltech
recently. Briefly, Zwicky feels that lan-
guages can best be taught several at a
time, as in his native Switzerland. He
claims that in this manner, similarities
and differences would stand out and
be more easily remembered by stu-
dents. Several of us urged him to pre-
pare a textbook so that his idea could
be tried, possibly in a special course
for graduate students in the sciences.

No one seems to have given much
thought to a course in “scientific lan-
guages,” say, German, Russian, French,
Italian and Spanish. A graduate stu-
dent usually has had 2 years in one
of these so that the comparative as-
pects of grammar would not be too
diflicult, As Zwicky points out, scien-
tific terminology tends to be the same
in most languages, and the student spe-
cializing in physics, for instance, is in
any case helped by equations and dia-
grams. The purpose of such a course
would be to give a student confidence
in finding and reading articles in for-
¢ign journals about his own thesis top-
ic, without spending the time to learn
two or three languages thoroughly, The
linguists will undoubtedly object to
such shallow treatment, but they may
be reassured that regular language
courses will still be needed for other
purposes, and that the five-language
course may reduce the hored fringe
of disinterested students in regular lan-
guage classes. The major problem is
who can teach such a course? (other
than Zwicky)!

THORNTON PaGE
Department of Astronomy, Wesleyan
University, Middletown, Connecticut

22 SEPTEMBER 1967

Letters

Methanol: A New Fuel?

“Energy needs versus environmental
poltlution: a reconciliation?” (16 June,
p. 1448) by Leon Green, Jr., proposed
a system of energy generation based
upon the use of ammonia as a fuel.
The general thesis developed is attrac-
tive in that it provides for conversion
of fossil fuels into a chemical fuel in
such a way that waste products can
be readily controlled and contained at
the point of release. On the other hand,
I think that Green’s suggestions would
have been much more practical if he
had given consideration to the produc-
tion of methanol rather than ammonia.

The chemical process used to con-
vert fuel gas, petrolenm fractions, or
even coal to methanol is essentially
the same as the process used for pro-
duction of ammonia. In both, the
original raw material s converted to
a mixture of carbon monoxide and
hydrogen which is then further proc-
essed to produce the desired final prod-
uct, The efficiency of conversion is
approximately the same in both cases,
and a substantial fraction of the car-
bon originally present in the fossil fuel
disappears from the system as carbon
dioxide. In the case of ammonia, all
of the carbon is separated in this man-
ner; with methanol. about two<thirds
is removed.

The cost of erected facilities for the
production of ammonia or methanol
are roughly comparable. Once very
large plants are designed for produc-
ing methanol, the relative simplicity
passible in handling the product as
compared with the requirements for
liquifying and pressurizing the am-
monia product will probably result in
an advantage in the overall investment
cost. Methanol can be stored at atmo-
spheric pressure under all normal con-
ditions and can be readily shipped by
pipeline, by normal tank car, or tank
truck. Because of its very low freezing
point and low viscesity, it can be used
casily for all conventional fuel require-
ments.

file:///documents/newell-1967/newell-1967.html

It is interesting to note that, with
some adjustment to the carburetor,
methanol can be used as a fuel in
ordinary internal combustion engines.
It is a completely clean fuel requiring
no additives, lead, or other constitu-
ents which tend to aggravale atmo-
spheric pollution problems. Of course,
it would be essential that the internal
combustion engine be adjusted proper-
Iy to avoid formation of oxygenated
hydrocarbon compounds in the exhaust
gases,

Of even more interest is the possi-
bility of utilizing methanol directly as
a fuel for a direct conversion fuel cell.
Substantial work in this direction has
been carried out at Institut Frangais
du Pétrole where demonstration cells
have already been built and operated
for many thousands of hours, Use of
methanol in this manner would per-
mit a ready transition from hydrocar-
bon fuels inside of city areas with a
gradual replacement of internal com-
bustion engines by electric motors
powered by fuel cells.

Production of methanol could be
taken over completely by large energy
companies currently refining petroleum
and distributing hydrocarbon fuels. The
investment required to produce encugh
methanol to replace all existing fuels
would certainly be extremely high, but
may not be out of proportion to that
required for producing low-sulfur con-
ventional fuels such as is being re-
quired by legislation currently being
enacted throughout the country.

Ronatp G. MINET
Compagnia Tecnica Industrie Petroli
S.p.A., Piazzale G. Douhet 31 (EUR),
Rome, ltaly

Computer Science

Professors of compuler science are
often asked: “Is there such a thing as
computer science, and if there is, what
is it? The questions have a simple
answer:

Wherever there are phenomena, there
can be a science to describe and ex-
plain those phenomena. Thus, the sim-
plest (and correct) answer to “What
is botany? is, “Botany is the study
of plants.” And zoolegy is the study
of animals, astronomy the study of
stars, and so on. Phenomena breed
sciences.

There are computers. Ergo, computer
science is the study of computers. The
phenomena surrounding computers are

1373

1/20/07 6:04 PM

20f2

What price
signal averaging?

Here's a quick look at the real expense
—in data as well as dollars—of signal-
averaging devices, including our averager,
the Model 7100 Data Retrieval Computer.

Will you pay for less than excellent resolution?
You will in any signal averager that has a
minimum dwell-time per data point of more
than 39 microseconds, Resolution, after all,
is a function of the number of data points
that can be placed within a region of interest,
Our Model 7100 Data Retrieval Computer
(DRC) uses all 400 of its data points for
signals occurring within as little as 15.6 milli-
seconds. The DRC, therefore, gives much
better resolution than averagers that use only
a fraction of their data points (o represent
the signal of interest.

Wil you pay for less than total versatility? You
will in any averager that doesn’t have the
built-in capability—without add-on options
—for interval- and time-histogram analysis,
as well as transient-averaging. The DRC wil|
operate in any of these three modes, which
are sclected on a front-panel switch.

Will you pay for less than maximum input sen-
sitivity? You will in an averager that needs a
pre-amplifier to accept low-amplitude input
signals, The DRC has 20-millivolt input
sensitivity, So, most of the time, the DRC
requires me added pre-amps,

What should you pay for a basic signal averager?
That's up to you. But for its price, the DRC
offers you more performance, versatility, and
convenience than any other comparable
signal averager,

The Model 7100 Data Retrieval Computer.
Mow avallable at a mew, lower price.

For more information, consult your local
Nuclear-Chicago sales engineer or write to us,

oz W

NUCLEAR-CHICAGO
CORPORATION

349 E. Howard Ave,, Des Plaines, 11l 60018 U.S.A.
Donker Curtivsstraat 7, Amiterdam W,

varied, complex, rich. It remains only
to answer the objections posed by
many skeptics.

Objection 1. Only natural phenom-
ena breed sciences, but computers are
artificial, hence are whatever they are
made to be, hence obey no invariable
laws, hence cannot be described and
explained. Answer. 1. The objection is
patently false, since computers and
computer programs are being described
and explained daily. 2. The objection
would equally rule out of science large
portions of organic chemistry (substi-
tute “silicones™ for “‘computers”), phys-
ics (substitute “superconductivity” for
“computers”), and even zoology (sub-
stitute “hybrid corn™ for “computers”).
The objection would certainly rule out
mathematics, but in any cvent its status
as a natural science is idiosyncratic.

Objection 2. The term “computer”
is not well defined, and its meaning
will change with new developments,
hence computer science does not have
a well-defined subject matter. Answer,
The phenomena of all sciences change
over time; the process of understand-
ing assures that this will be the case.
Astronomy did not originally include
the study of interstellar gases; physics
did not include radioactivity; psychol-
ogy did not include the study of ani-
mal behavior. Mathematics was once
defined as the “science of quantity.”

Objection 3. Computer science is the
study of algorithms (or programs),
not computers, Answer. |. Showing
deeper insight than they are some-
times credited with, the founders of
the chief professional organization for
computer science named it the Asso-
ciation for Computing Machinery. 2,
In the definition, “computers” means
“living computers”—the hardware,
their programs or algorithms, and all
that goes with them., Computer sci-
ence is the study of the phenomena
surrounding computers. “Computers
plus algorithms,” “living computers,”
or simply “computers” all come to
the same thing—the same phenomena.

Objection 4. Computers, like ther-
mometers, are instruments, not phe-
nomena. Instruments lead away.to their
user sciences; the behaviors of instru-
ments are subsumed as special topics
in other sciences (not always the user
sciences—electron microscopy belongs
to physics, not biology). Answer. The
computer is such a novel and com-
plex instrument that its behavior is
subsumed under no other science; its
study does not lead away to user sci-

file:///documents/newell-1967/newell-1967.html

ences, but to further study of com-
puters. Hence, the computer is not
just an instrument but a phenomenon
as well, requiring description and ex-
planation.

Objection 5. Computer science is a
branch of electronics (or mathematics,
psychology, and so forth). Answer. To
study computers, onc may neced to
study some or all of these. Phenomena
define the focus of a science, not its
boundaries. Many of the phenomena
of computers arc also phenomena of
some other science. The existence of
biochemistry denies ncither the exis-
tence of biology nor of chemistry. But
all of the phenomena of computers
are not subsumed under any one exist-
ing science.

Objection 6. Computers belong to
engineering, not science. Answer. They
belong to both, like electricity (phys-
ics and electrical engineering) or plants
(botany and agriculture), Time will tell
what professional specialization is de-
sirable between analysis and synthesis,
and between the pure study of com-
puters and their application.

Computer scientists will often join
hands with colleagues from other dis-
ciplines in common endeavor. Mostly,
computer scientists will study living
computers with the same passion that
others have studied plants, stars, gla-
ciers, dyestuffs, and magnetism; and
with the same confidence that intelli-
gent, persistent curiosity will yield in-
teresting and perhaps useful knowledge.

ALLEN NEWELL
ALAN J. PErRUS
HERBERT A. SiMON
Graduate School of Industrial
Administration, Carnegie Institute of
Technology, Pittsburgh,
Pennsylvania 15213

“The Big Trouble with
Scientific Writing . . .»

When I sec articles, as I frequently
do these days, exhorting authors to
greater simplicity and clarity (/), I
think of the first little scientific note
I wrote, when 1 was an idealistic grad-
vate student. 1 wrote it as simply and
directly as I could. It began, “The big
trouble with diffusion cloud chambers
is low radiation resistance,” and it went
on in the same vein. My co-workers
thought it needed a little more work.
Secretly I did not agree, so I decided
to attempt to make it into a parody of

1/20/07 6:04 PM

1 of 21

file:///documents/knuth-1974/knuth1974.html

COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS
DONALD E. KNUTH

A new discipline called Computer Science has recently arrived on the scene at
most of the world’s universities. The present article gives a personal view of how
this subject interacts with Mathematics, by discussing the similarities and differences
between the two fields, and by examining some of the ways in which they help each
other. A typical nontrivial problem is worked out in order to illustrate these inter-

actions.

1. What is Computer Science? Since Computer Science is relatively new, I
must begin by explaining what it is all about. At least, my wife tells me that she has
to explain it whenever anyone asks her what I do, and I suppose most people today
have a somewhat different perception of the field than mine. In fact, no two computer
scientists will probably give the same definition; this is not surprising, since it is
just as hard to find two mathematicians who give the same definition of Mathe-
matics. Fortunately it has been fashionable in recent years to have an “‘identity
crisis,”” so computer scientists have been right in style.

My favorite way to describe computer science is to say that it is the study of
algorithms. An algorithm is a precisely-defined sequence of rules telling how to pro-
duce specified output information from given input information in a finite number
of steps. A particular representation of an algorithm is called a program, just as
we use the word ‘‘data’ to stand for a particular representation of *‘information’
[14]. Perhaps the most significant discovery generated by the advent of computers
will turn out to be that algorithms, as objects of study, are extraordinarily rich
in interesting properties; and furthermore, that an algorithmic point of view is a
useful way to organize knowledge in general. G. E. Forsythe has observed that
“the question ‘What can be automated?” is one of the most inspiring philosophical
and practical questions of contemporary civilization™ [8].

From these remarks we might conclude that Computer Science should have
existed long before the advent of computers. In a sense, it did; the subject is deeply
rooted in history. For example, I recently found it interesting to study ancient manu-
scripts, learning to what extent the Babylonians of 3500 years ago were computer
scientists [16]. But computers are really necessary before we can learn much about
the general properties of algorithms; human beings are not precise enough nor fast
enough to carry out any but the simplest procedures. Therefore the potential
richness of algorithmic studies was not fully realized until general-purpose computing
machines became available,

1 should point out that computing machines (and algorithms) do not only com-
pute with numbers; they can deal with information of any kind, once it is represented

1/20/07 6:03 PM

2 of 21

file:///documents/knuth-1974/knuth1974.html

324 D. E. KNUTH [April

presented inside a computer as if it were a number; but it is really more correct
to say that a number is represented inside a computer as a sequence of symbols.

The French word for computer science is Informatique; the German is Infor-
matik; and in Danish, the word is Datalogi [21]. All of these terms wisely imply
that computer science deals with many things besides the solution to numerical
cquations. However, these names emphasize the *‘stuff”” that algorithms manipulate
(the information or data), instead of the algorithms themselves. The Norwegians
at the University of Oslo have chosen a somewhat more appropriate designation
for computer science, namely Databehandling; its English equivalent, ‘‘Data
Processing™ has unfortunately been used in America only in connection with busi-
ness applications, while *“‘Information Processing™ tends to connote library appli-
cations. Several people have suggested the term ““Computing Science’ as superior
to “‘Computer Science.”

Of course, the search for a perfect name is somewhat pointless, since the under-
lying concepts are much more important than the name. It is perhaps significant,
however, that these other names for computer science all de-emphasize the role
of computing machines themselves, apparently in order to make the ficld more
“legitimate’ and respectable. Many people’s opinion of a computing machine
is, at best, that it is a necessary evil: a difficult tool to be used if other methods fail.
Why should we give so much emphasis to teaching how to use computers, if they
are merely valuable tools like (say) electron microscopes?

Computer scientists, knowing that computers are more than this, instinctively
underplay the machine aspect when they are defending their new discipline. How-
ever, it is not necessary to be so self-conscious about machines; this has been aptly
pointed out by Newell, Perlis, and Simon [22], who define computer science simply
as the study of computers, just as botany is the study of plants, astronomy the study
of stars, and so on. The phenomena surrounding computers are immensely varied
and complex, requiring description and explanation; and, like clectricity, these
phenomena belong both to engineering and to science.

When I say that computer science is the study of algorithms, I am singling out
only one of the ““phenomena surrounding computers,” so computer science actually
includes more. I have emphasized algorithms because they are really the central
core of the subject, the common denominator which underlies and unifies the different
branches. It might happen that technology someday settles down, so that in say
25 years computing machines will be changing very little. There are no indications
of such a stable technology in the near future, quite the contrary, but I believe
that the study of algorithms will remain challenging and important even if the
other phenomena of computers might someday be fully explored.

The reader interested in further discussions of the nature of computer science

is referred to [17] and [29], in addition to the references cited above.

1/20/07 6:03 PM

3 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 325

about computers which are now being actively studied by computer scientists, and
which are hardly mathematical. But if we restrict our attention to the study of
algorithms, isn’t this merely a branch of mathematics? After all, algorithms were
studied primarily by mathematicians, if by anyone, before the days of computer
science. Therefore one could argue that this central aspect of computer science is
really part of mathematics.

However, I believe that a similar argument can be made [or the proposition
that mathematics is a part of computer science! Thus, by the definition of set equality,
the subjects would be proved equal; or at least, by the Schréder-Bernstein theorem,
they would be equipotent.

My own feeling is that neither of these set inclusions is valid. It is alwasy diffi-
cult to establish precise boundary lines between disciplines (compare, for example,
the subjects of “‘physical chemistry’ and “‘chemical physics’™); but it is possible to
distinguish essentially different points of view between mathematics and computer
science.

The following true story is perhaps the best way to explain the distinction I have
in mind. Some years ago I had just learned a mathematical theorem which implied
that any two n x n matrices 4 and B of integers have a ‘“‘greatest common right
divisor’ D. This means that D is a right divisor of 4 and of B, i.e., A = A'D and
B = B’D for some integer matrices A" and B'; and that every common right divisor
of A and B is a right divisor of D. So I wondered how to calculate the greatest com-
mon right divisor of two given matrices. A few days later I happened to be attending
a conference where I met the mathematician H. B. Mann, and I felt that he would
know how to solve this problem. I asked him, and he did indeed know the correct
answer; but it was a mathematician’s answer, not a computer scientist’s answer!
He said, “Let 2 be the ring of n x n integer matrices; in this ring, the sum of
two principal left ideals is principal, so let D be such that

RA + RAB = AD.

Then D is the greatest common right divisor of 4 and B.”” This formula is certainly
the simplest possible one, we need only eight symbols to write it down; and it relies
on rigorously-proved theorems of mathematical algebra. But from the standpoint
of a computer scientist, it is worthless, since it involves constructing the infinite
sets #A and #B, taking their sum, then searching through infinitely many matrices
D such that this sum matches the infinite set ZD. I could not determine the greatest
common divisor of (3 2) and (3 }) by doing such infinite operations. (Incidentally,
a computer scientist’s answer to this question was later supplied by my student
Michael Fredman; see [15, p. 380].)

One of my mathematician friends told me he would be willing to recognize
computer science as a worthwhile field of study, as soon as it contains 1000 deep

1/20/07 6:03 PM

4 of 21

file:///documents/knuth-1974/knuth1974.html

326 D. E. KNUTH [April

well as theorems, say 500 deep theorems and 500 deep algorithms. But even so
it is clear that computer science today does not measure up to such a test, if ““deep”
means that a brilliant person would need many months to discover the theorem
or the algorithm. Computer science is still too young for this; 1 can claim youth
as a handicap. We still do not know the best way to describe algorithms, to under-
stand them or to prove them correct, to invent them, or to analyze their behavior,
although considerable progress is being made on all these fronts. The potential
for 1000 deep results™ is there, but only perhaps 50 have been discovered so far.

In order to describe the mutual impact of computer science and mathematics
on cach other, and their relative roles, I am therefore looking somewhat to the future,
to the time when computer science is a bit more mature and surc of itself. Recent
trends have made it possible to envision a day when computer science and mathe-
matics will both exist as respected disciplines, serving analogous but different roles
in a person’s education. To quote George Forsythe again, “*The most valuable
acquisitions in a scientific or technical education are the general-purpose mental
tools which remain serviceable for a lifetime. I rate natural language and mathe-
matics as the most important of these tools, and computer science as a third™” [9].

Like mathematics, computer science will be a subject which is considered basic
to a general education. Like mathematics and other sciences, computer science
will continue to be vaguely divided into two areas, which might be called “‘theoretical”’
and ‘“‘applied.”” Like mathematics, computer science will be somewhat different
from the other sciences, in that it deals with man-made laws which can be proved,
instead of natural laws which are never known with certainty. Thus, the two
subjects will be like each other in many ways. The difference is in the subject
matter and approach-—mathematics dealing more or less with theorems, infinite
processes, static relationships, and computer science dealing more or less with
algorithms, finitary constructions, dynamic relationships.

Many computer scientists have been doing mathematics, but many more math-
ematicians have been doing computer science in disguise. I have been impressed by
numerous instances of mathematical theories which are really about particular algo-
rithms; these theories are typically formulated in mathematical terms that are much
more cumbersome and less natural than the equivalent algorithmic formulation
today’s computer scientist would use. For example, most of the content of a 35-page
paper by Abraham Wald can be presented in about two pages when it is recast into
algorithmic terms [15, pp. 142-144]; and numerous other examples can be given.
But that is a subject for another paper.

3. Educational side-effects. A person well-trained in computer science knows
how to deal with algorithms: how to construct them, manipulate them, understand
them, analyze them. This knowledge prepares him for much more than writing
good computer programs; it is a general-purpose mental tool which will be a definite

aid ta hic nnderctandine af ather cnhiecte whathar thav ha chamictru linanictine

1/20/07 6:03 PM

5 of 21

file:///documents/knuth-1974/knuth1974.html

1974} COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 327

or music, etc. The reason for this may be understood in the following way: It has
often been said that a person does not really understand something until he teaches
it to someone clse. Actually a person does not really understand something until
he can teach it to a computer, i.e., express it as an algorithm. *“The automatic com-
puter really forces that precision of thinking which is alleged to be a product of any
study of mathematics™ [7]. The attempt to formalize things as algorithms leads
to a much deeper understanding than if we simply try to comprehend things in the
traditional way.

Linguists thought they understood languages, until they tried to explain languages
to computers; they soon discovered how much more remains to be learned. Many
people have set up computer models of things, and have discovered that they learned
more while setting up the model than while actually looking at the output of the
eventual program.

For three years I taught a sophomore course in abstract algebra, for mathematics
majors at Caltech, and the most difficult topic was always the study of ““Jordan
canonical form™ for mairices. The third year I tried a new approach, by looking
at the subject algorithmically, and suddenly it became quite clear. The same thing
happened with the discussion of finite groups defined by generators and relations;
and in another course, with the reduction theory of binary quadratic forms. By
presenting the subject in terms of algorithms, the purpose and meaning of the
mathematical theorems became transparent.

Later, while writing a book on computer arithmetic [15], I found that virtually
every theorem in elementary number theory arises in a natural, motivated way
in connection with the problem of making computers do high-speed numerical
calculations. Therefore I believe that the traditional courses in elementary number
thcory might well be changed to adopt this point of view, adding a practical moti-
vation to the already beautiful theory.

These examples and many more have convinced me of the pedagogic value of
an algorithmic approach; it aids in the understanding of concepts of all kinds. I
believe that a student who is properly trained in computer science is learning some-
thing which will implicitly help him cope with many other subjects; and therefore
there will soon be good reason for saying that undergraduate computer science
majors have received a good general education, just as we now believe this of under-
graduate math majors. On the other hand, the present-day undergraduate courses
in computer science are not yet fulfilling this goal; at least, 1 find that many beginning
graduafe students with an undergraduate degree in computer science have been
more narrowly educated than I would like. Computer scientists are of course work-
ing to correct this present deficiency, which I believe is probably due to an over-
emphasis on computer languages instead of algorithms,

4. Some interactions. Computer science has been affecting mathematics in many

cermarn mead T olhall tuer dn 1ot thn mand nann haca T bk Bcnt cdlnnn Al maniiinn cm i acibmnn

1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

328 D. E. KNUTH [April

can be used to compute, and they have frequently been applied in mathematical
research when hand computations are too difficult; they generate data which suggests
or demolishes conjectures. For example, Gauss said [10] that he first thought of the
prime number theorem by looking at a table of the primes less than one million. In
my own Ph.D. thesis, I was able to resolve a conjecture concerning infinitely many
cases by looking closely at computer calculations of the smallest case [13]. An
example of another kind is Marshall Hall’s recent progress in the determination of
all simple groups of orders up to one million.

Secondly, there are obvious connections between computer science and mathe-
matics in the arcas of numerical analysis [30], logic, and number theory; I need
not dwell on these here, since they are so widely known. However, I should mention
especially the work of D. H. Lehmer, who has combined computing with classical
mathematics in several remarkable ways; for example, he has proved that every set
of six consecutive integers > 285 contains a multiple of a prime = 43.

Another impact of computer science has been an increased emphasis on construc-
tions in all branches of mathematics. Replacing existence proofs by algorithms
which construct mathematical objects has often led to improvements in an abstract
theory. For example, E. C. Dade and H. Zassenhaus remarked, at the close of a
paper written in 1963, *“This concept of genus has already proved of importance
in the theory of modules over orders. So a mathematical idea introduced solely
with a view to computability has turned out to have an intrinsic theoretical value
of its own.”’ Furthermore, as mentioned above, the constructive algorithmic approach
often has pedagogic value.

Another way in which the algorithmic approach affects mathematical theories
is in the construction of one-to-one correspondences. Quite often there have been
indirect proofs that certain types of mathematical objects are equinumerous; then a
direct construction of a one-to-one correspondence shows that in fact even more
is true.

Discrete mathematics, especially combinatorial theory, has been given an added
boost by the rise of computer science, in addition to all the other fields in which
discrete mathematics is currently being extensively applied.

For references to these influences of computing on mathematics, and for many
more examples, the reader is referred to the following sampling of books, each of
which contains quite a few relevant papers: [1], [2], [4], [5], [20], [24], [27].
Peter Lax’s article [19] discusses the effect computing has had on mathematical
physics.

But actually the most important impact of computer science on mathematics,
in my opinion, is somewhat different from all of the above. To me, the most signi-
ficant thing is that the study of algorithms themselves has opened up a fertile vein
of interesting new mathematical problems; it provides a breath of life for many
areas of mathematics which had been suffering from a lack of new ideas. Charles

- e ~ car L . ~ - a®__ _ .0 JURDUEES S ES P PR PR

6 of 21 1/20/07 6:03 PM

7 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 329

1864: **As soon as an Analytical Engine [i.c., a general-purpose computer] exists,
it will necessarily guide the future course of the science. Whenever any result is sought
by its aid, the question will then arise — By what course of calculation can these
results be arrived at by the machine in the shortest time?"" [3]. And again, George
Forsythe in 1958: ““The use of practically any computing technique itself raises
a number of mathematical problems. There is thus a very considerable impact of
computation on mathematics itself, and this may be expected to influence mathe-
matical research to an increasing degree” [26]. Garrett BirkhoiT [4, p. 2] has ob-
served that such influences are not a new phenomenon, they were already significant
in the early Greek development of mathematics.

I have found that a great many intriguing mathematical problems arise when
we try to analyze an algorithm quantitatively, to see how fast it will run on a computer;
a typical example of such a problem is worked out below. Another class ¢. problems
of great interest concerns the search for best possible algorithms in a given class;
see, for example, the recent survey by Reingoid [25]. And one of the first mathe-
matical theories to be inspired by computer science is the theory of languages,
which by now includes many beautiful results; see [11] and [12]. The excitement
of these new theories is the reason I became a computer scientist.

Conversely, mathematics has of course a profound influence on computer science;
nearly every branch of mathematical knowledge has been brought to bear some-
where. 1 recently worked on a problem dealing with discrete objects called “*binary
trees,”” which arise frequently in computer representations of things, and the solution
to the problem actually involved the complex gamma function times the square of
Riemann’s zeta function [6]. Thus the results of classical mathematics often turn
out to be useful in rather amazing places.

The most surprising thing to me, in my own experiences with applications of
mathematics to computer science, has been the fact that so much of the mathe-
matics has been of a particular discrete type, examples of which are discussed below.
Such mathematics was almost entirely absent from my own training, although
I had a reasonably good undergraduate and graduate education in mathematics.
Nearly all of my encounters with such techniques during my student days occurred
when working problems from this MONTHLY. I have naturally been wondering whether
or not the traditional curriculum (the calculus courses, etc.) should be revised in order
to include more of these discrete mathematical manipulations, or whether computer
science is exceptional in its frequent application of them.

5. A detailed example. In order to clarify some of the vague generalizations
and assertions made above, I believe it is best to discuss a typical computer-science
problem in some depth. The particular example I have chosen is the one which first
led me personally to realize that computer algorithms suggest interesting mathemati-
cal problems. This happened in 1962, when I was a graduate student in mathematics:

1/20/07 6:03 PM

8 of 21

file:///documents/knuth-1974/knuth1974.html

330 D. E. KNUTH [April

really ever worn my mathematician’s cloak and my computing cap at the same time.
A friend of mine remarked that “‘some good mathematicians at IBM’" had been
unable to determine how fast a certain well-known computer method works, and 1
thought it might be an interesting problem to look at.

Here is the problem: Many computer applications involve the retrieval of in-
formation by its “‘name’; for example, we might imagine a Russian-English dic-
tionary, in which we want to look up a Russian word in order to find its English
equivalent. A standard computer method, called hashing, retrieves information by
its name as follows. A rather large number, m, of memory positions within the com-
puter is used to hold the names; let us call these positions 73, Ts, -, T,,. Each of
these positions is big enough to contain one name. The number m is always larger
than the total number of names present, so at least one of the T} is empty. The names
are distributed among the 7}'s in a certain way described below, designed to facilitate
retrieval. Another set of memory positions E,, E,, ---, E,, is used for the information
corresponding to the names; thus if 7; is not empty, E; contains the information
corresponding to the name stored in T;.

The ideal way to retrieve information using such a table would be to take a given
name x, and to compute some function f(x), which lies between 1 and m; then
the name x could be placed in position T, and the corresponding information
in Eg.,. Such a function f(x) would make the retrieval problem trivial, if f(x)
were easy to compute and if f(x) # f(y) for all distinct names x # y. In practice,
however, these latter two requirements are hardly ever satisfied simultaneously;
if f(x) is easy to compute, we have f(x) = f(y) for some distinct names. Further-
more, we do not usually know in advance just which names will occur in the table,
and the function f must be chosen to work for all names in a very large set U of
potential names, where U has many more than m elements. For example, if U
contains all sequences of seven letters, there are 267 = 8,031,810,176 potential names;
it is inevitable that f(x) = f(y) will occur.

Therefore we try to choose a function f(x), from U into {1,2,---,m}, so that
f(x) = f(y) will occur with the approximate probability 1/m, when x and y are
distinct names. Such a function fis called a hash function. In practice, f(x) is often
computed by regarding x as a number and taking its remainder modulo m, plus one;
the number m in this case is usually chosen to be prime, since this can be shown
to give better results for the sets of names that generally arise in practice. When
f(x) = f(y)fordistinct x and y, a “*collision’" is said to occur; collisions are resolved
by searching through positions numbered f(x) + 1, f(x) + 2, etc.

The following algorithm expresses exactly how a hash function f(x) can be used
to retrieve the information corresponding to a given name x in U. The algorithm
makes use of a variable i which takes on integer values.

1/20/07 6:03 PM

9 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 331

Step 2. If memory position T; contains the given name x, stop; the derived
information is located in memory position E;.

Step 3. If memory position T; is empty, stop; the given name x is not present.

Step 4. Increase the value of i by one. (Or, if i was equal to m, set i equal
to one.) Return to step 2.

We still haven’t said how the names get into Ty, -, T,, in the first place; but
that is really not difficult. We start with all the 7; empty. Then to insert a new name x,
we “‘look for’” x using the above algorithm; it will stop in step 3 because x is not
there. Then we set T; equal to x, and put the corresponding information in E;.
From now on, it will be possible to retrieve this information, whenever the name x
is given, since the above algorithm will find position T, by repeating the actions
which took it to that place when x was inserted.

The mathematical problem is to determine how much searching we should
expect to make, on the average; how many times must step 2 be repeated before
x is found?

This same problem can be stated in other ways, for example in terms of a modified
game of “‘musical chairs.”” Consider a set of m empty chairs arranged in a circle.
A person appears at a random spot just outside the circle and dashes (in a clockwise
direction) to the first available chair. This is repeated m times, until all chairs are
full. How far, on the average, does the nth person have to run before he finds a seat?

For example, let m = 10 and suppose there are ten players: A, B, C, D, E, F,
G, H, I, J. To get a random sequence, let us assume that the players successively
start looking for their seats beginning at chairs numbered according to the first digits
of =, namely 3, 1,4, 1 5,9, 2, 6, 5, 3. Figure 1 shows the situation after the first
six have been seated.

DSOS
9@ @3

s @7
QN0 &

FiG. 1.

1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

332 D. E. KNUTH [April

(Thus player A takes chair 3, then player B takes chair 1, .-, player F takes chair9.)
Now player G starts at chair number 2, and eventually he sits down in number 6.
Finally, players H, I and J will go into chairs 7, 8, and 10. In this example, the
distances travelled by the ten players are respectively 0,0, 0, 1,0,0,4, 1, 3, 7.

It is not trivial to analyze this problem, because congestion tends to occur; one
or more long runs of consecutive occupied chairs will usually be present. In order
to see why this is true, we may consider Figure 1 again, supposing that the next player
H starts in a random place; then he will land in chair number 6 with probability
0.6, but he will wind up in chair number 7 with probability only 0.1. Long runs
tend to get even longer. Therefore we cannot simply assume that the configuration
of occupied vs. empty chairs is random at each stage; the piling-up phenomenon
must be reckoned with.

Let the starting places of the m players be a,a, - a,,; we shall call this a hash
sequence. For example, the above hash sequenceis 314159265 3. Assuming
that each of the m" possible hash sequences is equally likely, our problem is to
determine the average distance traveled by the nth player, for each n, in units of
“‘chairs passed.”” Let us call this distance d(m, n). Obviously d(m, 1) = 0, since the
first player always finds an unoccupied place; furthermore d(m,2) = I/m, since
the second player has to go at most one space, and that is necessary only if he starts
at the same spot as the first player. It is also easy to see that d(m,m)=(0+1+ --- +
(m—=1))/m = }(m—1), since all chairs but one will be occupied when the last player
starts out. Unfortunately the in-between values of d(m,n) are more complicated.

Let u,(m, n) be the number of partial hash sequences a, a, -+ a, such that chair k
will be unoccupied after the first n players are seated. This is easy to determine, by
cyclic symmetry, since chair k is just as likely to be occupied as any other particular
chair; in other words, u,(m,n) = u,(m,n) = -+ = u,(m,n). Let u(m,n) be this
common value. Furthermore, mu(m,n) = u,(m,n) + uy(m,n) + -+ + u,(m,n) =
(m — n)m”", since each of the m" partial hash sequences a, a, --- a,, leaves m — n chairs
empty, so it contributes one to exactly m — n of the numbers uy(m, n). Therefore

u(m,n) = (m —nm)m" ',

Let v(m,n, k) be the number of partial hash sequences a,a,-:-a, such that,
after the n players are seated, chairs 1 through k will be occupied, while chairs m
and k 4+ 1 will not. This number is slightly harder to determine, but not really diffi-
cult. If we look at the numbers a; which are < k + 1 in such a partial hash sequence,
and if we cross out the other numbers, the k values which are left form one of the
sequences enumerated by u(k + 1,k). Furthermore the n—k values crossed out
form one of the sequences enumerated by u(m—1—k,n—k), if we subtract k + 1
from each of them. Conversely, if we take any partial hash sequence a, --- @, enumera-
ted by u(k + 1,k), and another one b, ---b,_, enumerated by u(m—1-k,n—k),

10 of 21 1/20/07 6:03 PM

11 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 333

and if we intermix ay--a, with (b, + k4 1)---(b,_, + k+ 1) in any of the
(}) possible ways, we obtain one of the sequences enumerated by v(m,n, k). Here

is the number of ways to choose k positions out of n. For example, let m = 10,
n = 6, k = 3; one of the partial hash sequences enumerated by v(10, 6,3)is 271828.
This sequence splits into aya,a; =212 and (b, +4)(b, + 4)(b;+4) =78 8,
intermixed in the pattern ababab. From each of the u(4,3) = 16 sequences a,a,a,
that fill positions 1, 2, 3, together with each of the u(6,3) = 108 sequences
(by + 4)(by + 4)(b; + 4) that fill three of positions 5, 6, 7, 8, 9, we obtain (§) = 20
sequences that fill positions 1, 2, 3, and which leave positions 4 and 10 unoccupied,
by intermixing the a’s and b’s in all possible ways. This correspondence shows that

o(m,n, k) = (2) u(k + 1, Ku(m—k—1,n—k),
and our formula for u(m,n) tells us that
(m,n, k) = (Z)(k+1)"“(m—n—1)(m-k-1)"'*“.

This is not a simple formula; but since it is correct, we cannot do any better. If
k = n = m—1, the last two factors in the formula give 0/0, which should be inter-
preted as 1 in this case.

Now we are ready to compute the desired average distance d(m,n). The nth
player must move k steps if and only if the preceding partial hash sequence a,--- a,_,
has left chairs a, through a, + k—1 occupied and chair a, + k empty. The number
of such partial hash sequences is

vim,n—1,k) +v(mn—1,k+ 1)+ ov(mn—1,k +2) + -+,

since circular symmetry shows that v(m,n—1,k + r) is the number of partial hash
sequences a, ---a,_, leaving chairs a, + k and a,—r—1 empty while the k+ r
chairs between them are filled. Therefore the probability p,(m, n) that the nth player
goes exactly k steps is

p(m,n) = (2z v(m, n—l,r)),lm"";

rzk
and the average distance is
d(m,n) = X kp(m,n) = (m—n)m'™ I k (n - 1) (r+)" m=r—=1y""2
k20 . rzkz0 r

= @mzm 7 os (e 1)(r+1)'(m—r—1)""'2.

1/20/07 6:03 PM

12 of 21

file:///documents/knuth-1974/knuth1974.html

334 D. E. KNUTH [April

At this point, a person with a typical mathematical upbringing will probably
stop; the answer is a horrible-looking summation. Yet, if more attention were paid
during our mathematical training to finite sums, instead of concentrating so heavily
on integrals, we would instinctively recognize that a sum like this can be considerably
simplified. When I first looked at this sum, I had never scen one like it before; but
I suspected that something could be done to it, since for example, the sum over k
of p(m,n) must be 1. Later I learned of the extensive literature of such sums. I
do not wish to go into the details, but I do want to point out that such sums arise

‘repeatedly in the study of algorithms. By now I have seen literally hundreds of ex-

amples in which finite sums involving binomial coefficients and related functions
appear in connection with computer science studies; so I have introduced a course
called ‘‘Concrete Mathematics’” at Stanford University, in which this kind of mathe-

matics is taught.
Let d(m, n) be the average number of chairs skipped past by the first n players:

d(m, n) = (d(m, 1) + d(m,2) + - + d(m,n))/n.

This corresponds to the average amount of time needed for the hashing algorithm
to find an item when n items have been stored. The value of d(m, n) derived above
can be simplified to obtain the following formulas:

l(znn—l1+3n—1n~2 n—1n—2n—3+m)’

d = 3 +4
(m, n) 2 m m m m m

. 1/m—-1 n—-1n-2 n—1n-2n-3
o(m,n) == + PR
2 m m m m m m

These formulas can be used to see the behavior for large m and n: for example,
if & = n/m is the ratio of filled positions to the total number of positions, and if
we hold « fixed while m approaches infinity, then d(m, am) increases to the limiting
value $o/(1—).

The formula for d(m,n) also tells us another surprising thing:

"2m Ly m 1 o(m,n—1),
If somebody could discover a simple trick by which this simple relation could be
proved directly, it would lead to a much more elegant analysis of the hashing al-
gorithm and it might provide further insights. Unfortunately, I have been unable
to think of any direct way to prove this relation.

When n = m (i.e., when all players are seated and all chairs are occupied), the
average distance traveled per player is

&(m, m) = 1 (m—l + m—1m-=2 +m—1 m—2 m-—3 +)
2 m m m m m m

1/20/07 6:03 PM

13 of 21

file:///documents/knuth-1974/knuth1974.html

1974) COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 335

It is interesting to study this function, which can be shown to have the approximate
value

for large m. Thus, the number n, which entered Figure 1 so artificially, is actually
present naturally in the problem as well! Such asymptotic calculations, combined
with discrete summations as above, are typical of what arises when we study al-
gorithms; classical mathematical analysis and discrete mathematics both play im-
portant roles.

6. Extensions. We have now solved the musical chairs problem, so the analysis
of hashing is complete. But many more problems are suggested by this one. For
example, what happens if each of the hash table positions T;is able to hold two names
instead of one, i.e., if we allow two people per chair in the musical chairs game?
Nobody has yet found the exact formulas for this case, although some approximate
formulas are known.

We might also ask what happens if each player in the musical chairs game starts
simultaneously to look for a free chair (still always moving clockwise), starting at
independently random points. The answer is that each player will move past 6(m, n)
chairs on the average, where d(m,n) is the same as above. This follows from
an interesting theorem of W. W. Peterson [23], who was the first to study the
properties of the hashing problem described above. Peterson proved that the
total displacement of the n players, for any partial hash sequence a,a, - a,, is
independent of the order of the a,’s; thus, 3141592 leads to the same total dis-
placement as 1 123459 and 2 9 5 1 4 1 3. His theorem shows that the average
time d(m,n) per player is the same for all arrangements of the a;, and therefore
it is also unchanged when all players start simultaneously.

On the other hand, the average amount of time required until all n players are
seated has not been determined, to my knowledge, for the simultaneous case. In
fact, I just thought of this problem while writing this paper. New problems flow
out of computer science studies at a great rate!

We might also ask what happens if the players can choose to go either clockwise
or counterclockwise, whichever is shorter. In the non-simultaneous case, the above
analysis can be extended without difficulty to show that each player will then have
to go about half as far. (We require everyone to go all the way around the circle
to the nearest seat, not taking a short cut through the middle.)

Another variant of the hashing problem arises when we change the cyclic order
of probing, in order to counteract the *‘piling up’’ phenomenon. This interesting
variation is of practical importance, since the congestion due to long stretches of
occupied positions slows things down considerably when the memory gets full.

1/20/07 6:03 PM

14 of 21

file:///documents/knuth-1974/knuth1974.html

336 D. E. KNUTH [April

several interesting mathematical aspects, I shall discuss it in detail in the remainder
of this article.

A generalized hashing technique which for technical reasons is called single
hashing is defined by any m x m matrix Q of integers for which

(i) Each row contains all the numbers from I to m in some order;

(ii) The first column contains the numbers from 1 to m in order.
The other columns are unrestricted. For example, one such matrix for m = 4,
selected more or less at random, is

1 3 2 4

21 3 4
Q, =

34 1 2

4 3 2 1

The idea is to use a hash function f(x) to select a row of Q and then to probe the
memory positions in the order dictated by that row. The same algorithm for looking
through memory is used as before, except that step 4 becomes

STEP 4'. Advance i to the next value in row f(x) of the matrix, and return to step 2.

Thus, the cyclic hashing scheme described earlier is a special case of single hash-
ing, using a cyclic matrix like

(1 23 4
2 3 4 1
Q2=
341 2
4 1 2 3J

In the musical chair analogy, the players no longer are required to move clock-
wise; different players will in general visit the chairs in different sequences. How-
ever, if two players start in the same place, they must both follow the same chair-
visiting sequence. This latter condition will produce a slight congestion, which is
noticeable but not nearly as significant as in the cyclic case.

As before, we can define the measures d'(m,n) and '(m,n), corresponding to
the number of times step 4' is performed. The central problem is to find matrices Q
which are best possible, in the sense that 4'(im, m) is minimized. - This problem is not
really a practical one, since the matrix with smallest é'(m, m) might require a great
deal of computation per execution of step 4’. Yet it is very interesting to establish
absolute limits on how good a single-hashing method could possibly be, as a
yardstick by which to measure particular cases.

o WERNEES SR LS LR PO A DRV DU DU RSN S P Y A B N e) A

1/20/07 6:03 PM

15 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 337

pleasure of solving is the determination of d'(m, n) for single hashing when the matrix
Q is chosen at random, i.e., to find the value of d’(in, n), averaged over all ((m~1)!)™
possible matrices Q. The resulting formula is

m—n+1 (l+("t I —1j(m+2—j))

m—n+2 m+ 15 ml-[{= (1 = 1{(m(m + 2—1)))

n=1 \
1
X [= ————].
=)
This one I do not know how to simplify at the present time. However, it is possible
to study the asymptotic behavior of d/(m, n), and to show that

d,(m,n) = m —

omym)xInm+y— 1.5

for large m, plus a correction term of order (logm)/m. (Here y is Euler’s constant.)
This order of growth is substantially better than the cyclic method, where 8(m, m)
grows like the square root of m; and we know that some single-hashing matrices
must have an even lower value for é'(m, m) than this average value é/(m, m). Table 1
shows the exact values of &(m,m) and 8/ (m, m) for comparatively small values of
m; note that cyclic hashing is superior for m =< 11, but it eventually becomes much
WOrse.

Proofs of the above statements, together with additional facts about hashing,
appear in [18].

No satisfactory lower bounds for the value of 6'(m, m) in the best single-hashing
scheme are known, although I believe that none will have 6’(m, m) lower than

(l+l—)(1+—l+---+ —l-)—z;
m 2 m

this is the value which arises in the musical chairs game if each player follows a
random path independently of all the others. J. D. Ullman [28] has given a more
general conjecture from which this statement would follow. If Ullman’s conjecture
is true, then a random Q comes within 4 of the best possible value, and a large
number of matrices will therefore yield values near the optimum. Therefore it is
an interesting practical problem to construct a family of matrices for various m,
having provably good behavior near the optimum, and also with the property that
they are easy to compute in step 4.

It does not appear to be easy to compute é'(m,m) for a given matrix M. The
best method I know requires on the order of m-2™ steps, so I have been able to
experiment on this problem only for small values of m. (Incidentally, such experi-
ments represent an application of computer science to solve a mathematical problem

suggested by computer science.) Here is a way to compute ¢'(m,m) for a given
matriv) — (4.) If 4 ic anv entheat af f1 2 ... 1l lat | 41 la tha moebhae Af ala

1/20/07 6:03 PM

file:///documents/knuth-1974/knuth1974.html

338 D. E. KNUTH [April

ments in A4, and let p(A4) be the probability that the first | 4| players occupy the
chairs designated by 4. Then it is not difficult to show that

. 1
pA) = — z p(A = {q;})

M (ijyescd)

when A is nonempty, where s(A) is the set of all pairs (i,j) such that g, e 4 for
1 £ k £ j; consequently

d'(m,n) = Loy | s(4) | p(4),
M4y =n-1

2

3'(m,m) = % ; || s(A) || p(A).

For example, in the 4 x 4 matrix Q, considered earlier, we have

A p(4) st A P(A) s
(o] 1 0 {4} 1/4 1
{1} 1/4 1 {1,4} 2/16 2
{2} 1/4 1 {2,4} 2/16 2
{1,2} 3/16 3 {1,2,4} 9/64 4
{3} 1/4 1 {3,4} 416 4
{1,3} 3/16 3 {1,3,4} 20/64 7
{2,3} 2/16 2 {2,3,4} 16/64 6
{1,2,3} 19/64 7 {1,2,3,4} 1 16

The first three chairs occupied will most probably be {1, 3,4}; the set of chairs {1, 2,4}
is much less likely. The *‘score’ &'(m, m) for this matrix comes to 653/1024, which
in this case is worse than the score 624/1024 for cyclic hashing. In fact, cyclic hashing
turns out to be the best single hashing scheme when m = 4.

When m = 5, the best single hashing scheme turns out to be obtained from the

matrix
(1 2 4 5 3)
2 3 51 4
OQs= (3 4 1 25
4 52 3 1
S 1 3 4 2]
whose score is 0.7440, compared to 0.7552 for cyclic hashing. Note that Qs is very

16 of 21 1/20/07 6:03 PM

17 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 339

from the preceding row by adding 1 modulo §, so that the probing pattern is essen-
tially the same for all rows. We may call this generalized cyclic hashing; it is a special
case of practical importance, because it requires knowing only one row of Q instead
of all m? entries.

When m > 5, an exhaustive search for the best single hashing scheme would
be too difficult to do by machine, unless some new breakthrough is made in the
theory. Therefore I have resorted to “*heuristic’” search procedures. For all m < 11,
the best single hashing matrices I have been able to find actually have turned out
to be generalized cyclic hashing schemes, and I am tempted to conjecture that this
will be true in general. It would be extremely nice if this conjecture were true, since
it would follow that the potentially expensive generality of a non-cyclic scheme
would never be useful. However, the evidence for my guess is comparatively weak;

TasLE I. Cyclic hashing versus random single hashing

m o(m, m) (5; (m, m)
1 0.0000 0.0000
2 0.2500 0.2500
3 0.4444 0.4630
4 0.6094 0.6426
5 0.7552 0.7973
6 0.8874 0.9330
7 1.0091 1.0538
8 1.1225 1.1626
9 1.2292 1.2616

10 1.3301 1.3523

11 1.4262 1.4360

12 1.5180 1.5138

15 1.7729 1.7183

20 2.1468 1.9911

30 2.7747 2.3888

40 3.3046 2.6774

50 3.7716 2.9037

75 4.7662 3.3181

100 5.6050 3.6135

it is simply that (i) the conjecture holds for m = §; (ii) I have seen no counterexamples
in experiments for m = [1; (iii) the best generalized cyclic hashing schemes for
m £ 9 are “‘locally optimum” single hashing schemes, in the sense that all possible
interchanges of two elements in any row of the matrix lead to a matrix that is no
better; (iv) the latter statement is not true for the standard (ungeneralized) cyclic

hashing scheme, so the fact that it holds for the best ones may be significant.

Even if this conjecture is false, the practical significance of generalized cyclic
hashing makes it a suitable object for further study, especially in view of its additional

1/20/07 6:03 PM

18 of 21

file:///documents/knuth-1974/knuth1974.html

340 D. E. KNUTH [April

mathematical structure. One immediate consequence of the cyclic property is that
p(A) = p(A + k) for all sets A, in the above formulas for computing d'(m,n),
where ‘A + k' means the set obtained from A by adding k to each element, modulo
m . This observation makes the calculation of scores almost m times faster. Another,
not quite so obvious property, is the fact that the generalized cyclic hashing
scheme generated by the permutation ¢,q,---g, has the same score as that
generated by the “‘reflected’” permutation qq5 - q,, where ¢; =m + 1 —gq;. (It
is convenient to say that a generalized cyclic hashing scheme is ‘‘generated’” by
any of its rows.) This equivalence under reflection can be proved by showing that
p(A) is equal to p'(m + 1 — A).

I programmed a computer to find the scores for all generalized cyclic hashing
schemes when m = 6, and the results of this computation suggested that two further
simplifications might be valid:

(i) 419293+ qm and g,q,9;---q, generate equally good generalized cyclic
hashing schemes.

(1) g1 Gu-29m-19m and gy =" G- 2qndm-1 generate equally good generalized
cyclic hashing schemes.

In fact, both of these statements are true; here is a typical instance where com-
puting in a particular case has led to new mathematical theorems.

In fact, the above results made me suspect that g,--- ¢, and
m+1—=q)-(mMm+1—=q)qe1" Gnm

will always generate equally good schemes, whenever both of these sequences are
permutations. If this statement were true, it would include the three previous results
as special cases, for k = 2, m —2 and m. Unfortunately, I could not prove it;
and I eventually found a counterexample (by hand), namely ¢; ---¢q,, =138 627 54
and k = 4. However, this mistaken conjecture did lead to an interesting purely
mathematical question, namely to determine how many inequivalent permutations
of m objects there are, when g¢,---g, is postulated to be equivalent to
(eqy +) (eqx + Nxs 1" Gm, for e = + 1T and 1 £ j, k £ m (whenever these are
both permutations, modulo m). We might call these “‘necklace permutations,” by
analogy with another well-known combinatorial problem, since they represent the
number of different orders in which a person could change the beads of a necklace from
all white to all black, ignoring the operation of rotating and/or flipping the necklace
over whenever such an operation preserves the current black/white pattern. The
total number of different necklace permutations for m =1, 2, 3, 4, 5, 6, 7 is
1, 1, 1, 2, 4, 14, 62, respectively, and I wonder what can be said for general m.

Returning to the hashing problem, the theorems mentioned above make it pos-
sible to study all of the generalized cyclic hashing schemes for m < 9, by computer;
and the following turn out to be the best:

1/20/07 6:03 PM

19 of 21

file:///documents/knuth-1974/knuth1974.html

1974] COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS 341

best permutation Opin (M, m) Oy (m, m)

1234 0.6094 0.6146
12453 0.7440 0.7514
125346 0.8650 0.8819
1423657 0.9713 0.9866
13487265 1.0676 1.0919
152384679 1.1568 1.1790

The righthand column gives the average 6’(m, m) over all m! schemes. For m = 10
and 11 the best permutations I have found so far are 12864931075 and
1348971121065, with respective scores of 1.2362 and 1.3103. The worst

such schemes for m < 9 are

worst permutation b‘;mx (m,m)
1324 0.6250
12345 0.7552
135246 0.9132
1234567 1.0091
15374826 1.1719
147258369 1.2638

(This table suggests that the form of the worst cyclic scheme might be obtainable

in a simple way from the prime factors of m.)

Finally I have tried to find the worst possible Q matrices, without the cyclic

constraint. Such matrices can be very bad indeed; the worst I know, for any m,
occur when g;; < gy ;44 for all j = 2, eg.

rl 2 3 4 5}
21 3 45
31 2 4
4 1 2 3

5 1 2 3 4

when m = 5. Using discrete mathematical techniques like those illustrated above,
I have proved that the score for such matrices is

5

d'(m,m) = (m + 3+ 3) (I + —l) —-25m -7 — %—'5,
m/)\ m m
which is approximately (¢ — 2.5)m + 3¢ — 8 when m is large. We certainly would
not want to retrieve information in this way, and perhaps it is the worst possible
single hashing scheme.
Thus, the example of hashing illustrates the typical interplay between computer
science and mathematics.

1/20/07 6:03 PM

20 of 21

file:///documents/knuth-1974/knuth1974.html

342 D. E. KNUTH [April

I wish to thank Garrett Birkhoff for his comments on the first draft of this paper.

References

1. Amer. Math. Society and Math. Assoc. of America, co-sponsors of conference, The Influence
of Computing on Mathematical Research and Education, August 1973,

2. A. O. L. Atkin and B. J. Birch, eds., Computers in Number Theory, Academic Press, New
York, 1971.

3. Charles Babbage, Passages from the Life of a Philosopher, (London, 1864). Reprinted in
Charles Babbage and His Calculating Engines, by Philip and Emily Morrison, Dover, New York
1961; esp. p. 69.

4. Garrett Birkhoff and Marshall Hall, Jr., eds., Computers in Algebra and Number Theory,
SIAM-AMS Proceedings, 4 (Amer. Math. Soc., 1971).

5. R. F. Churchhouse and J. -C. Herz, eds., Computers in Mathematical Research, North-
Holland, Amsterdam, 1968.

6. N. G. de Bruijn, Donald E. Knuth, and S. O. Rice, The average height of planted plane trees,
in Graph Theory and Computing, ed. by Ronald C. Read, Academic Press, New York, 1972, 15-22,

7. George E. Forsythe, The role of numerical analysis in an undergraduate program, this
MONTHLY, 66 (1959) 651-662.

8. , Computer Science and Education, Information Processing 68, 1025-1039.

9, ———, What to do till the computer scientist comes, this MONTHLY, 75 (1968) 454-462.

10, K. F. Gauss, Letter to Enke, Werke, vol. 2, 444-447.

11. Seymour Ginsburg, The Mathematical Theory of Context Free Languages, McGraw-Hill,
New York; 1966.

12. , Sheila Greibach, and John Hoperoft, Studies in abstract families of languages,
Amer. Math. Society Memoirs, 87 (1969) 51 pp.

13. Donald E. Knuth, A class of projective planes, Trans. Amer. Math. Soc., 115 (1965) 541-549.

14, , Algorithm and program; information and data, Comm. ACM, 9 (1966), 654,

15. ———, Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969.

16. ———, Ancient Babylonian algorithms, Comm. ACM, 15 (1972) 671-677.

17. , George Forsythe and the development of Computer Science, Comm. ACM, 15
(1972) 721-726.

18. , Sorting and Searching, Addison-Wesley, Reading, Mass., 1973.

19. Peter D. Lax, The impact of computers on mathematics, Chapter 10 of Computers and Their
Role in the Physical Sciences, ed. by S. Fernbach and A. Taub, Gordon and Breach, New York,
1970, 219-226.

20. John Leech, ed., Computational Problems in Abstract Algebra, Pergamon, Long Island
City, 1970.

21. Peter Naur, ‘Datalogy’, the science of data and data processes, and its place in education,
Information Processing 68, vol. 2, 1383-1387.

22. Allen Newell, Alan J. Perlis, and Herbert A. Simon, Computer Science, Science, 157 (1967)
1373-1374.

23. W. W. Peterson, Addressing for random-access storage, IBM Journal of Res. and Devel.,
1 (1957) 130-146.

24. Proc. Symp. Applied Math 15, Experimental Arithmetic, High-Speed Computing, and Mathe-
matics, Amer. Math. Soc., 1963.

25. E. Reingold, Establishing lower bounds on algorithms — A survey, AFIPS Conference
Proceedings, 40 (1972) 471-481,

26. Paul C. Rosenbloom and George E. Forsythe, Numerical Analysis and Partial Differential
Eauations. Survevs in Annlied Math 5. Wilev. New Yark 1958

1/20/07 6:03 PM

21 of 21

file:///documents/knuth-1974/knuth1974.html

1974] MAXWELL’S EQUATIONS 343

27. Computers and Computing, Slaught Memorial Monograph No. 10, supplement to this
MontHLy, 72 (February 1965) 156 pp.

28. J. D. Ullman, A note on the efficiency of hashing functions, J. ACM, 19 (1972) 569-575.

29, Peter Wegner, Three computer cultures, Advances in Computers, 10 (1970) 7-78.

30. J. H. Wilkinson, Some comments from a numerical analyst, J. ACM, 18 (1971) 137-147.

COMPUTER SCIENCE DEPARTMENT, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94303,

MAXWELL’S EQUATIONS
THEODORE FRANKEL

1. Introduction. We shall consider Maxwell’s equations
(1) ---divB =0 (2)-divD =¢

(3) - curlE = — i;—l: (4)---cur1H=j+%’2

in a “‘non-inductive’” medium; i.e., E = D is the electric field vector, B = H is the
magnectic field vector, ¢ is the charge density, and j is the current density vector.

These equations are usually taken as axioms in electromagnetic field theory.
(1) says that there are no magnetic charges. (2) is Gauss® law, stating that one can
compute the total charge inside a closed surface by integrating the normal component
of D or E over the surface. (3) is Faraday’s law; a changing magnetic field produces
an electric field. Finally, (4) is Ampere’s law curl H = j modified by Maxwell’s term
éD [ot, stating that currents and changing electric fields produce magnetic fields.
Equations (1) and (2) are relatively simple and easily understood while (3) and (4)
secm much more sophisticated. It is comforting to know then, that in a certain sense,
Faraday’s law (3) is a consequence of (1), while the Ampere-Maxwell law (4) is a
consequence of Gauss’ law (2). The precise statement will be found in Section 4. This
apparently is a “‘folk-theorem™” of physics; I first ran across the statement of it in an
article of J. A. Wheeler ([3], p. 84). The precise statement involves only the simplest
notions of special relativity and the proof of the statement is an extremely simple
application of the formalism of exterior differential forms and could be written down
in a few lines. I prefer to preface the proof with a very brief summary of special
relativity and of how electromagnetism fits into special relativity, mainly because
most (but not all) treatments of this subject motivate their constructions by means of
Maxwell’s equations; from our view point this would be circular and far less
appealing than the approach via the Lorentz force.

2, The Minkowski Space of Special Relativity, Space-time is a 4-dimensional

1/20/07 6:03 PM

1975 ACM Turing
Award Lecture

The 1975 ACM Turing Award was presented jointly to Allen
Mewell and Herbert A, Simon at the ACM Annual Conference in
Minneapolis, October 20. In introducing the recipients, Bernard A.
Galler, Chairman of the Turing Award Committee, read the fol-
lowing citation:

“1t is a privilege to be able to present the ACM Turing Award
to two friends of long standing, Professors Allen Newell and
Herbert A. Simon, both of Carnegie-Mellon University.

“In joint scientific efforts extending over twenty years, initially
in collaboration with J.C. Shaw at the RAND Corporation, and
subsequently with numerous faculty and student colleague$ at
Carnegie-Mellon University, they have made basic contributions
to artificial intelligence, the psychology of human cognition, and
list processing.

“In artificial intelligence, they contributed to the establishment
of the field as an area of scientific endeavor, to the development of
heuristic programuming generally, and of heuristic search, means-
ends analysis, and methods of induction, in particular; providing

demonstrations of the sufficiency of these mechanisms to solve
interesting problems.

“In psychology, they were principal instigators of the idea that
human cognition can be described in terms of a symbol systemn, and
they have developed detailed theories for human problem solving,
verbal learning and inductive behavior in a number of task domains,
using computer programs embodying these theories to simulate the
human behavior.

“They were apparently the inventors of list processing, and
have been major contributors to both software technology and the
development of the concept of the computer as a system of manipu-
lating symbolic structures and not just as a processor of numerical
data.

“It is an honor for Professors Mewell and Simon to be given
this award, but it is also an honor for ACM to be able to add their
names to our list of recipients, since by their presence, they will add
to the prestige and importance of the ACM Turing Award.”

Computer science is the study of the phenomena
surrounding computers. The founders of this society
understood this very well when they called themselves
the Association for Computing Machinery. The
machine—not just the hardware, but the programmed,
living machine—is the organism we study.

This is the tenth Turing Lecture. The nine persons
who preceded us on this platform have presented nine
different views of computer science. For our organism,
the machine, can be studied at many levels and from
many sides. We are deeply honored to appear here
today and to present yet another view, the one that has
permeated the scientific work for which we have been

Key Words and Phrases: symbols, search, science, computer
science, empirical, Turing, artificial intelligence, intelligence, list
processing, cognition, heuristics, problem solving.

CR Categories: 1.0, 2.1, 3.3, 3.6, 5.7.

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication,

to its date of issue, and to the fact that reprinting privileges
were granted by permission of the Association for Computing
Machinery.

The authors’ research over the years has been supported in part
by the Advanced Research Projects Agency of the Department of
Defense (monitored by the Air Force Office of Scientific Research)
and in part by the National Institutes of Mental Health.

Authors’ address: Carnegie-Mellon University, Pittsburgh.

113

Communications March 1976
of Yolume 19
the ACM Number 3

cited. We wish to speak of computer science as empirical
mquiry.

Our view is only once of many; the previous lectures
make thut clear. However, even taken together the Jec-
tures fail to cover the whole scope of our science. Many
fundamental aspects of it have not been represented in
these ten wwards, And af the time ever arrives, surely
not soon, when the compass has been boxed, when com-
puter science has been discussed from every side, 1t will
be time 1o start the eycele again. For the hare as lecturer
will have (o make an annual sprint to overtake the
cumulation of small, incremental gains that the tortoise
of scientific and tweehnical development has achieved in
his steady march. Bach year will ¢reate a new gap and
call Tor a new sprint, Yor in science there s no final word.

Computer scienee is an empirical discipline. We would
have called i1t an experimental science, but like as-
ronomy, cconomics, and geology, some of is unique
forms of observation and experience do not fit a narrow
stercotype of the experimental method. None the less,
they are experiments. Bach new machine that is built is
an experiment. Actually constructing the machine poses
@ question o nature; and we listen for the answer by
observing the machine in operation and analyzing it by
all analytical and measurement means available, Each
new program that is built is an expermient. It poses a
question 1o nature, and its behavior offers clues 1o an
answer, Neither machines nor programs are black
boses: they wre artifacts that have been designed, both
hardware and software, and we can open them up and
look inside. We can relate their structure to their be-
havior and draw many lessons from a single experiment.
We don't have to build 100 copies of, say, a theorem
prover, to demonstrate statistically that it has not over-
come the combinatorial explosion of scarch in the way
hoped for. Inspection of the program in the light of a
few runs reveals the flaw and lets us proceed to the next
attempt.

We build computers and programs for many reasons.
We build them to serve society and as tools for carrying
out the cconomic tasks of society. But as basic scientists
we build machines and programs as a way of discovering
new phenomena and analyzing phenomena we already
know about. Society often becomes confused about this,
believing that computers and programs are 1o be con-
structed only for the economic use that can be made of
them (or as intermediate items in a developmental
sequence leading to such use). It needs to understand
that the phenomena surrounding compulers are deep
and obscure, requiring much experimentation to assess
their nature, It needs to understand that, as in any

114

scicnce, the gains that accrue from such experimentation
and understanding pay off in the permanent acquisition
of new techniques; and that it js these techniques that
will create the instruments to help society in achieving
its goals.

Our purpose here, however, is not to plead for
understanding from an outside world. It is to examine
one aspect of our science, the development of new basic
understanding by empirical inquiry. This 1s best done
by illustrations. We will be pardoned if, presuming upon
the occasion, we choose our examples from the area of
our own research. As will become apparent, these
examples involve the whole development of artificial
intelligence, especially in its carly years. They rest on
much more than our own personal contributions. And
even where we have made direct contributions, this has
been done in cooperation with others. Qur collaborators
have included especially Clff Shaw, with whom we
formed a team of three through the exciting period of
the late fifties. But we have also worked with a great
many colleagues and students at Carnegie-Mellon
University.

Time permits taking up just two examples. The first
is the development of the notion of a symbolic system.
The second is the development of the notion of heuristic
scarch. Both conceptions have deep significance for
understanding how information is processed and how
intelligence is achieved. However, they do not come
ciose to exhausting the full scope of artificial intelli-
gence, though they seem to us to be useful for exhibiting
the nature of fundamental knowledge in this part of
computer science,

I. Symbols and Physical Symbol Systems

One of the fundamental contributions to knowledge
of computer science has been to explain, at a rather
basic level, what symbols are. This explanation is a
scientific proposition about Nature. It is empirically
derived, with a long and gradual development.

Symbols lie at the root of intelligent action, which
is, of course, the primary topic of artificial intelligence.
For that matter, it is a primary question for all of com-
puter science. For all information is processed by com-
puters in the service of ends, and we measure the in-
telligence of a system by its ability to achjeve stated
ends in the face of variations, difficulties and com-
PieXitiGS posed by the task environment. This general
investment of computer science in attaining intelligence
1s obscured when the tasks being accomplished are

Cpmmunications March 1976
of Yolume 19
the ACM

Mumber 3

limited in scope, for then the full variations in the en-
vironment can be accurately foreseen. It becomes more
obvious as we extend computers to more global, com-
plex and knowledge-intensive tasks—as we attempt to
make them our agents, capable of handling on their
own the full contingencies of the natural world.

Our understanding of the systems requirements for
intelligent action emerges slowly. It is composite, for
no single elementary thing accounts for intelligence in
all its manifestations. There is no “intelligence prin-
ciple,” just as there is no “'vital principle’” that conveys
by its very nature the essence of life. But the lack of a
simple deus ex machina does not imply that there are
no structural requirements for intelligence. One such
requirement is the ability to store and manipulate
symbols. To put the scientific question, we may para-
phrase the title of a famous paper by Warren McCul-
loch [1961]: What is a symbol, that intelligence may
use it, and intelligence, that it may use a symbol?

Laws of Qualitative Structure

All sciences characterize the essential nature of the
systems they stucdy. These characterizations are in-
variably qualitative in nature, for they set the terms
within which more detailed knowledge can be devel-
oped. Their essence can often be captured in very
short, very general statements. One might judge these
general laws, due to their limited specificity, as making
relatively little contribution to the sum of a science,
were it not for the historical evidence that shows them
to be results of the greatest importance.

The Cell Doctrine in Biology. A good example of a
law of qualitative structure is the cell doctrine in biol-
ogy, which states that the basic building block of all
living organisms is the cell. Cells come in a large variety
of forms, though they all have a nucleus surrounded
by protoplasm, the whole encased by a membrane. But
this internal structure was not, historically, part of the
specification of the cell doctrine; it was subsequent
specificity developed by intensive investigation. The
cell doctrine can be conveyed almost entirely by the
statement we gave above, along with some vague
notions about what size a cell can be. The impact of
this law on biology, however, has been tremendous,
and the lost motion in the field prior to its gradual
acceptance was considerable.

Plate Tectonics in Geology. Geology provides an inter-
esting example of a qualitative structure law, interest-
ing because it has gained acceptance in the last decade
and so its rise in status is still fresh in memory. The

115

theory of plate tectonics asserts that the surface of the
globe is a collection of huge plates—a few dozen in
all-—which move (at geological speeds) against, over,
and under each other into the center of the earth,
where they lose their identity. The movements of the
plates account for the shapes and relative locations of
the continents and oceans, for the areas of volcanic
and earthquake activity, for the deep sea ridges, and
so on. With a few additional particulars as to speed
and size, the essential theory has been specified. It was
of course not accepted until it succeeded in explaining
a number of details, all of which hung together (e.g.
accounting for flora, fauna, and stratification agree-
ments between West Africa and Northeast South
America). The plate tectonics theory is highly qualita-
tive. Now that it is accepted, the whole carth seems to
offer evidence for it everywhere, for we see the world
in its terms.

The Germ Theory of Disease. It is little more than a
century since Pasteur enunciated the germ theory of
disease, a law of qualitative structure that produced a
revolution in medicine. The theory proposes that most
diseases are caused by the presence and multiplication
in the body of tiny single-celled living organisms, and
that contagion consists in the transmission of these
organisms from one host to another. A large part of
the elaboration of the theory consisted in identifying
the organisms associated with specific diseases, de-
scribing them, and tracing their life histories. The fact
that the law has many exceptions—that many diseases
are not produced by germs—does not detract from its
importance. The law tells us to ook for a particular
kind of cause; it does not insist that we will always
find it. ‘

The Doctrine of Atomism. The doctrine of atomism
offers an interesting contrast to the three laws of quali-
tative structure we have just described. As it emerged
from the work of Dalton and his demonstrations that
the chemicals combined in fixed proportions, the law
provided ‘a typical example of qualitative structure:
the elements are composed of small, uniform particles,
differing from one element to another. But because the
underlying species of atoms are so simple and limited
in their variety, quantitative theories were soon for-
mulated which assimilated all the general structure in
the original qualitative hypothesis. With cells, tectonic
plates, and germs, the variety of structure is so great
that the underlying qualitative principle remains dis-
tinct, and its contribution to the total theory clearly
discernible.

Communications March 1976
of Yolume 19
the ACM Number 3

Conclusion. Laws of qualitative structurc are scen
everywhere in science. Some of our greatest scientific
discoveries are to be found among them. As the exam-
ples illustrate, they often set the terms on which a
whole science operates.,

Physical Symbol Systems

Let us return to the topic of symbols, and define a
physical symbol system. The adjective “physical” de-
notes two important features: (1) Such systems clearly
obey the taws of physics—they are realizable by engin-
eered systems made of engincered components; (2)
although our use of the term “symbol” prefigures our
intended interpretation, it is not restricted to human
symbol systems.

A physical symbol system consists of a set of en-
tities, called symbols, which arc physical patterns that
can oceur as components of another type of entity
called an cxpression (or symbol structure). Thus, a
symbol structure is composed of 4 number of instances
for tokens) of symbols related in some physical way
{such as one token being next to another). At any
instant of time the system will contain a collection of
these symbol structures. Besides these structures, the
system also contains a collection of processes that
operate on expressions to produce other expressions:
processes of creation, modification, reproduction and
destruction. A physical symbol system is a machine
that produces through time an evolving collection of
symbol structures. Such a system exists in a world of
objects wider than just these symbolic expressions
themselves,

Two notions are central to this structure of ex-
pressions, symbols, and objects: designation and
iierpretation.

Designation. An expression designates an ob-
Jeetif, given the expression, the system can either
affect the object itsell or behave in ways depend-
ent on the object.

In cither case, access to the object via the expres-
sion has been obtained, which is the essence of
designation,

Interpretation. The system can interpret an ex-
pression if the expression designates a process
and if, given the expression, the system can
carry out the process.

lr;t;rprrxtzxtion implies a special form of dependent
action: given an expression the system can perform the
indicated process, which is to say, it can evoke and
execute its own processes from expressions that desig-
nate them,

) A system capable of designation and interpretation,
in the sense just indicated, must also meet a number of
additional requirements, of completeness and closure.
We will have space only to mention these briefly; all

iis

of them are important and have far-reaching conse.
quences.

(1) A symbol may be used to designate any expres.
sion whatsoever., That is, given a symbol, it is not
prescribed a priori what expressions it can designate,
This arbitrariness pertains only to symbols; the symbol
tokens and their mutual relations determine what object
is designated by a complex expression. (2) There exist
expressions that designate every process of which the
machine is capable. (3) There exist processes for creating
any expression and for modifying any expression in
arbitrary ways. (4) Expressions are stable; once created
they will continue to exist until explicitly modified or
defeted. (5) The number of expressions that the system
can hold is essentially unbounded.

The type of system we have just defined i3 not un-
familiar to computer scientists. It bears a strong family
resemblance to all general purpose computers. If o
symbol manipulation language, such as LISP, is taken
as defining a machine, then the kinship becomes truly
brotherly. Our intent in laying out such a system is not
to propose something new. Just the opposite: it is to
show what is now known and hypothesized about
systems that satisfy such a characterization.

We can now state a gencral scientific hypothesis—a
law of qualitative structure for symbol systems:

The Physical Symbol System Hypothesis. A phys-
ical symbol system has the necessary and suffi-
cient means for general intelligent action.

By “necessary” we mean that any system that
exhibits general intelligence will prove upon analysis
to be a physical symbol system. By “sufficient’” we mean
that any physical symbol system of sufficient size can
be organized further to exhibit general intelligence. By
“general intelligent action”” we wish to indicate the
same scope of intelligence as we see in humian action:
that in any real situation behavior approprate to the
ends of the system and adaptive to the demands of the
environment can occur, within some limits of speed
and complexity.

The Physical Symbol System Hypothesis clearly is
a law of qualitative structure. 1t specifies a general class
of systems within which one will find those capable of
intelligent action.

This is an empirical hypothesis. We have defined =
class of systems; we wish to ask whether that class
accounts for a set of phenomena we find in the real
world. Intelligent action is everywhere around us in
the biological world, mostly in human behavior. It is a
form of behavior we can recognize by its effects whether
it is performed by humans or not. The hypothesis
could indeed be false. Intelligent behavior is not so
easy to produce that any system will exhibit it willy-
nilly, Indeed, there are people whose analyses lead them
to conclude either on philosophical or on scientific
grounds that the hypothesis is false. Scientifically, one

Communications March 1976
of Yolume 19
the ACM Number 3

can attack or defend it only by bringing forth empirical
evidence about the natural world.

We now need to trace the development of this
hypothesis and look at the evidence for it.

Development of the Symbol System Hypothesis

A physical symbol system is an instance of a uni-
versal machine. Thus the symbol system hypothesis
implies that intelligence will be realized by a universal
computer. However, the hypothesis goes far beyond
the argument, often made on general grounds of physi-
cal determinism, that any computation that is realizable
can be realized by a universal machine, provided that
it is specified. For it asserts specifically that the intelli-
gent machine is a symbol system, thus making a specific
architectural assertion about the nature of intelligent
systems. It is important to understand how this addi-
tional specificity arose.

Formal Logic. The roots of the hypothesis go back to
the program of Frege and of Whitehead and Russell
for formalizing logic: capturing the basic conceptual
notions of mathematics in logic and putting the no-
tions of proof and deduction on a secure footing. This
effort culminated in mathematical logic—our familiar
propositional, first-order, and higher-order logics. It
developed a characteristic view, often referred to as
the “‘symbol game.” Logic, and by incorporation all of
mathematics, was a game played with meaningless
tokens according to certain purely syntactic rules. All
meaning had been purged. One had a mechanical,
though permissive (we would now say nondeterminis-
tic), system about which various things could be proved.
Thus progress was first made by walking away from
all that seemed relevant to meaning and human sym-
bols. We could call this the stage of formal syrmbol
manipulation.

This general attitude is well reflected in the devel-
opment of information theory. It was pointed out
time and again that Shannon had defined a system
that was useful only for communication and selection,
and which had nothing to do with meaning. Regrets
were expressed that such a general name as “informa-
tion theory’” had been given to the field, and attempts
were made to rechristen it as “the theory of selective
information”—to no avail, of course.

Turing Machines and the Digital Computer. The devel-
opment of the first digital computers and of automata
theory, starting with Turing’s own work in the '30s,
can be treated together. They agree in their view of
what is essential. Let us use Turing’s own model, for it
shows the features well.

A Turing machine consists of two memories: an un-
bounded tape and a finite state control. The tape holds
data, i.e. the famous zeroes and ones. The machine
has a very small set of proper operations—read, write,
and scan operations—on the tape. The read operation
is not a data operation, but provides conditional

117

branching to a control state as a function of the data
under the read head. As we all know, this model con-
tains the essentials of all computers, in terms of what
they can do, though other computers with different mem-
ories and operations might carry out the same computa-
tions with different requirements of space and time. In
particular, the model of a Turing machine contains
within it the notions both of what cannot be computed
and of universal machines—computers that can do
anything that can be done by any machine.

We should marvel that two of our deepest insights
into information processing were achieved in the
thirties, before modern computers came into being. It
is a tribute to the genius of Alan Turing. It is also a
tribute to the development of mathematical logic at
the time, and testimony to the depth of computer
science’s obligation to it. Concurrently with Turing’s
work appeared the work of the logicians Emil Post and
(independently) Alonzo Church. Starting from inde-
pendent notions of logistic systems (Post productions
and recursive functions, respectively) they arrived at
analogous results on undecidability and universality-—
results that were soon shown to imply that all three
systems were equivalent. Indeed, the convergence of all
these attempts to define the most general class of infor-
mation procgessing systems provides some of the force
of our conviction that we have captured the essentials
of information processing in these models.

In none of these systems is there, on the surface, a
concept of the symbol as something that designares.
The data are regarded as just strings of zeroes and
ones—indeed that data be inert is essential to the re-
duction of computation to physical process. The finite
state control system was always viewed as a small con-
troller, and logical games were played to see how small
a state system could be used without destroying the
universality of the machine. No games, as far as we
can tell, were ever played to add new states dynamically
to the finite control—to think of the control memory
as holding the bulk of the system’s knowledge. What
was accomplished at this stage was half the principle
of interpretation—showing that a machine could be
run from a description. Thus, this is the stage of auto-
matic formal symbol manipulation.

The Stored Program Concept. With the development of
the second generation of electronic machines in the
mid-forties (after the Eniac) came the stored program
concept. This was rightfully hailed as a milestone, both
conceptually and practically. Programs now can be
data, and can be operated on as data. This capability
is, of course, already implicit in the model of Turing:
the descriptions are on the very same tape as the data.
Yet the idea was realized only when machines acquired
enough memory to make it practicable to locate actual
programs in some internal place. After all, the Eniac
had only twenty registers.

The stored program concept embodies the second

Communications March 1976
of Yolume 19
the ACM MNumber 3

half of the interpretation principle, the part that says
that the system’s own data can be interpreted. But it
does not yet contain the notion of designation—of the
physical relation that underlies meaning.

List Processing. The next step, taken in 1956, was list
processing. The contents of the data siructures were
now symbols, in the sense of our physical symbol
system: patterns that designated, that had referents.
Lists held addresses which permitted access to other
lists—thus the notion of list structures. That this was
4 new view was demonstrated to us many times in the
early days of list processing when colleagues would ask
where the data were—that is, which list finally held
the collections of bits that were the content of the
system. They found it strange that there were no such
bits, there were only symbols that designated yet other
symbol structures.

List processing is simultaneously three things in the
development of computer science. (1) It is the creation
of a genuine dynamic memory structure in a machine
that had heretofore been perceived as having fixed
structure. 1t added to our ensemble of operations those
that built and modified structure in addition to those
that replaced and changed content. (2) It was an early
demonstration of the basic abstraction that a computer
consists of a set of data types and a set of operations
proper to these data types, so that a computational
system should employ whatever data types are appro-
priate to the application, independent of the underlying
machine. (3) List processing produced a model of des-
ignation, thus defining symbol manipulation in the
sense in which we use this concept in computer science
today.

As often occurs, the practice of the time already
anticipated all the elements of list processing: addresses
are obviously used to gain access, the drum machines
used linked programs (so called one-plus-one address-
ing), and so on. But the conception of list processing
as an abstraction created a new world in which desig-
nation and dynamic symbolic structure were the de-
fining characteristics. The embedding of the early list
processing systems in languages (the 1PLs, LISP) is
oftle’n decried as having been a barrier to the diffusion
of list processing techniques throughout programming
practice; but it was the vehicle that held the abstraction
together.

LISP. One more step is worth noting: McCarthy’s
creation of LISP in 1959-60 [McCarthy, 1960]. It com-
pleted the act of abstraction, lifting list structures out
of their embedding in concrete machines, creating a
new formal system with S-expressions, which could be
shown to be equivalent to the other universal schemes
of computation.

Conclusion. That the concept of the designating
symbol and symbol manipulation does not emerge
until the mid-fifties does not mean that the earlier steps
were either inessential or less important. The total

118

concept is the join of computability, physical realiza.
bility (and by multiple technologies), universality, the
symbolic representation of processes (i.c. interpreta.
bility), and, finally, symbolic structure and designation,
Fach of the steps provided an essential part of the
whole.

The first step in this chain, authored by Turing, is
theoretically motivated, but the others all have deep
empirical roots. We have been led by the evolution of
the computer itself. The stored program principle arose
out of the experience with Eniac. List processing arose
out of the attempt to construct intelligent programs.
It took its cue from the emergence of random access
memories, which provided a clear physical realization
of a designating symbol in the address. LISP arose out
of the evolving experience with list processing.

The Evidence

We come now to the evidence for the hypothesis
that physical symbol systems are capable of intelligent
action, and that general intelligent action calls for a
physical symbol system. The hypothesis is an empirical
generalization and not a theorem. We know of no way
of demonstrating the connection between symbol sys-
tems and intelligence on purely logical grounds. Lack-
ing such a demonstration, we must look at the facts,
Our central aim, however, is not to review the evidence
in detail, but to use the example before us to illustrate
the proposition that computer science is a field of
empirical inquiry, Hence, we will only indicate what
kinds of evidence there is, and the general nature of
the testing process.

The notion of physical symbol system had taken
essentially its present form by the middle of the 1950’s,
and one can date from that time the growth of arti-
ficial intelligence as a coherent subficld of computer
science. The twenty years of work since then has seen
a continuous accumulation of empirical evidence of two
main varieties. The first addresses itself to the suffi-
ciency of physical symbol systems for producing intelli-
gence, attempting to construct and test specific systems
that have such a capability, The second kind of evidence
addresses itself to the necessity of having a physical
symbol system wherever intelligence is exhibited. It
starts with Man, the intelligent system best known to
us, and attempts to discover whether his cognitive
activity can be explained as the working of a physical
symbol system. There are other forms of evidence,
which we will comment upon briefly later, but the;e
two are the important ones. We will consider them 1n
turn. The first is generally called artificial intelligence,
the second, research in cognitive psychology.

Constructing Intelligent Systems. The basic paradigm
for the initial testing of the germ theory of disease Was:
identify a disease; then look for the germ. An analogous
paradigm has inspired much of the research in artiﬁcia}l
intelligence: identify a task domain calling for intelli-
gence; then construct a program for a digital computer

Communications March 1976
of Volume 19
the ACM Number 3

that can handle tasks in that domain. The easy and
well-structured tasks were looked at first: puzzles and
games, operations research problems of scheduling and
allocating resources, simple induction tasks. Scores, if
not hundreds, of programs of these kinds have by now
been constructed, each capable of some measure of
intelligent action in the appropriate domain.

Of course intelligence is not an all-or-none matter,
and there has been steady progress toward higher levels
of performaunce in specific domains, as well as toward
widening the range of those domains. Early chess
programs, for example, were deemed successful if they
could play the game legally and with some indication
of purpose; a little later, they reached the level of
human beginners; within ten or fifteen years, they
began to compele with serious amateurs. Progress has
been slow (and the total programming effort invested
small) but continuous, and the paradigm of construct-
and-test proceeds in a regular cycle—the whole research
activity mimicking at a macroscopic level the basic
gencrate-and-test cycle of many of the Al programs.

There is a steadily widening area within which intel-
ligent action is attainable. From the original tasks,
research has extended to building systems that handle
and understand natural language in a variety of ways,
systems for interpreting visual scenes, systems for
hand-eye coordination, systems that design, systems
that write computer programs, systems for speech
understanding—the list is, if not endless, at least very
long. If there are limits beyond which the hypothesis
will not carry us, they have not yet become apparent.
Up to the present, the rate of progress has been gov-
erned mainly by the rather modest quantity of scientific
resources that have been applied and the inevitable
requirement of a substantial system-building effort for
each new major undertaking.

Much more has been going on, of course, than
simply a piling up of examples of intelligent systems
adapted to specific task domains. It would be sur-
prising and unappealing if it turned out that the Al
programs performing these diverse tasks had nothing
in common beyond their being instances of physical
symbol systems. Hence, there has been great interest in
searching for mechanisms possessed of generality, and
for common components among programs performing
a variety of tasks. This search carries the theory beyond
the initial symbol system hypothesis to a more com-
plete characterization of the particular kinds of symbol
systems that are effective in artificial intelligence. In
the second section of this paper, we will discuss one
example of a hypothesis at this second level of speci-
ficity: the heuristic search hypothesis.

The search for generality spawned a series of pro-
grams designed to separate out general problem-solving
mechanisms from the requirements of particular task
domains. The General Problem Solver (GPS) was
perhaps the first of these; while among its descendants
are such contemporary systems as PLANNER and

119

CONNIVER. The search for common components has
led to generalized schemes of representation for goals
and plans, methods for constructing discrimination
nets, procedures for the control of tree search, pattern-
matching mechanisms, and language-parsing systems.
Experiments are at present under way to find conven-
ient devices for representing sequences of time and
tense, movement, causality and the like. More and
more, it becomes possible to assemble large intelli-
gent systems in a modular way from such basic
components.

We can gain some perspective on what is going on
by turning, again, to the analogy of the germ theory.
If the first burst of research stimulated by that theory
consisted largely in finding the germ to go with each
disease, subsequent effort turned to learning what a
germ was—to building on the basic qualitative law a
new level of structure, In artificial intelligence, an
initial burst of activity aimed at building intelligent
programs for a wide variey of almost randomly selected
tasks is giving way to more sharply targeted research
aimed at understanding the common mechanisms of
such systems.

The Modeling of Human Symbolic Behavior. The
symbol system hypothesis implies that the symbolic
behavior of man arises because he has the character-
istics of a physical symbol system. Hence, the results
of efforts to model human behavior with symbol systems
become an important part of the evidence for the hy-
pothesis, and research in artificial intelligence goes on
in close collaboration with research in information
processing psychology, as it is usually called.

The search for explanations of man’s intelligent
behavior in terms of symbol systems has had a large
measure of success over the past twenty years; to the
point where information processing theory is the lead-
ing contemporary point of view in cognitive psychol-
ogy. Especially in the areas of problem solving, concept
attainment, and long-term memory, symbol manipu-
lation models now dominate the scene.

Research in information processing psychology
involves two main kinds of empirical activity. The first
is the conduct of observations and experiments on
human behavior in tasks requiring intelligence. The
second, very similar to the parallel activity in artificial
intelligence, is the programming of symbol systems to
model the observed human behavior. The psychologi-
cal observations and experiments lead to the formula-
tion of hypotheses about the symbolic processes the
subjects are using, and these are an important source
of the ideas that go into the construction of the pro-
grams. Thus, many of the ideas for the basic mecha-
nisms of GPS were derived from careful analysis of the
protocols that human subjects produced while thinking
aloud during the performance of a problem-solving
task.

The empirical character of computer science is
nowhere more evident than in this alliance with psy-

Communications March 1976
of Yolume 19
the ACM Number 3

chology. Not only are psychological experiments re-
quired to test the veridicality of the simulation models
as explanations of the human behavior, but out of the
experiments come new ideas for the design and con-
struction of physical symbol systems.

Other Evidence. The principal body of evidence for the
symbol system hypothesis that we have not consid-
ered is negative evidence: the absence of specific com-
peting hypotheses as to how intelligent activity might
be accomplished-whether by man or machine. Most
attempts to build such hypotheses have taken place
within the field of psychology. Here we have had a
continuum of theories from the points of view usually
labeled “behaviorism” to those usually labeled “Gestalt
theory.”” MNeither of these points of view stands as a
real competitor to the symbol system hypothesis, and
this for two reasons. First, neither behaviorism nor
Gestalt theory has demonstrated, or even shown how
to demonstrate, that the explanatory mechanisms it
postulates are suflicient to account for intelligent
behavior in complex tasks. Second, neither theory has
been formulated with anything like the specificity of
artificial programs. As a matter of fact, the alternative
theories are sufficiently vague so that it 1s not terribly
difficult to give them information processing interpre-
tations, and thereby assimilate them to the symbol
system hypothesis.

Conclusion

We have tried to use the example of the Physical
Symbol System Hypothesis to tllustrate concretely that
compuicr science is a scientific enterprise in the usual
meaning of that term: that it develops scientific hypothe-
ses which it then secks to verify by empirical inquiry.
We had a second reason, however, for choosing this
particular example to lustrate our point. The Physical
Symbol System Hypothesis is itsell a substantial scien-
tific hypothesis of the kind that we earlier dubbed
“laws of qualitative structure.” It represents an im-
portant discovery of computer science, which if borne
out by the empirical evidence, as in fact appears to be
occurring, will have major continuing umpact on the
field.

We turn now to a sccond example, the role of scarch
in intelligence. This topic, and the particular hypothesis
about it that we shall examine, have also played a
central role in computer science, in general, and arti-
ficial intelligence, in particular.

I1. Heuristic Search

Knowing that physical symbol systems provide the
matrix for intelligent action does not tell us how they
accomplish this. Our second example of a law of quali-
tative structure in computer science addresses this
latter question, asserting that symbol syst=ms solve
problems by using the processes of heuristic search.

120

This generalization, like the previous one, rests on em-
pirical evidence, and has not been derived formally
from other premises. However, we shall see in a moment
that it does have some logical connection with the
symbol system hypothesis, and perhaps we can look
forward to formalization of the connection at some
time in the future. Until that time arrives, our story
must again be one of empirical inquiry. We will deseribe
what is known about heuristic search and review the
empirical findings that show how it enabics action to be
intelligent. We begin by stating this law of qualitative
structure, the Heuristic Search Hypothesis,

Hewristic Search Hypothesis. The solutions to
problems are represented as symbol structures.
A physical symbol system exercises its intelli-
gence in problem solving by search~—that is, by
generating and progressively modifying symbol
structures until it produces a solution structure.

Physical symbol systems must use heuristic search
to solve problems because such systems have limited
processing resources; in a finite number of steps, and
over a finite interval of time, they can exccute only a
finite number of processes. Of course that is not a very
strong limitation, for all universal Turing machines
suffer from it. We intend the limitation, however, in a
stronger sense: we mean praciically limited. We cuan
conceive of systems that are not limited in a practical
way, but are capable, for example, of searching in
parallel the nodes of an exponentially expanding tree
at a constant rate for each unit advance in depth. We
will not be concerned here with such systems, but with
systems whose computing resources are scarce relative
to the complexity of the situations with which they are
confronted. The restriction will not exclude any real
symbol systems, in computer or man, in the context of
real tasks. The [act of limited resources allows us, for
most purposes, to view a symbol system as though it
were a serial, one-process-at-a-time device. 1f it can
accomplish only a small amount of processing in any
short time interval, then we might as well regard it as
doing things one at a time. Thus “limited resource
symbol system” and “‘serial symbol system’ are prac-
tically synonymous. The problem of allocating a
scarce resource from moment to moment can usually
be treated, if the moment is short enough, as a problem
of scheduling a serial machine.

Problem Solving

Since ability to solve problems is generally taken
as a prime indicator that a system has intelligence, it
is natural that much of the history of artificial intelli-
gence is taken up with attempts to build and understand
problem-solving systems. Problem solving has been
discussed by philosophers and psychologists for two
millenia, in discourses dense with the sense of mystery.
If you think there is nothing problematic or mysterious
about a symbol system solving problems, then you are

Communications March 1976
of Yolume 19
the ACM MNumber 3

a child of today, whose views have been formed since
mid-century. Plato (and, by his account, Socrates)
found difficulty understanding even how problems
could be entertained, much less how they could be
solved. Let me remind you of how he posed the conun-
drum in the Meno.

Meno: And how will you inquire, Socrates,
into that which you know not? What will you
put forth as the subject of inquiry? And if you
find what you want, how will you ever know that
this 1s what you did not know?

To deal with this puzzle, Plato invented his famous
theory of recollection: when you think you are discov-
ering or learning something, you are really just recalling
what you already knew in a previous existence. If you
find this explanation preposterous, there is a much
simpler one available today, based upon our under-
standing of symbol systems. An approximate statement
of it is:

To state a problem is to designate (1) a fesr
for a class of symbol structures (solutions of the
problem), and (2) a generator of symbol struc-
tures (potential solutions). To solve a problem is
to generate a structure, using (2), that satisfics
the test of (1).

We have a problem if we know what we want to do
{the test), and if we don’t know immediately how to do
it {our gencrator does not immediately produce a
symbol structure satisfying the test). A symbol system
can state and solve problems (sometimes) because it
can generate and test,

if that is all there is to problem solving, why not
simply generate at once an expression that satisfies the
test? This is, in fact, what we do when we wish and
dream. “If wishes were horses, beggars might ride.”
But outside the world of dreams, it isn’t possible. To
know how we would test something, once constructed,
does not mean that we know how to construct it—that
we have any generator for doing so.

For example, it is well known what it means to
“solve” the problem of playing winning chess. A
simple test exists for noticing winning positions, the

test for checkmate of the enemy King. In the world of

dreams one simply generates a strategy that leads to
checkmate for all counter strategies of the opponent.
Alas, no generator that will do this is known to existing
symbol systems (man or machine). Instead, good moves
in chess are sought by generating various alternatives,
and painstakingly evaluating them with the use of
approximate, and often erroneous, measures that are
supposed to indicate the likelihood that a particular
line of play is on the route to a winning position. Move
generators there are; winning move generators there
are not.

Before there can be a move generator for a problem,
there must be a problem space: a space of symbol

121

structures in which problem situations, including the
initial and goal situations, can be represented. Move
generators are processes for modifying one situation in
the problem space into another. The basic character-
istics of physical symbol systems guarantee that they
can represent problem spaces and that they possess
move generators. How, in any concrete situation they
synthesize a problem space and move generators ap-
propriate to that situation is a question that is still
very much on the frontier of artificial intelligence
research.

The task that a symbol system is faced with, then,
when it is presented with a problem and a problem
space, is to use its limited processing resources to gen-
erate possible solutions, one after another, until it finds
one that satisfies the problem-defining test. If the system
had some control over the order in which potential
solutions were generated, then it would be desirable to
arrange this order of generation so that actual solutions
would have a high likelihood of appearing early. A
symbol system would exhibit intelligence to the extent
that it succeeded in doing this. Intelligence for a system
with limited processing resources consists in making
wise choices of what to do next.

Search in Problem Solving

During the first decade or so of artificial intelligence
research, the study of problem solving was almost
synonymous with the study of search processes. From
our characterization of problems and problem solving,
it is easy to see why this was so. In fact, it might be
asked whether it could be otherwise. But before we
try to answer that question, we must explore further
the nature of scarch processes as it revealed itself during
that decade of activity.

Extracting Information from the Problem Space. Con-
sider a set of symbol structures, some small subset
of which are solutions to a given problem. Suppose,
further, that the solutions are distributed randomly
through the entire set. By this we mean that no informa-
tion exists that would enable any search generator to
perform better than a random search, Then no symbol
system could exhibit more intelligence (or less intelli-
gence) than any other in solving the problem, al-
though one might experience better luck than another.

A condition, then, for the appearance of intelligence
is that the distribution of solutions be not entirely
random, that the space of symbol structures exhibit at
least some degree of order and pattern. A second condi-
tion is that pattern in the space of symbol structures be
more or less detectible. A third condition is that the
generator of potential solutions be able to behave dif-
ferentially, depending on what pattern it detected.
There must be information in the problem space, and
the symbol system must be capable of extracting and
using it. Let us look first at a very simple example,
where the intelligence is easy to come by.

Communications March 1976
of Volume 19
the ACM MNumber 3

Consider the problem of solving a simple algebraic
equation:

AX + B = CX + D

The test defines a solution as any expression of the
form, X = E such that 4£ + B = CE + D. Now
one could use as generator any process that would
produce numbers which could then be tested by sub-
stituting in the latter equation. We would not call this
an intelligent generator.

Alternatively, one could use generators that would
make use of the fact that the original equation can be
modified—by adding or subtracting equal quantities
from both sides, or multiplying or dividing both sides
by the same quantity-—without changing its solutions.
But, of course, we can obtain even more information
to guide the generator by comparing the original ex-
pression with the form of the solution, and making
precisely those changes in the equation that leave its
solution unchanged, while at the same time, bringing
it into the desired form. Such a generator could notice
that there was an unwanted CX on the right-hand side
of the original equation, subtract it from both sides
and collect terms again. 1t could then notice that there
was an unwanted B on the left-hand side and subtract
that. Finally, it could get rid of the unwanted coeffi-
cient (4 ~ C) on the left-hand side by dividing.

Thus by this procedure, which now exhibits con-
siderable intelligence, the generator produces successive
symbol structures, each obtained by modifying the
previous one; and the modifications are aimed at
reducing the differences between the form of the input
structure and the form of the test expression, while
maintaining the other conditions for a solution.

This simple example already illustrates many of the
main mechanisms that are used by symbol systems for
intelligent problem solving. First, each successive ex-
pression is not generated independently, but is produced
by modifying one produced previously. Second, the
modifications are not haphazard, but depend upon two
kinds of information. They depend on information
that is constant over this whole class of algebra prob-
lems, and that is built into the structure of the generator
itself: all modifications of expressions must leave the
equation’s solution unchanged. They also depend on
information that changes at each step: detection of the
differences in form that remain between the current
expression and the desired expression. In effect, the
generator incorporates some of the tests the solution
must satisfy, so that expressions that don’t meet these
tests will never be generated. Using the first kind of
information guarantees that only a tiny subset of all
possible expressions is actually generated, but without
losing the solution expression from this subset. Using
the second kind of information arrives at the desired
solution by a succession of approximations, employing
a simple form of means-ends analysis to give direction
to the search.

122

There is no mystery where the information that

guided the search came from. We need not follow Plato
in endowing the symbol systern with a previous £Xist-
ence in which it already knew the solution. A moder-
ately sophisticated generator-test system did the trick
without invoking reincarnation.
Search Trees. The simple algebra problem may seem
an unusual, even pathological, example of search, Tt is
certainly not trial-and-error search, for though there
were a few trials, there was no error. We are more
accustomed to thinking of problem-solving search as
generating lushly branching trees of partial solution
possibilities which may grow to thousands, or even
millions, of branches, before they yield a solution. Thus,
if from each expression it produces, the generator
creates B new branches, then the tree will grow as B,
where D is its depth. The tree grown for the algebra
problem had the peculiarity that its branchiness, B,
equaled unity.

Programs that play chess typically grow broad
search trees, amounting in some cases to a million
branches or more. (Although this example will serve to
illustrate our points about tree search, we should note
that the purpose of search in chess is not to generate
proposed solutions, but to evaluate (test) them.) One
line of research into game-playing programs has been
centrally concerned with improving the representation
of the chess board, and the processes for making moves
on it, so as to speed up search and make it possible to
search larger trees. The rationale for this direction, of
course, is that the deeper the dynamic search, the more
accurate should be the evaluations at the end of it. On
the other hand, there is good empirical evidence that
the strongest human players, grandmasters, seldom
explore trees of more than one hundred branches.
This economy is achieved not so much by searching
less deeply than do chess-playing programs, but by
branching very sparsely and selectively at each node.
This is only possible, without causing a deterioration
of the evaluations, by having more of the selectivity
built into the generator itself, so that it is able to select
for generation just those branches that are very likely
to yield important relevant information about the
position,

The somewhat paradoxical-sounding conclusion to
which this discussion leads is that search—successive
generation of potentional solution structures—is a fun-
damental aspect of a symbol system’s exercise of intel-
ligence in problem solving but that amount of search
is not a measure of the amount of intelligence being
exhibited. What makes a problem a problem is not that
a large amount of search is required for its solution,
but that a large amount would be required if a requisite
level of intelligence were not applied. When the sym-
bolic system that is endeavoring to solve a problem
knows enough about what to do, it simply proceeds
directly towards its goal; but whenever its knowledgfi
becomes inadequate, when it enters terra incognita, it

Cormomunications March 1976
of Yolume 19
the ACM MNumber 3

is faced with the threat of going through large amounts
of search before it finds its way again.

The potential for the exponential explosion of the
search tree that is present in every scheme for gener-
ating problem solutions warns us against depending on
the brute force of computers—even the biggest and
fastest computers—as a compensation for the ignorance
and unselectivity of their generators. The hope is still
periodically ignited in some human breasts that a
computer can be found that is fast enough, and that
can be programmed cleverly enough, to play good
chess by brute-force search. There is nothing known in
theory about the game of chess that rules out this pos-
sibility. Empirical studies on the management of search
in sizable trees with only modest results make this a
much less promising direction than it was when chess
was first chosen as an appropriate task for artificial
intelligence. We must regard this as one of the important
empirical findings of research with chess programs.

The Forms of Intelligence. The task of intelligence,
then, is to avert the ever-present threat of the exponen-
tial explosion of search. How can this be accomplished?
The first route, already illustrated by the algebra
example, and by chess programs that only generate
“plausible” moves for further analysis, is to build
selectivity into the generator: to generate only struc-
tures that show promise of being solutions or of being
along the path toward solutions. The usual consequence
of doing this is to decrease the rate of branching, not
to prevent it entirely. Ultimate exponential explosion is
not avoided—save in exceptionally highly structured
situations like the algebra example—but only post-
poned. Hence, an intelligent system generally needs to
supplement the selectivity of its solution generator with
other information-using techniques to guide search.

Twenty years of experience with managing tree
search in a variety of task environments has produced
a small kit of general techniques which is part of the
equipment of every researcher in artificial intelligence
today. Since these techniques have been described in
general works like that of Nilsson [1971], they can be
summarized very briefly here,

In serial heuristic search, the basic question always
is: what shall be done next? In tree search, that ques-
tion, in turn, has two components: (1) from what node
in the tree shall we search next, and (2) what direction
shall we take from that node? Information helpful in
answering the first question may be interpreted as
measuring the relative distance of different nodes from
the goal. Best-first search calls for searching next from
the node that appears closest to the goal. Information
helpful in answering the second question—in what
direction to search—is often obtained, as in the algebra
example, by detecting specific differences between the
current nodal structure and the goal structure de-
scribed by the test of a solution, and selecting actions
that are relevant to reducing these particular kinds of

123

differences. This is the technique known as means-ends
analysis, which plays a central role in the structure of
the General Problem Solver.

The importance of empirical studies as a source of
general ideas in Al research can be demonstrated clearly
by tracing the history, through large numbers of prob-
lem solving programs, of these two central ideas:
best-first search and means-ends analysis. Rudiments
of best-first search were already present, though un-
named, in the Logic Theorist in 1955. The General
Problem Solver, embodying means-ends analysis, ap-
peared about 1957—but combined it with modified
depth-first search rather than best-first search. Chess
programs were generally wedded, for reasons of econ-
omy of memory, to depth-first search, supplemented
after about 1958 by the powerful alpha beta pruning
procedure. Each of these techniques appears to have
been reinvented a number of times, and it is hard to
find general, task-independent theoretical discussions
of problem solving in terms of these concepts until the
middle or Jate 1960’s. The amount of formal buttressing
they have received from mathematical theory is still
miniscule: some theorems about the reduction in search
that can be secured from using the alpha-beta heuristic,
a couple of theorems (reviewed by Nilsson [1971])
about shortest-path search, and some very recent
theorems on best-first search with a probabilistic
evaluation function.

“Weak’” and “Strong” Methods. The techniques we
have been discussing are dedicated to the control of
exponential expansion rather than its prevention. For
this reason, they have been properly called “weak
methods”—methods to be used when the symbol
system’s knowledge or the amount of structure actually
contained in the problem space are inadequate to
permit search to be avoided entirely. It is instructive
to contrast a highly structured situation, which can be
formulated, say, as a linear programming problem,
with the less structured situations of combinatorial
problems like the traveling salesman problem or sched-
uling problems. (“Less structured” here refers to the
insufficiency or nonexistence of relevant theory about
the structure of the problem space.)

In solving linear programming problems, a sub-
stantial amount of computation may be required, but
the search does not branch. Every step is a step along
the way to a solution. In solving combinatorial prob-
lems or in proving theorems, tree search can seldom
be avoided, and success depends on heuristic search
methods of the sort we have been describing.

Not all streams of Al problem-solving research
have followed the path we have been outlining. An
example of a somewhat different point is provided by
the work on theorem-proving systems. Here, ideas
imported from mathematics and logic have had a strong
influence on the direction of inquiry. For example, the
use of heuristics was resisted when properties of com-

Communications March 1976
of Volume 19
the ACM Number 3

pleteness could not be proved (a bit ironic, since most
interesting mathematical sysiems are known to be
undecidable). Since completeness can seldom be proved
for best-first search heuristics, or for many kinds of
selective generators, the effect of this requirement was
rather inhibiting. When theorem-proving programs
were continually incapacitated by the combinatorial
explosion of their search trees, thought began to be
given to selective heuristics, which in many cases
proved to be analogues of heuristics used in genexjal
problem-solving programs. The set-of-support heuris-
tic, for example, is a form of working backwards,
adapted to the resolution theorem proving environ-
ment.

A Summary of the Experience. We have now described
the workings of our second law of qualitative struc-
ture, which asserts that physical symbol systems solve
problems by means of heuristic search. Beyond that,
we have examined some subsidiary characteristics of
heuristic search, in particular the threat that it always
faces of exponential explosion of the search tree, and
some of the means it uses to avert that threat. Opinions
differ as to how effective heuristic search has been as a
problem solving mechanism——the opinions depending
on what task domains are considered and what criterion
of adequacy is adopted. Success can be guaranteed by
setting aspiration levels low-—or failure by setting them
high. The evidence might be summed up about as
follows. Few programs are solving problems at “expert”
professional levels. Samuel’s checker program and
Feigenbaum and Lederberg’s DENDRAL are perhaps
the best-known exceptions, but one could point also to
a4 number of heuristic search programs for such opera-
tions research problem domains as scheduling and
integer programming. In a number of domains, pro-
grams perform at the level of competent amateurs:
chess, some theorem-proving domains, many kinds of
games and puzzles. Human levels have not yet been
nearly reached by programs that have a complex per-
ceptual “front end”: visual scene TECOgNIzZETs, speech
understanders, robots that have to maneuver in real
space and time. Nevertheless, impressive progress has
been made, and a large body of experience assembled
about these difficult tasks.

We do not have deep theoretical explanations for
the particular pattern of performance that has emerged.
On empirical grounds, however, we might draw two
conclusions. First, from what has been learned about
human expert performance in tasks like chess, it is
likely that any system capable of matching that per-
formance will have to have access, in its memories, to
very large stores of semantic information. Second,
some part of the human superiority in tasks with a
large perceptual component can be attributed to the
special-purpose built-in parallel processing structure of
the human eye and ear,

In any case, the quality of performance must neces.

124

sarily depend on the characteristics both of the problem
domains and of the symbol systems used to tackle
them. For most real-life domains in which we are in-
terested, the domain structure has not proved suffy-
ciently simple to yield (so far) theorems about com-
plexity, or to tell us, other than empirically, how large
real-world problems are in relation to the abilitics of
our symbol systems to solve them. That situation may
change, but until it does, we must rely upon empirical
explorations, using the best problem solvers we know
how to build, as a principal source of knowledge about
the magnitude and characteristics of problem difficulty.
Even in highly stroctured areas like linear Program-
ming, theory has been much more useful in strengthen-
ing the heuristics that underlic the most powerful
solution algorithms than in providing a deep analysis
of complexity.

Intelligence Without Much Search

Our analysis of intelligence equated it with ability
to extract and use information about the structure of
the problem space, so as to enable a problem solution
to be generated as quickly and directly as possible. New
directions for improving the problem-solving capabili-
ties of symbol systems can be equated, then, with new
ways of extracting and using information. At least
three such ways can be identified.

Nonlocal Use of Information. First, it has been noted
by several investigators that information gathered in
the course of tree search is usually only used Jocally, to
help make decisions at the specific node where the
information was generated. Information about a chess
position, obtained by dynamic analysis of a subtree of
continuations, is usually used to evaluate just that
position, not to cvaluate other positions that may
contain many of the same features. Hence, the same
facts have to be rediscovered repeatedly at different
nodes of the search tree. Simply to take the information
out of the context in which it arose and use it generally
does not solve the problem, for the information may
be valid only in a limited range of contexts. In recent
years, a few exploratory efforts have been made 10
transport information from its context of origin to
other appropriate contexts. While it is still too early to
evaluate the power of this idea, or even exactly how it
is o be achieved, it shows considerable promise. An
important line of investigation that Berliner [1975] has
been pursuing is to use causal analysis to determine
the range over which a particular piece of information
is valid. Thus if a weakness in a chess position can be
traced back to the move that made it, then the same
weakness can be expected in other positions descendant
from the same move.

The HEARSAY speech understanding system has
taken another approach to making information globally
available. That system seeks to recognize speech strings
by pursuing a parallel search at a number of different

Communications March 1976
qf Yolume 19
the ACM Number 3

levels: phonemic, lexical, syntactic, and semantic. As
each of these searches provides and evaluates hypothe-
ses, it supplies the information it has gained to a com-
mon “blackboard” that can be read by all the sources.
This shared information can be used, for example, 1o
eliminate hypotheses, or even whole classes of hypothe-
ses, that would otherwise have to be searched by one
of the processes. Thus, increasing our ability to use
trec-search information nonlocally offers promise for
raising the intelligence of problem-solving systems.

Semantic Recognition Systems. A second active possi-
bility for raising intelligence is to supply the symbol
system with a rich body of semantic information about
the task domain it is dealing with. For example, em-
pirical research on the skill of chess masters shows that
a major source of the master’s skill is stored informa-
tion that enables him to recognize a large number of
specific features and patterns of features on a chess
board, and information that uses this recognition to
propose actions appropriate to the features recognized.
This general idea has, of course, been incorporated in
chess programs almost from the beginning. What is
new is the realization of the number of such patterns
and associated information that may have to be stored
for master-level play: something of the order of 50,000.

The possibility of substituting recognition for search
arises because a particular, and especially a rare, pattern
can contain an enormous amount of information, pro-
vided that it is closely linked to the structure of the
problem space. When that structure is ‘“‘irregular,”
and not subject to simple mathematical description,
then knowledge of a large number of relevant patterns
may be the key to intelligent behavior. Whether this is
s0 in any particular task domain is a question more
casily settled by empirical investigation than by theory.
Our experience with symbol systems richly endowed
with semantic information and pattern-recognizing
capabilities for accessing it is still extremely limited.

The discussion above refers specifically to semantic
information associated with a recognition system. Of
course, there is also a whole large area of Al research
on semantic information processing and the organiza-
tion of semantic memories that falls outside the scope
of the topics we are discussing in this paper.

Selecting Appropriate Representations. A third line of
inquiry is concerned with the possibility that search
can be reduced or avoided by selecting an appropriate
problem space. A standard example that illustrates this
possibility dramatically is the mutilated checkerboard
problem. A standard 64 square checkerboard can be
covered exactly with 32 tiles, each a 1X2 rectangle
covering exactly two squares. Suppose, now, that we
cut off squares at two diagonally opposite corners of
the checkerboard, leaving a total of 62 squares. Can
this mutilated board be covered exactly with 31 tiles?
With (literally) heavenly patience, the impossibility of
achjeving such a covering can be demonstrated by

125

trying all possible arrangements. The alternative, for
those with less patience, and more intelligence, is to
observe that the two diagonally opposite corners of a
checkerboard are of the same color. Hence, the mu-
tilated checkerboard has two less squares of one color
than of the other. But cach tile covers one square of
one color and one square of the other, and any set of
tiles must cover the same number of squares of each
color. Hence, there is no solution. How can a symbol
system discover this simple inductive argument as an
alternative to a hopeless attempt to solve the problem
by search among all possible coverings? We would
award a system that found the solution high marks for
intelligence.

Perhaps, however, in posing this problem we are
not escaping from search processes. We have simply
displaced the search from a space of possible problem
solutions to a space of possible representations. In any
event, the whole process of moving from one represen-
tation to another, and of discovering and evaluating
representations, is largely unexplored territory in the
domain of problem-solving research. The laws of quali-
tative structure governing representations remain to be
discovered. The search for them is almost sure to
receive considerable attention in the coming decade.

Conclusion

That is our account of symbol systems and intelli-
gence. It has been a long road from Plato’s Meno to
the present, but it is perhaps encouraging that most of
the progress along that road has been made since the
turn of the twentieth century, and a large fraction of it
since the midpoint of the century. Thought was still
wholly intangible and ineffable until modern formal
logic interpreted it as the manipulation of formal
tokens. And it seemed still to inhabit mainly the heaven
of Platonic ideals, or the equally obscure spaces of the
human mind, until computers taught us how symbols
could be processed by machines. A.M. Turing, whom
we memorialize this morning, made his great contribu-
tions at the mid-century crossroads of these develop-
ments that led from modern logic to the computer.

Physical Symbol Systems. The study of logic and com-
puters has revealed to us that intelligence resides in
physical symbol systerns. This is computer sciences’s
most basic law of qualitative structure.

Symbol systems are collections of patterns and
processes, the latter being capable of producing, de-
stroying and modifying the former. The most important
properties of patterns is that they can designate objects,
processes, or other patterns, and that, when they
designate processes, they can be interpreted. Interpre-
tation means carrying out the designated process. The
two most significant classes of symbol systems with
which we are acquainted are human beings and

computers.

Comroupications March 1976
of Volume 19
the ACM MNumber 3

Our present understanding of symbol systems grew,
as indicated earlier, through a sequence of stages.
Formal logic familiarized us with symbols, trz:az'cd
syntactically, as the raw material of thought, and with
the idea of manipulating them according to carefully
defined formal processes. The Turing machine made
the syntactic processing of symbols truly machine-like,
and affirmed the potential universality of strictly de-
fined symbol systems. The stored-program concept for
computers reaffirmed the interpretability of symbgls,
already implicit in the Turing machine. List processing
brought to the forefront the denotational capacities of
symbols, and defined symbol processing in ways that
allowed independence from the fixed structure of the
underlying physical machine. By 1956 all of these
concepts were available, together with hardware for
implementing them. The study of the intelligence of
symbol systems, the subject of artificial intelligence,
could begin.

Heuristic Search. A second law of gualitative structure
for Al is that symbol systems solve problems by gener-
ating potential solutions and testing them, that is, by
searching. Solutions are usually sought by creating
symbolic expressions and modifying them sequentially
until they satisfy the conditions for a solution. Hence
symbol systems solve problems by searching. Since
they have finite resources, the search cannot be carried
out all at once, but must be sequential. It leaves behind
it either a single path from starting point to goal or, if
correction and backup are necessary, a whole tree of
such paths.

Symbol systems cannot appear intelligent when
they are surrounded by pure chaos. They exercise in-
telligence by extracting information from a problem
domain and using that information to guide their
search, avoiding wrong turns and circuitous bypaths.
The problem domain must contain information, that
is, some degree of order and structure, for the method
to work. The paradox of the Meno is solved by the
observation that information may be remembered, but
new information may also be extracted from the domain
that the symbols designate. In both cases, the ultimate
source of the information is the task domain.

The Empirical Base. Artificial intelligence research is
concerned with how symbol systems must be organized
in order to behave intelligently. Twenty years of work
in the area has accumulated a considerable body of
knowledge, enough to fill several books (it already has),
and most of it in the form of rather concrete experience
about the behavior of specific classes of symbol systems
in specific task domains. Out of this experience, how-
ever, there have also emerged some generalizations,
cutting across task domains and systems, about the
general characteristics of intelligence and its methods
of implementation.

We have tried to state some of these generalizations
this morning. They are mostly qualitative rather than

126

mathematical. They have more the flavor of geology or
evolutionary biology than the flavor of theoreticy|
physics. They are sufliciently strong to enable us tog

‘ . , ; ay
to design and build moderately intelligent systems ¢

' or a
considerable range of task domains, as well as to gain

a rather deep understanding of how human intell

. , _ igence
works in many situations.

What Next? In our account today, we have mentioned
open questions as well as scttled ones; there are many
of both. We sce no abatement of the excitement of
exploration that has surrounded this field over the past
quarter century. Two resource Hmits will determine the
rate of progress over the next such period. One is the
amount of computing power that will be available, The
second, and probably the more important, is the
number of talented young computer scientists who will
be attracted to this arca of research as the most chal-
lenging they can tackle.

A.M. Turing concluded his famous paper on “Com-
puting Machinery and Intelligence” with the words:

“We can only see a short distance ahead, but we
can see plenty there that needs to be done.”

Many of the things Turing saw in 1950 that needed
to be done have been done, but the agenda is as full as
ever. Perhaps we read t0o much into his simple state-
ment above, but we like to think that in it Turing rec-
ognized the fundamental truth that all computer sci-
entists instinctively know. For all physical symbol
systems, condemned as we are to serial search of the
problem environment, the critical question is always:
What to do next?

References

Berliner, H. [1975]. Chess as problem solving: the development
of a tactics analyzer. Ph.D. Th., Computer Sci. Dep., Carnegie-
Mellon U. (unpublished).

McCarthy, 1. [1960]. Recursive functions of symbolic expressions
and their computation by machine. Comm. ACM 3, 4 (April
1960), 184-195.

MecCulloch, W.5. [1961]. What is 2 number, that a man may know
it, and a man, that he may know a number. General Semantics
Bulletin Nos. 26 and 27 (1961), 7-18.

Nilsson, N.J. [1971]. Problem Solving Methods in Artificial
Intelligence. McGraw-Hill, Mew York.

Turing, A.M. [1950]. Computing machinery and intelligence.
Mind 59 (Oct. 1950), 433-460.

Communications March 1976
of volume 19
the ACM WNumber 3

REPORT

COMPUTING AS A DISCIPLINE

The final report of the Task Force on the Core of Computer Science presents
a new intellectual framework for the discipline of computing and a new
basis for computing curricula. This report has been endorsed and approved
for release by the ACM Education Board.

PETER J. DENNING (CHAIRMAN), DOUGLAS E. COMER, DAVID GRIES, MICHAEL C. MULDER,
ALLEN TUCKER, A. JOE TURNER, and PAUL R. YOUNG

It is ACM’s 42nd year and an old debate continues. Is
computer science a science? An engineering discipline?
Or merely a technology, an inventor and purveyor of
computing commodities? What is the intellectual sub-
stance of the discipline? Is it lasting, or will it fade
within a generation? Do core curricula in computer
science and engineering accurately reflect the field?
How can theory and lab work be integrated in a com-
puting curriculum? Do core curricula foster compe-
tence in computing?

We project an image of a technology-oriented disci-
pline whose fundamentals are in mathematics and
engineering—for example, we represent algorithms as
the most basic objects of concern and programming and
hardware design as the primary activities. The view
that “computer science equals programming” is espe-
cially strong in most of our current curricula: the intro-
ductory course is programming, the technology is in
our core courses, and the science is in our electives.
This view blocks progress in reorganizing the curricu-
lum and turns away the best students, who want a
greater challenge. It denies a coherent approach to
making experimental and theoretical computer science
integral and harmonious parts of a curriculum.

Those in the discipline know that computer science
encompasses far more than programming—for example,
hardware design, system architecture, designing operat-
ing system layers, structuring a database for a specific
application, and validating models are all part of the
discipline, but are not programming. The emphasis on
programming arises from our long-standing belief that
programming languages are excellent vehicles for gain-
ing access to the rest of the field, a belief that limits our
ability to speak about the discipline in terms that reveal
its full breadth and richness.

© 1989 ACM 0001-0782/89/0100-0009 $1.50

January 1989 Volume 32 Number 1

The field has matured enough that it is now possible
to describe its intellectual substance in @ new and com-
pelling way. This realization arose in discussions
among the heads of the Ph.D.-granting departments of
computer science and engineering in their meeting in
Snowbird, Utah, in July 1984. These and other similar
discussions prompted ACM and the IEEE Computer
Society to form task forces to create a new approach.

In the spring of 1985, ACM President Adele Goldberg
and ACM Education Board Chairman Robert Aiken ap-
pointed this task force on the core of computer science
with the enthusiastic cooperation of the IEEE Computer
Society. At the same time, the Computer Society
formed a task force on computing laboratories with the
enthusiastic cooperation of the ACM.

We hope that the work of the core task force, embod-
ied in this report, will produce benefits beyond the
original charter. By identifying a common core of sub-
ject matter, we hope to streamline the processes of de-
veloping curricula and model programs in the two soci-
eties. The report can be the basis for future discussions
of computer science and engineering as a profession,
stimulate improvements in secondary school courses in
computing, and can lead to a greater widespread appre-
ciation of computing as a discipline.

Our goal has been to create a new way of thinking
about the field. Hoping to inspire general inquiry into

This article has been condensed from the Report of the ACM
Task Force on the Core of Computer Science. Copies of the
report in its entirety may be ordered, prepaid, from

ACM Order Department
P.O. Box 64145
Baltimore, MD 21264

Please specify order #201880. Prices are $7.00 for ACM
members, and $12.00 for nonmembers.

Communications of the ACM

Report

10

the nature of our discipline, we sought a framework,
not a prescription; a guideline, not an instruction. We
invite you to adopt this framework and adapt it to your
own situation.

We are pleased to present a new intellectual frame-
work for our discipline and a new basis for our
curricula.

CHARTER OF THE TASK FORCE
The task force was given three general charges:

1. Present a description of computer science that em-
phasizes fundamental questions and significant ac-
complishments. The definition should recognize that
the field is constantly changing and that what is said
is merely a snapshot of an ongoing process of growth.

2. Propose a teaching paradigm for computer science
that conforms to traditional scientific standards,
emniphasizes the development of competence in the
field, and harmoniously integrates theory, experi-
mentation, and design.

3. Give a detailed example of an introductory course
sequence in computer science based on the curricu-
lum model and the disciplinary description.

We immediately extended our task to encompass both
computer science and computer engineering, because
we concluded that no fundamental difference exists be-
tween the two fields in the core material. The differ-
ences are manifested in the way the two disciplines
elaborate the core: computer science focuses on analy-
sis and abstraction; computer engineering on abstrac-
tion and design. The phrase discipline of computing is
used here to embrace all of computer science and
engineering.

Two important issues are outside the charter of this
task force. First, the curriculum recommendations in
this report deal only with the introductory course se-
quence. It does not address the important, larger ques-
tion of the design of the entire core curriculum, and
indeed the suggested introductory course would be
meaningless without a new design for the rest of the
core. Second, our specification of an introductory
course is intended to be an example of an approach to
introduce students to the whole discipline in a rigorous
and challenging way, an “existence proof” that our def-
inition of computing can be put to work. We leave it to
individual departments to apply the framework to de-
velop their own introductory courses that meet local
needs.

PARADIGMS FOR THE DISCIPLINE

The three major paradigms, or cultural styles, by which
we approach our work provide a context for our defini-
tion of the discipline of computing. The first paradigm,
theory, is rooted in mathematics and consists of four
steps followed in the development of a coherent, valid
theory:

(1) characterize objects of study (definition);
(2) hypothesize possible relationships among them
(theorem);

Communications of the ACM

(3) determine whether the relationships are true
(proof);
(4) interpret results.

A mathematician expects to iterate these steps (e.g.,
when errors or inconsistencies are discovered.

The second paradigm, abstraction (modeling), is rooted
in the experimental scientific method and consists of
four stages that are followed in the investigation of a
phenomenon:

(1
2
(3
4

form a hypothesis;

construct a model and make a prediction;
design an experiment and collect data;
analyze results.

—_— e

A scientist expects to iterate these steps (e.g.,, when a
model’s predictions disagree with experimental evi-
dence). Even though “modeling” and “experimentation”
might be appropriate substitutes, we have chosen the
word “abstraction” for this paradigm because this usage
is common in the discipline.

The third paradigm, design, is rooted in engineering
and consists of four steps followed in the construction
of a system (or device) to solve a given problem:

(1) state requirements;

(2) state specifications;

(3) design and implement the system;
(4) test the system.

An engineer expects to iterate these steps (e.g., when
tests reveal that the latest version of the system does
not satisfactorily meet the requirements).

Theory is the bedrock of the mathematical sciences:
applied mathematicians share the notion that science
advances only on a foundation of sound mathematics.
Abstraction (modeling) is the bedrock of the natural
sciences: scientists share the notion that scientific prog-
ress is achieved primarily by formulating hypotheses
and systematically following the modeling process to
verify and validate them. Likewise, design is the bed-
rock of engineering: engineers share the notion that
progress is achieved primarily by posing prcblems and
systematically following the design process to construct
systems that solve them. Many debates about the rela-
tive merits of mathematics, science, and engineering
are implicitly based on an assumption that one of the
three processes (theory, abstraction, or design) is the
most fundamental.

Closer examination, however, reveals that in com-
puting the three pracesses are so intricately intertwined
that it is irrational to say that any one is fundamental.
Instances of theory appear at every stage of abstraction
and design, instances of modeling at every stage of the-
ory and design, and instances of design at every stage of
theory and abstraction.

Despite their inseparability, the three paradigms are
distinct from one another because they represent sepa-
rate areas of competence. Theory is concerned with the
ability to describe and prove relationships among ob-
jects. Abstraction is concerned with the ability to use
those relationships to make predictions that can be

January 1989 Volume 32 Number 1

compared with the world. Design is concerned with the
ability to implement specific instances of those relation-
ships and use them to perform useful actions. Applied
mathematicians, computational scientists, and design
engineers generally do not have interchangeable skills.

Moreover, in computing we tend to study computa-
tional aids that support people engaged in information-
transforming processes. On the design side, for exam-
ple, sophisticated VLSI design and simulation systems
enable the efficient and correct design of microcir-
cuitry, and programming environments enable the
efficient design of software. On the modeling side, su-
percomputers evaluate mathematical models and make
predictions about the world, and networks help dissem-
inate findings from scientific experiments. On the the-
ory side, computers help prove theorems, check the
consistency of specifications, check for counterexam-
ples, and demonstrate test cases.

Computing sits at the crossroads among the central
processes of applied mathematics, science, and engi-
neering. The three processes are of equal—and funda-
mental—importance in the discipline, which is a
unique blend of interaction among theory, abstraction,
and design. The binding forces are a common interest
in experimentation and design as information trans-
formers, a common interest in computational support of
the stages of those processes, and a common interest in
efficiency.

THE ROLE OF PROGRAMMING

Many activities in computing are not programming—for
example, hardware design, system architecture, operat-
ing system structure, designing a database application,
and validating models—therefore the notion that “com-
puter science equals programming” is misleading. What
is the role of programming in the discipline? In the
curriculum?

Clearly programming is part of the standard practices
of the discipline and every computing major should
achieve competence in it. This does not, however, im-
ply that the curriculum should be based on program-
ming or that the introductory courses should be pro-
gramming courses.

It is also clear that access to the distinctions of any
domain is given through language, and that most of the
distinctions of computing are embodied in program-
ming notations. Programming languages are useful tools
for gaining access to the distinctions of the discipline.
We recommend, therefore, that programming be a part
of the competence sought by the core curriculum, and
that programming languages be treated as useful vehi-
cles for gaining access to important distinctions of
computing.

A DESCRIPTION OF COMPUTING
Our description of computing as a discipline consists
of four parts: (1) requirements; (2) short definition;
(3) division into subareas; and (4) elaboration of suba-
reas. Our presentation consists of four passes, each
going to a greater level of detail.

What we say here is merely a snapshot of a changing

January 1989 Volume 32 Number 1

and dynamic field. We intend this to be a “living defini-
tion,” that can be revised from time to time to reflect
maturity and change in the field. We expect revisions
to occur most frequently in the details of the subareas,
occasionally in the list of subareas, and rarely in the
short definition.

Requirements
There are many possible ways to formulate a definition.
We set five requirements for ours:

1. It should be understandable by people outside the
field.

2. It should be a rallying point for people inside the

field.

. It should be concrete and specific.

4. It should elucidate the historical roots of the disci-
pline in mathematics, logic, and engineering.

5. It should set forth the fundamental questions and
significant accomplishments in each area of the
discipline.

w

In the process of formulating a description, we consid-
ered several other previous definitions and concluded
that a description meeting these requirements must
have several levels of complexity. The other definitions
are briefly summarized here.

In 1967, Newell, Perlis, and Simon [5] argued that
computer science is the study of computers and the
major phenomena that surround them, and that all the
common objections to this definition could just as well
be used to demonstrate that other sciences are not sci-
ence. Despite their eloquence, too many people view
this as a circular definition that seems flippant to out-
siders. It is, however, a good starting point because
the definition we present later can be viewed as an
enumeration of the major phenomena surrounding
computers.

A slightly more elaborate version of this idea was

recently used by the Computing Sciences Accreditation
Board (CSAB), which said, “Computer science is the
body of knowledge concerned with computers and
computation. It has theoretical, experimental, and de-
sign components and includes (1) theories for under-
standing computing devices, programs, and systems;
(2) experimentation for the development and testing of
concepts; (3) design methodology, algorithms, and tools
for practical realization; and (4) methods of analysis for
verifying that these realizations meet requirements.”

A third definition is, “Computer science is the study
of knowledge representations and their implementa-
tions.” This definition suffers from excessive abstrac-
tion and few people would agree on the meaning of
knowledge representation. A related example that suf-
fers the same fate is, “Computer science is the study of
abstraction and the mastering of complexity,” a state-
ment that also applies to physics, mathematics, or
philosophy.

A final observation comes from Abelson and Suss-
man, who say, “The computer revolution is a revolu-
tion in the way we think and in the way we express
what we think. The essence of this change is the emer-

Communications of the ACM

Report

1

Report

12

gence of what might best be called procedural espiste-
mology—the study of the structure of knowledge from
an imperative point of view, as opposed to the more
declarative point of view taken by classical mathemati-
cal subjects. Mathematics provides a framework for
dealing precisely with notions of ‘what is.” Computation
provides a framework for dealing precisely with notions
of ‘how to’ [1].”

Short Definition

The discipline of computing is the systematic study of
algorithmic processes that describe and transform infor-
mation: their theory, analysis, design, efficiency, imple-
mentation, and application. The fundamental question
underlying all of computing is, “What can be (effi-
ciently) automated?”

Division into Subareas

We grappled at some length with the question of divid-
ing the discipline into subareas. We began with a pref-
erence for a small number of subareas, such as model
versus implementation, or algorithm versus machine.
However, the various candidates we devised were too
abstract, the boundaries between divisions were too
fuzzy, and most people would not have identified com-
fortably with them.

Then we realized that the fundamentals of the disci-
pline are contained in three basic processes—theory,
abstraction, and design—that are used by the discipli-
nary subareas to accomplish their goals. Thus, a de-
scription of the discipline’s subareas and their relation
to these three basic processes would be useful. To qual-
ify as a subarea, a segment of the discipline must satisfy
four criteria:

(1) underlying unity of subject matter;

(2) substantial theoretical component;

(3) significant abstractions;

(4) important design and implementation issues.

Moreover, we felt that each subarea should be identi-
fied with a research community, or set of related com-
munities, that sustains its own literature.

Theory includes the processes for developing
the underlying mathematics of the subarea. These
processes are supported by theory from other areas. For
example, the subarea of algorithms and data structures
contains complexity theory and is supported by graph
theory. Abstraction deals with modeling potential im-
plementations. These models suppress detail while re-
taining essential features; they are amenable to analysis
and provide means for calculating predictions of the
modeled system’s behavior. Design deals with the proc-
ess of specifying a problem, transforming the problem
statement into a design specification, and repeatedly
inventing and investigating alternative solutions until a
reliable, maintainable, documented, and tested design
that meets cost criteria is achieved.

We discerned nine subareas that cover the field:

1. Algorithms and data structures
2. Programming languages

Communications of the ACM

3. Architecture

4. Numerical and symbolic computation

5. Operating systems

6. Software methodology and engineering

7. Database and information retrieval systems
8. Artificial intelligence and robotics
9. Human-computer communication

Elaboration of Subareas

To present the content of the subareas, we found it
useful to think of a 9 X 3 matrix, as shown in Figure 1.
Each row is associated with a subarea, and theory, ab-
straction, and design each define a column.

Each square of the matrix will be filled in with spe-
cific statements about that subarea component; these
statements will describe issues of concern and signifi-
cant accomplishments.

Certain affinity groups in which there is scientific
literature are not shown as subareas because they are
basic concerns throughout the discipline. For example,
parallelism surfaces in all subareas (there are parallel
algorithms, parallel languages, parallel architectures,
etc.) and in theory, abstraction, and design. Similar con-
clusions hold for security, reliability, and performance
evaluation.

Computer scientists will tend to associate with the
first two columns of the matrix, and computer engi-
neers with the last two. The full description of comput-
ing, as specified here, is given in the appendix.

CURRICULUM MODEL
Competence in the Discipline

The goal of education is to develop competence in a
domain. Competence, the capability for effective action,

Theory Abstraction Design

1 Algorithms and data
structures

2 Programming languages

3 Architecture

4 Numerical and symbolic
computation

5 Operating systems

6 Software methodology and
engineering

7 Databases and information
retrieval

8 Artificial intelligence and
robotics

9 Human-computer
communication

FIGURE 1. Definition Matrix for the Computing Discipline

January 1989 Volume 32 Number 1

is an assessment of individual performance against the
standard practices of the field. The criteria for assess-
ment are grounded in the history of the field. The edu-
cational process that leads to competence has five steps:
(1) motivate the domain; (2) demonstrate what can be
accomplished in the domain; (3) expose the distinctions
of the domain; (4) ground the distinctions in history;
and (5) practice the distinctions [4].

This model has interesting implications for curricu-
lum design. The first question it leads to is, In what
areas of computing must majors be competent? There
are two broad areas of competence:

1. Discipline-Oriented Thinking: The ability to invent
new distinctions in the field, leading to new modes
of action and new tools that make those distinctions
available for others to use.

2. Tool Use: The ability to use the tools of the field for
effective action in other domains.

We suggest that discipline-oriented thinking is the pri-
mary goal of a curriculum for computing majors, and
that majors must be familiar enough with the tools to
work effectively with people in other disciplines to help
design modes of effective action in those disciplines.

The inquiry into competence reveals a number of
areas where current core curricula in computing is
inadequate. For example, the historical context of the
computing field is often deemphasized, leaving many
graduates ignorant of computing history and destined to
repeat its mistakes. Many computing graduates wind up
in business data processing, a domain in which most
computing curricula do not seek to develop compe-
tence; whether computing departments or business de-
partments should develop that competence is an old
controversy. Discipline-oriented thinking must be based
on solid mathematical foundations, yet theory is not an
integral part of most computing curricula. The standard
practices of the computing field include setting up and
conducting experiments, contributing to team projects,
and interacting with other disciplines to support their
interests in effective use of computing, but most curric-
ula neglect laboratory exercises, team projects, or inter-
disciplinary studies.

The question of what results should be achieved by
computing curricula has not been explored thoroughly
in past discussions, and we will not attempt a thorough
analysis here. We do strongly recommend that this
question be among the first considered in the design of
new core curricula for computing,

Lifelong Learning

The curriculum should be designed to develop an ap-
preciation for learning which graduates will carry with
them throughout their careers. Many courses are de-
signed with a paradigm that presents “answers” in a
lecture format, rather than focusing on the process of
questioning that underlies all learning. We recommend
that the follow-on committee consider other teaching
paradigms which involve processes of inquiry, an ori-
entation to using the computing literature, and the

January 1989 Volume 32 Number 1

development of a commitment to a lifelong process of
learning.

INTRODUCTORY SEQUENCE

In this curriculum model, the motivation and demon-
stration of the domain must precede instruction and
practice in the domain. The purpose of the introductory
course sequence is precisely this. The principal areas of
computing—in which majors must develop compe-
tence-——must be presented to students with sufficient
depth and rigor that they can appreciate the power of
the areas and the benefits from achieving competence
in them. The remainder of the curriculum must be
carefully designed to systematically explore thase
areas, exposing new concepts and distinctions, and
giving students practice in them.

We therefore recommend that the introductory
course consist of regular lectures and a closely coordi-
nated weekly laboratory. The lectures should empha-
size fundamentals; the laboratories technology and
know-how.

This model is traditional in the physical sciences and
engineering: lectures emphasize enduring principles
and concepts while laboratories emphasize the tran-
sient material and skills relating to the current technol-
ogy. For example, lectures would discuss the design
and analysis of algorithms, or the organization of net-
work protocols in functional layers. In the correspond-
ing laboratory sessions, students would write programs
for algorithms analyzed in lecture and measure their
running times, or instal and test network interfaces and
measure their packet throughputs.

Within this recommendation, the first courses in
computer science would not only introduce program-
ming, algorithms, and data structures, but introduce
material from all the other subdisciplines as well.
Mathematics and other theory would be well integrated
into the lectures at appropriate points.

We recommend that the introductory course contain
a rigorous, challenging survey of the whole discipline.
The physics model, exemplified by the Feynman Lec-
tures in Physics, is a paradigm for the introductory
course we envisage.

We emphasize that simply redesigning the introduc-
tory course sequence following this recommendation
without redesigning the entire undergraduate curricu-
lum would be a serious mistake. The experience of
physics departments contains many lessons for comput-
ing departments in this regard.

Prerequisites

We assume that computing majors have a modest back-
ground in programming in some language and some
experience with computer-based tools such as word
processors, spreadsheets, and databases. Given the
widening use of computers in high schools and at
home, it might seem that universities could assume
that most incoming students have such a background
and provide a “remedial” course in programming for
the others. We have found, however, that the assump-
tion of adequate high school preparation in program-

Communications of the ACM

Report

13

Report

14

ming is quite controversial and there is evidence that
adequate preparation is rare. We therefore recommend
that computing departments offer an introduction to
programming and computer tools that would be a pre-
requisite (or corequisite) for the introductory courses.
We further recommend that departments provide an
advanced placement procedure so that students with
adequate high school preparation can bypass this
course.

Formal prerequisites and corequisites in mathematics
are more difficult to state and will depend on local
circumstances. However, accrediting boards in comput-
ing require considerable mathematics, including dis-
crete mathematics, differential and integral calculus,
and probability and statistics. These requirements are
often exceeded in the better undergraduate programs.
In our description of a beginning computing curricu-
lum, we have spelled cut in some detail what mathe-
matics is applicable in each of the nine identified areas
of computing. Where possible we have displayed the
required mathematical background for each of the
teaching modules we describe. This will allow individ-
ual departments to synchronize their own mathemati-
cal requirements and courses with the material in the
modules. In some cases it may be appropriate to intro-
duce appropriate underlying mathematical topics as
needed for the development of particular topics in com-
puting. In general, we recommend that students see
applications of relevant mathematics as early as possi-
ble in their computing studies.

Modular Organization

The introductory sequence should bring out the under-
lying unity of the field and should flow from topic to
topic in a pedagogically natural way. It would therefore
be inadequate to organize the course as a sequence of
nine sections, one for each of the subareas; such a map-
ping would appear to be a hodge-podge, with difficult
transitions between sections. An ordering of topics that
meet these requirements is:

Fundamental algorithm concepts
Computer organization (“von Neumann”)
Mathematical programming

Data structures and abstraction
Limits of computability

Operating systems and security
Distributed computing and networks
Models in artificial intelligence

File and database systems

Parallel computation

Human interface

We have grouped the topics into 11 modules. Each
module includes challenging material representative of
the subject matter without becoming a superficial sur-
vey of every aspect or topic. Each module draws mate-
rial from several squares of the definition matrix as
appropriate. As a result, many modules will not corre-
spond one-to-one with rows of the definition matrix.
For example, the first module in our example course is

Communications of the ACM

entitled Fundamental Algorithm Concepts. It covers the
role of formalism and theory, methods in programming,
programming concepts, efficiency, and specific algo-
rithms, draws information from the first, second,
fourth, and sixth rows of the definition matrix and
deals only with sequential algorithms. Later modules,
on Distributed Computing and Networks, and on Paral-
lel Computation, extend the material in the first mod-
ule and draw new material from the third and fifth
rows of the definition matrix.

As a general approach, each module contains lectures
that cover the required theory and most abstractions.
Theory is generally not introduced until it is needed.
Each module is closely coupled with laboratory ses-
sions, and the nature of the laboratory assignments is
included with the module specifications. Our specifica-
tion is drawn up for a three-semester course sequence
containing 42 lectures and 35 scheduled laboratory ses-
sions per semester. Qur specification is not included
here, but is in the full report.

We reemphasize that this specification is intended
only to be an example of a mapping from the discipli-
nary description to an introductory course sequence,
not a prescription for all introductory courses. Other
approaches are exemplified by existing introductory
curricula at selected colleges and universities.

LABORATORIES
We have described a curriculum that separates princi-
ples from technology while maintaining coherence be-
tween the two. We have recommended that lectures
deal with principles and laboratories with technology,
with the two being closely coordinated.

The laboratories serve three purposes:

1. Laboratories should demonstrate how principles cov-
ered in the lectures apply to the design, implementa-
tion, and testing of practical software and hardware.
They should provide concrete experiences that help
students understand abstract concepts. These experi-
ences are essential to sharpen students’ intuition
about practical computing, and to emphasize the in-
tellectual effort in building correct, efficient com-
puter programs and systems.

2. Laboratories should emphasize processes leading to
good computing know-how. They should emphasize
programming, not programs; laboratory techniques;
understanding of hardware capabilities; correct use
of software tools; correct use of documentation; and
proper documentation of experiments and projects.
Many software tools will be required on host com-
puters to assist in constructing, controlling, and
monitoring experiments on attached subsystems; the
laboratory should teach proper use of these tools:

3. Laboratories should introduce experimental meth-
ods, including use and design of experiments, soft-
ware and hardware monitors, statistical analysis of
results, and proper presentation of findings. Students
should learn to distinguish careful experiments from
casual observations.

January 1989 Volume 32 Number 1

To meet these goals, laboratory work should be care-
fully planned and supervised. Students should attend

labs at specified times, nominally three hours per week.

Lab assignments should be planned, and written de-
scriptions of the purposes and methodology of each
experiment should be given to the students. The depth
of description should be commensurate with students’
prior lab experience: more detail is required in early
laboratories. Lab assignments should be carried out un-
der the guidance of a lab instructor who ensures that
each student follows correct methodology.

The labs associated with the introductory courses
will require close supervision and should contain well-
planned activities. This implies that more staff will be
required per student for these laboratories than for
more advanced ones.

The lab problems should be coordinated with mate-
rial in the lecture parts of the course. Individual lab
problems in general will deal with combinations of
hardware and software. Some lab assignments empha-
size technologies and tools that ease the software devel-
opment process. Others emphasize analyzing and
measuring existing software or comparing known algo-
rithms. Others emphasize program development based
on principles learned in class.

Laboratory assignments should be self-contained in
the sense that an average student should be able to
complete the work in the time allocated. Laboratory
assignments should encourage students to discover and
learn things for themselves. Students should be re-
quired to maintain a proper lab book documenting ex-
periments, observations, and data. Students should also
be required to maintain their software and to build
libraries that can be used in later lab projects.

We expect that, in labs as in lectures, students will
be assigned homework that will require using com-
puters outside the supervised realm of a laboratory. In
other words, organized laboratory sessions will supple-
ment, not replace, the usual programming and other
written assignments.

In a substantial number of labs dealing with program
development, the assignment should be to modify or
complete an existing program supplied by the instruc-
tor. This forces the student to read well-written pro-
grams, provides experience with integration of soft-
ware, and results in a larger and more satisfying
program for the student.

Computing technology constantly changes. It is diffi-
cult, therefore, to give a detailed specification of the
hardware systems, software systems, instruments, and
tools that ought to be in a laboratory. The choice of
equipment and staffing in laboratories should be guided
by the following principles:

1. Laboratories should be equipped with up-to-date
systems and languages. Programming languages have
a significant effect on shaping a student’s view of
computing, Laboratories should deploy systems that
encourage good habits in students; it is especially
important to avoid outdated systems (hardware and
software) in core courses.

January 1989 Volume 32 Number 1

2. Hardware and software must be fully maintained.
Malfunctioning equipment will frustrate students
and interfere with learning. Appropriate staff must
be available to maintain the hardware and software
used in the lab. The situation is analagous ta labora-
tories in other disciplines.

3. Full functionality is important. (This includes ade-
quate response time on shared systems.) Restricting
students to small subsets of a language or system
may be useful in initial contacts, but the restrictions
should be lifted as the students progress.

4. Good programming tools are needed. Compilers get a
lot of attention, but other programming tools are
used as often. In UNIX systems, for example, stu-
dents should use editors like emacs and learn to use
tools like the shell, grep, awk, and make. Storage
and processing facilities must be sufficient to make
such tools available for use in the lab.

5. Adequate support for hardware and instrumentation
must be provided. Some projects may require stu-
dents to connect hardware units together, take
measurements of signals, monitor data paths, and
the like. A sufficient supply of small parts, connec-
tors, cables, monitoring devices, and test instruments
must be available.

The IEEE Computer Society Task Force on Goal Ori-
ented Laboratory Development has studied this subject
in depth. Their report includes a discussion of the re-
sources (i.e., staff and facilities) needed for laboratories
at all levels of the curriculum.

ACCREDITATION

This work has been conducted with the intent that
example courses be consistent with current guidelines
of the Computing Sciences Accreditation Board (CSAB).
The details of the mapping of this content to CSAB
guidelines does not fall within the scope of this com-
mittee.

CONCLUSION

This report has been designed to provoke new thinking
about computing as a discipline by exhibiting the disci-
pline’s content in a way that emphasizes the funda-
mental concepts, principles, and distinctions. It has also
suggested a redesign of the core curriculum according
to an education model used in other disciplines: dem-
onstrating the existence of useful distinctions followed
by practice that develops competence. The method is
illustrated by a rigorous introductory course that puts
the concepts and principles into the lectures and tech-
nology into closely coordinated laboratories.

A department cannot simply replace its current intro-
ductory sequence with the new one; it must redesign
the curriculum so that the new introduction is part of a
coherent whole. For this reason, we recommend that
the ACM establish a follow-on committee to complete
the redesign of the core curriculum.

Many practical problems must be dealt with before a
new curriculum model can become part of the field.

Communications of the ACM

Report

15

Report

16

For example,

1. Faculties will need to redesign their curricula based
on a new conceptual formulation.

2. No textbooks or educational materials based on the
framework proposed here are currently available.

3. Most departments have inadequate laboratories,
facilities, and materials for the educational task
suggested here.

4. Teaching assistants and faculty are not familiar with
the new view.
5. Good high school preparation in computing is rare.

We recognize that many of our recommendations are
challenging and will require substantial work to imple-
ment. We are convinced that the improvements in
computing education from the proposals here are worth
the effort, and invite you to join us in achieving them.

APPENDIX
A DEFINITION OF COMPUTING AS A DISCIPLINE

Computer science and engineering is the systematic
study of algorithmic processes—their theory, analysis,
design, efficiency, implementation, and application—
that describe and transform information. The funda-
mental question underlying all of computing is, What
can be (efficiently) automated [2, 3]. This discipline was
born in the early 1940s with the joining together of
algorithm theory, mathematical logic, and the inven-
tion of the stored-program electronic computer.

The roots of computing extend deeply into mathe-
matics and engineering. Mathematics imparts analysis
to the field; engineering imparts design. The discipline
embraces its own theory, experimental method, and
engineering, in contrast with most physical sciences,
which are separate from the engineering disciplines
that apply their findings (e.g., chemistry and chemical
engineering principles). The science and engineering
are inseparable because of the fundamental interplay
between the scientific and engineering paradigms
within the discipline.

For several thousand years, calculation has been a
principal concern of mathematics. Many models of
physical phenomena have been used to derive equa-
tions whose solutions yield predictions of those phe-
nomena—for example, calculations of orbital trajecto-
ries, weather forecasts, and fluid flows. Many general
methods for solving such equations have been de-
vised—for example, algorithms for systems of linear
equations, differential equations, and integrating func-
tions. For almost the same period, calculations that aid
in the design of mechanical systems have been a princi-
pal concern of engineering. Examples include algo-
rithms for evaluating stresses in static objects, calculat-
ing momenta of moving objects, and measuring
distances much larger or smaller than our immediate
perception.

One product of the long interaction between engi-
neering and mathematics has been mechanical aids for
calculating. Some surveyors’ and navigators’ instru-
ments date back a thousand years. Pascal and Leibniz
built arithmetic calculators in the middle 1600s. In the
1830s, Babbage conceived of an “analytical engine” that
could mechanically and without error evaluate loga-
rithms, trigonometric functions, and other general
arithmetic functions. His machine, never completed,
served as an inspiration for later work. In the 1920s,

Communications of the ACM

Bush constructed an electronic analog computer for
solving general systems of differential equations. In the
same period, electromechanical calculating machines
capable of addition, subtraction, multiplication, divi-
sion, and square root computation became available.
The electronic flip-flop provided a natural bridge from
these machines to digital versions with no moving
parts.

Logic is a branch of mathematics concerned with cri-
teria of validity of inference and formal principles of
reasoning. Since the days of Euclid, it has been a tool
for rigorous mathematical and scientific argument. In
the 19th century a search began for a universal system
of logic that would be free of the incompletenesses ob-
served in known deductive systems. In a complete sys-
tem, it would be possible to determine mechanically
whether any given statement is either true or false. In
1931, Godel published his “incompleteness theorem,”
showing that there is no such system. In the late 1930s,
Turing explored the idea of a universal computer that
could simulate any step-by-step procedure of any other
computing machine. His findings were similar to
Godel’s: some well-defined problems cannot be solved
by any mechanical procedure. Logic is important not
only because of its deep insight into the limits of auto-
matic calculation, but also because of its insight that
strings of symbols, perhaps encoded as numbers, can be
interpreted both as data and as programs.

This insight is the key idea that distinguishes the
stored program computer from calculating machines.
The steps of the algorithm are encoded in a machine
representation and stored in the memory for later de-
coding and execution by the processor. The machine
code can be derived mechanically from a higher-level
symbolic form, the programming language.

It is the explicit and intricate intertwining of the an-
cient threads of calculation and logical symbol manipu-
lation, together with the modern threads of electronics
and electronic representation of information, that gave
birth to the discipline of computing.

We identified nine subareas of computing:

1. Algorithms and data structures

2. Programming languages

3. Architecture

4. Numerical and symbolic computation

January 1989 Volume 32 Number 1

. Operating systems

Software methodology and engineering
. Databases and information retrieval

. Artificial intelligence and robotics
Human-Computer communication

©®NO L

Each has an underlying unity of subject matter, a sub-
stantial theoretical component, significant abstractions,
and substantial design and implementation issues. The-
ory deals with the underlying mathematical develop-
ment of the subarea and includes supporting theory
such as graph theory, combinatorics, or formal lan-
guages. Abstraction (or modeling) deals with models of
potential implementations; the models suppress detail,
while retaining essential features, and provide means
for predicting future behavior. Design deals with the
process of specifying a problem, deriving requirements
and specifications, iterating and testing prototypes, and
implementing a system. Design includes the experi-
mental method, which in computing comes in several
styles: measuring programs and systems, validating hy-
potheses, and prototyping to extend abstractions to
practice.

Although software methodology is essentially con-
cerned with design, it also contains substantial ele-
ments of theory and abstraction. For this reason, we
have identified it as a subarea. On the other hand,
paraliel and distributed computation are issues that
pervade all the subareas and all their components (the-
ory, abstraction, and design); they have been identified
neither as subareas nor as subarea components.

The subsequent numbered sections provide the de-
tails of each subarea in three parts—theory, abstrac-
tion, and design. The boundaries between theory and
abstraction, and between abstraction and design, are
necessarily fuzzy; it is a matter of personal taste where
some of the items go.

Our intention is to provide a guide ta the discipline
by showing its main features, not a detailed map. It is
important to remember that this guide to the discipline
is not a plan for a course or a curriculum; it is merely a
framework in which a curriculum can be designed. It is
also important to remember that this guide to the disci-
pline is a snapshot of an organism undergoing constant
change. It will require reevaluation and revision at reg-
ular intervals.

1. ALGORITHMS AND DATA STRUCTURES

This area deals with specific classes of problems and
their efficient solutions. Fundamental questions in-
clude: For given classes of problems, what are the best
algorithms? How much storage and time do they re-
quire? What is the tradeoff between space and time?
What is the best way to access the data? What is

the worst case of the best algorithms? How well do
algorithms behave on average? How general are algo-
rithms—i.e., what classes of problems can be dealt with
by similar methods?

January 1989 Volume 32 Number 1

1.1 Theory
Major elements of theory in the area of algorithms and
data structures are:

1. Computability theory, which defines what machines
can and cannot do.

2. Computational complexity theory, which tells how
to measure the time and space requirements of com-
putable functions and relates a problem’s size with
the best- or worst-case performance of algorithms
that solve that problem, and provides methods for
proving lower bounds on any possible solution to a
problem.

3. Time and space bounds for algorithms and classes of
algorithms.

4. Levels of intractability: for example, classes of prob-
lems solvable deterministically in polynomially
bounded time (P-problems); those solvable nondeter-
ministically in polynomially bounded time (NP-
problems); and those solvable efficiently by parallel
machines (NC-problems).

5. Parallel computation, lower bounds, and mappings
from dataflow requirements of algorithms into com-
munication paths of machines.

6. Probabilistic algorithms, which give results correct
with sufficiently high probabilities much more effi-
ciently (in time and space) than determinate algo-
rithms that guarantee their results. Monte Carlo
methods.

7. Cryptography.

8. The supporting areas of graph theory, recursive
functions, recurrence relations, combinatorics, cal-
culus, induction, predicate and temporal logic, se-
mantics, probability, and statistics.

1.2 Abstraction
Major elements of abstraction in the area of algorithms
and data structures are

1. Efficient, optimal algorithms for important classes of
problems and analyses for best, worst, and average
performance.

2. Classifications of the effects of control and data
structure on time and space requirements for var-
ious classes of problems.

3. Important classes of techniques such as divide-and-
conquer, Greedy algorithms, dynamic programming,
finite state machine interpreters, and stack machine
interpreters.

4, Parallel and distributed algorithms; methods of parti-
tioning problems into tasks that can be executed in
separate processors.

1.3 Design
Major elements of design and experimentation in the
area of algorithms and data structures are:

1. Selection, implementation, and testing of algorithms
for important classes of problems such as searching,

Communications of the ACM

Report

17

Report

18

sorting, random-number generation, and textual
pattern matching.

2. Implementation and testing of general methods
applicable across many classes of problems, such as
hashing, graphs, and trees.

3. Implementation and testing of distributed algorithms
such as network protocols, distributed data updates,
semaphores, deadlock detectors, and synchroniza-
tion methods.

4. Implementation and testing of storage managers such
as garbage collection, buddy system, lists, tables, and
paging.

5. Extensive experimental testing of heuristic algo-
rithms for combinatorial problems.

6. Cryptographic protocols that permit secure authen-
tication and secret communication.

2. PROGRAMMING LANGUAGES

This area deals with notations for virtual machines that
execute algorithms, with notations for algorithms and
data, and with efficient translations from high-level
languages into machine codes. Fundamental questions
include: What are possible organizations of the virtual
machine presented by the language (data types, opera-
tions, control structures, mechanisms for introducing
new types and operations)? How are these abstractions
implemented on computers? What notation {syntax)
can be used effectively and efficiently to specify what
the computer should do?

2.1 Theory
Major elements of theory in the area of programming
languages are:

1. Formal languages and automata, including theories
of parsing and language translation.

2. Turing machines (base for procedural languages),
Post Systems (base for string processing languages),
A-calculus (base for functional languages).

3. Formal semantics: methods for defining mathemati-
cal models of computers and the relationships
among the models, language syntax, and implemen-
tation. Primary methods include denotational, alge-
braic, operational, and axiomatic semantics.

4, As supporting areas: predicate logic, temporal logic,
modern algebra and mathematical induction.

2.2 Abstraction
Major elements of abstraction in the area of program-
ming languages include:

1. Classification of languages based on their syntactic
and dynamic semantic models; e.g., static typing,
dynamic typing, functional, procedural, object-
oriented, logic, specification, message passing, and
dataflow.

2. Classification of languages according to intended
application area; e.g., business data processing, sim-
ulation, list processing, and graphics.

Communications of the ACM

3. Classification of major syntactic and semantic
models for program structure; e.g., procedure hierar-
chies, functional composition, abstract data types,
and communicating parallel processes.

4, Abstract implementation models for each major type
of language.

5. Methods for parsing, compiling, interpretation, and
code optimization.

6. Methods for automatic generation of parsers, scan-
ners, compiler components, and compilers.

2.3 Design
Major elements of design and experimentation in the
area of programming languages are:

1. Specific languages that bring together a particular
abstract machine (semantics) and syntax to form a
coherent implementable whole. Examples: proce-
dural (COBOL, FORTRAN, ALGOL, Pascsal, Ada, C),
functional (LISP), dataflow (SISAL, VAL), object-
oriented (Smalltalk, CLU), logic (Prolog), strings
(SNOBOL), and concurrency (CSP, Occam, Concur-
rent Pascal, Modula 2).

2. Specific implementation methods for particular
classes of languages: run-time models, static and dy-
namic execution methods, typing checking, storage
and register allocation, compilers, cross compilers,
and interpreters, systems for finding parallelism in
programs.

3. Programming environments.

4. Parser and scanner generators (e.g., YACC, LEX),
compiler generators.

5. Programs for syntactic and semantic error checking,
profiling, debugging, and tracing.

6. Applications of programming-language methods to
document-processing functions such as creating
tables, graphs, chemical formulas, spreadsheets
equations, input and output, and data handling.
Other applications such as statistical processing.

3. ARCHITECTURE

This area deals with methods of organizing hardware
(and associated software) into efficient, reliable systems.
Fundamental questions include: What are good meth-
ods of implementing processors, memory, and commu-
nication in a machine? How do we design and control
large computational systems and convincingly demon-
strate that they work as intended despite errors and
failures? What types of architectures can efficiently
incorporate many processing elements that can work
concurrently on a computation? How do we measure
performance?

3.1 Theory
Major elements of theory in the area of architecture
are;

1. Boolean algebra.
2. Switching theory.

January 1989 Volume 32 Number 1

3. Coding theory.

. Finite state machine theory.

5. The supporting areas of statistics, probability,
queueing, reliability theory, discrete mathematics,
number theory, and arithmetic in different number
systems.

'

3.2 Abstraction
Major elements of abstraction in the area of architec-
ture are:

1. Finite state machine and Boolean algebraic models
of circuits that relate function to behavior.

2. Other general methods of synthesizing systems from
basic components.

3. Models of circuits and finite state machines for com-
puting arithmetic functions over finite fields.

4, Models for data path and control structures.

5. Optimizing instruction sets for various models and
workloads.

6. Hardware reliability: redundancy, error detection,
recovery, and testing.

7. Space, time, and organizational tradeoffs in the
design of VLSI devices.

8. Organization of machines for various computational
models: sequential, dataflow, list processing, array
processing, vector processing, and message-passing.

9. Identification of design levels; e.g., configuration,
program, instruction set, register, and gate.

3.3 Design
Major elements of design and experimentation in the
area of architecture are:

1. Hardware units for fast computation; e.g., arithmetic
function units, cache.

2. The so-called von Neumann machine (the single-
instruction sequence stored program computer);
RISC and CISC implementations.

3. Efficient methods of storing and recording informa-
tion, and detecting and correcting errors.

4. Specific approaches to responding to errors: recov-
ery, diagnostics, reconfiguration, and backup proce-
dures.

5. Computer aided design (CAD) systems and logic sim-
ulations for the design of VLSI circuits. Production
programs for layout, fault diagnosis. Silicon compi-
lers.

6. Implementing machines in various computational
models; e.g., dataflow, tree, LISP, hypercube, vector,
and multiprocessor.

7. Supercomputers, such as the Cray and Cyber ma-
chines.

4. NUMERICAL AND SYMBOLIC COMPUTATION
This area deals with general methods of efficiently and
accurately solving equations resulting from mathemati-
cal models of systems. Fundamental questions include:
How can we accurately approximate continuous or infi-

January 1989 Volume 32 Number 1

nite processes by finite discrete processes? How do we
cope with the errors arising from these approximations?
How rapidly can a given class of equations be solved for
a given level of accuracy? How can symbolic manipula-
tions on equations, such as integration, differentiation,
and reduction to minimal terms, be carried out? How
can the answers to these questions be incorporated into
efficient, reliable, high-quality mathematical software
packages?

4.1 Theory
Major elements of theory in the area of numerical and
symbolic computation are:

Number theory.

. Linear algebra.

. Numerical analysis.

Nonlinear dynamics.

The supporting areas of calculus, real analysis, com-
plex analysis, and algebra.

g

4.2 Abstraction
Major elements of abstraction in the area of numerical
and symbolic computation are:

1. Formulations of physical problems as models in con-
tinuous (and sometimes discrete) mathematics.

2. Discrete approximations to continuous problems. In
this context, backward error analysis, error propaga-
tion and stability in the solution of linear and non-
linear systems. Special methods in special cases,
such as Fast Fourier Transform and Poisson solvers.

3. The finite element model for a large class of prob-
lems specifiable by regular meshes and boundary
values. Associated iterative methods and conver-
gence theory: direct, implicit, multigrids, rates of
convergence. Paralle]l solution methods. Automatic
grid refinement during numerical integration.

4. Symbolic integration and differentiation.

4.3 Design
Major elements of design and experimentation in the
area of numerical and symbolic computation are:

1. High-level problem formulation systems such as
CHEM and WEB.

2. Specific libraries and packages for linear algebra,
ordinary differential equations, statistics, nonlinear
equations, and optimizations; e.g., LINPACK,
EISPACK, ELLPACK.

3. Methods of mapping finite element algorithms to
specific architectures—e.g., multigrids on hyper-
cubes.

4. Symbolic manipulators, such as MACSYMA and RE-
DUCE, capable of powerful and nonobvious manipu-
lations, notably differentiations, integrations, and
reductions of expressions to minimal terms.

Communications of the ACM

Report

19

Report

20

5. OPERATING SYSTEMS
This area deals with control mechanisms that allow
multiple resources to be efficiently coordinated in the

execution of programs. Fundamental questions include:

What are the visible objects and permissible operations
at each level in the operation of a computer system?
For each class of resource (objects visible at some
level), what is a minimal set of operations that permit
their effective use? How can interfaces be organized so
that users deal only with abstract versions of resources
and riot with physical details of hardware? What are
effective control strategies for job scheduling, memory
management, communications, access to software re-
sources, communication among concurrent tasks, relia-
bility, and security? What are the principles by which
systems can be extended in function by repeated appli-
cation of a small number of construction rules? How
should distributed computations be organized so that
many autonomous machines connected by a communi-
cation network can participate in a computation, with
the details of network protocols, host locations, band-
widths, and resource naming being mostly invisible?

5.1 Theory
Major elements of theory in the area of operating sys-
tems are:

1. Concurrency theory: synchronization, determinacy,
and deadlocks.

2. Scheduling theory, especially processor scheduling.

3. Program behavior and memory management theory,
including optimal policies for storage allocation.

4, Performance modeling and analysis.

5. The supporting areas of bin packing, probability,
queueing theory, queueing networks, communica-
tion and information theory, temporal logic, and
cryptography.

5.2 Abstraction
Major elements of abstraction in the area of operating
systems are:

1. Abstraction principles that permit users to operate
on idealized versions of resources without concern
for physical details (e.g., process rather than proces-
sor, virtual memory rather than main-secondary
hierarchy, files rather than disks).

2. Binding of objects perceived at the user interface to
internal computational structures.

3. Models for important subproblems such as process
management, memory management, job scheduling,
secondary storage management, and performance
analysis.

4. Models for distributed computation; e.g., clients and
servers, cooperating sequential processes, message-
passing, and remote procedure calls.

5. Models for secure computing; e.g., access controls,
authentication, and communication.

Communications of the ACM

6. Networking, including layered protocols, naming,
remote resource usage, help services, and local net-
work protocols such as token-passing and shared
buses.

5.3 Design
Major elements of design and experimentation in the
area of operating systems are:

1. Prototypes of time sharing systems, automatic stor-
age allocators, multilevel schedulers, memory man-
agers, hierarchical file systems and other important
system components that have served as bases for
commercial systems.

2. Techniques for building operating systems such as
UNIX, Multics, Mach, VMS, and MS-DOS.

3. Techniques for building libraries of utilities; e.g.,
editors, document formatters, compilers, linkers, and
device drivers.

4. Files and file systems.

5. Queueing network modeling and simulation pack-
ages to evaluate performance of real systems.

6. Network architectures such as ethernet, FDDI, token
ring nets, SNA, and DECNET.

7. Protocol techniques embodied in the Department of
Defense protocol suite (TCP/IP), virtual circuit pro-
tocols, internet, real time conferencing, and X.25.

6. SOFTWARE METHODOLOGY AND
ENGINEERING

This area deals with the design of programs and large
software systems that meet specifications and are safe,
secure, reliable, and dependable. Fundamental ques-
tions include: What are the principles behind the de-
velopment of programs and programming systems? How
does one prove that a program or system meets its spec-
ifications? How does one develop specifications that

do not omit important cases and can be analyzed for
safety? How do software systems evolve through dif-
ferent generations? How can software be designed for
understandability and modifiability?

6.1 Theory
Major elements of theory in the area of software meth-
odology and tools are:

1. Program verification and proof.

2. Temporal logic.

3. Reliability theory.

4. The supporting areas of predicate calculus, axio-
matic semantics, and cognitive psychology.

6.2 Abstraction
Major elements of abstraction in the area of software
methodology and tools are:

1. Specification methods, such as predicate trans-
formers, programming calculi, abstract data types,
and Floyd-Hoare axiomatic notations.

2. Methodologies such as stepwise refinement, modular

January 1989 Volume 32 Number 1

design, modules, separate compilation, information-
hiding, dataflow, and layers of abstraction.

3. Methods for automating program development; e.g.,
text editors, syntax-directed editors, and screen edi-
tors.

4. Methodologies for dependable computing; e.g., fault
tolerance, security, reliability, recovery, N-version
programming, multiple-way redundancy, and check-
pointing.

. Software tools and programming environments.

6. Measurement and evaluation of programs and sys-

tems.

7. Matching problem domains through software sys-
tems to particular machine architectures.

8. Life cycle models of software projects.

w

6.3 Design
Major elements of design and experimentation in the
area of software methodology and tools are:

1. Specification languages (e.g., PSL 2, IMA JO), config-
uration management systems (e.g., in Ada APSE),
and revision control systems (e.g., RCS, SCCS).

2. Syntax directed editors, line editors, screen editors,
and word processing systems.

3. Specific methodologies advocated and used in prac-
tice for software development; e.g., HDM and those
advocated by Dijkstra, Jackson, Mills, or Yourdon.

4, Procedures and practices for testing {e.g., walk-
through, hand simulation, checking of interfaces be-
tween modules, program path enumerations for test
sets, and event tracing), quality assurance, and proj-
ect management.

5. Software tools for program development and debug-
ging, profiling, text formatting, and database manip-
ulation.

6. Specification of criteria levels and validation proce-
dures for secure computing systems, e.g., Depart-
ment of Defense.

7. Design of user interfaces.

8. Methods for designing very large systems that are
reliable, fault tolerant, and dependable.

7. DATABASE AND INFORMATION RETRIEVAL
SYSTEMS

This area deals with the organization of large sets of
persistent, shared data for efficient query and update.
Fundamental questions include; What modeling con-
cepts should be used to represent data elements and
their relationships? How can basic operations such as
store, locate, match, and retrieve be combined into ef-
fective transactions? How can these transactions inter-
act effectively with the user? How can high-level quer-
ies be translated into high-performance programs?
What machine architectures lead to efficient retrieval
and update? How can data be protected against unau-
thorized access, disclosure, or destruction? How can
large databases be protected from inconsistencies due
to simultaneous update? How can protection and per-

January 1989 Volume 32 Number 1

formance be achieved when the data are distributed
among many machines? How can text be indexed and
classified for efficient retrieval?

7.1 Theory
Major elements of theory in the area of databases and
information retrieval systems are:

1. Relational algebra and relational calculus.

2. Dependency theory.

3. Concurrency theory, especially serializable transac-
tions, deadlocks, and synchronized updates of multi-
ple copies.

. Statistical inference.

Sorting and searching.

. Performance analysis

As supporting theory: cryptography.

NG

7.2 Abstraction
Major elements of abstraction in the area of databases
and information retrieval systems are:

1. Models for representing the logical structure of data
and relations among the data elements, including
the relational and entity-relationship models.

2, Representations of files for fast retrieval, such as
indexes, trees, inversions, and associative stores.

3. Methods for assuring integrity (consistency) of the
database under updates, including concurrent up-
dates of multiple copies.

4. Methods for preventing unauthorized disclosure or
alteration and for minimizing statistical inference.

5. Languages for posing queries over databases of dif-
ferent kinds (e.g., hypertext, text, spatial, pictures,
images, rule-sets). Similarly for information retrieval
systems.

6. Models, such as hypertext, which allow documents
to contain text at multiple levels and to include
video, graphics, and voice.

7. Human factors and interface issues.

7.3 Design
Major elements of design in the area of database and
information retrieval systems are:

1. Techniques for designing databases for relational,
hierarchical, network, and distributed implementa-
tions.

2. Techniques for designing database systems such as
INGRES, System R, dBase III, and DB-2.

3. Techniques for designing information retrieval sys-
tems such as LEXIS, Osiris, and Medline.

4. Design of secure database systems.

5. Hypertext systems such as NLS, NoteCards, Interme-
dia, and Xanadu.

6. Techniques to map large databases to magnetic disk
stores.

7. Techniques for mapping large, read-only databases
onto optical storage media—e.g., CD/ROM and
WORMS.

Communications of the ACM

Report

21

Report

22

8. ARTIFICIAL INTELLIGENCE AND ROBOTICS
This area deals with the modeling of animal and hu-
man (intelligent) behavior. Fundamental questions in-
clude: What are basic models of behavior and how do
we build machines that simulate them? To what extent
is intelligence described by rule evaluation, inference,
deduction, and pattern computation? What is the ulti-
mate performance of machines that simulate behavior
by these methods? How are sensory data encoded so
that similar patterns have similar codes? How are
motor codes associated with sensory codes? What are
architectures for learning systems, and how do those
systems represent their knowledge of the world?

8.1 Theory
Major elements of theory in the area of artificial intelli-
gence and robotics are:

1. Logic; e.g., monotonic, nonmonotonic, and fuzzy.

2. Conceptual dependency.

3. Cognition.

4. Syntactic and semantic models for natural language
understanding,

5. Kinematics and dynamics of robot motion and world
models used by robots.

6. The supporting areas of structural mechanics, graph
theory, formal grammars, linguistics, philosophy,
and psychology.

8.2 Abstraction
Major elements of abstraction in the area of artificial
intelligence and robotics are:

1. Knowledge representation (e.g., rules, frames, logic)
and methods of processing them (e.g., deduction,
inference).

2. Models of natural language understanding and natu-
ral language representations, including phoneme
representations; machine translation.

3. Speech recognition and synthesis, translation of text
to speech.

4. Reasoning and learning models; e.g., uncertainty,
nonmonotonic logic, Bayesian inference, beliefs.

5. Heuristic search methods, branch and bound, con-
trol search.

6. Machine architectures that imitate biological sys-
tems, e.g., neural networks, connectionism, sparse
distributed memory.

7. Models of human memory, autonomous learning,
and other elements of robot systems.

8.3 Design
Major elements of design and experimentation in artifi-
cial intelligence and robotics include:

1. Techniques for designing software systems for logic
programming, theorem proving, and rule evaluation.

Communications of the ACM

2. Techniques for expert systems in narrow domains
{e.g., Mycin, Xcon) and expert system shells that can
be programmed for new domains.

3. Implementations of logic programming (e.g,
PROLOG).

4, Natural language understanding systems (e.g., Mar-
gie, SHRDLU, and preference semantics).

5. Implementations of neural networks and sparse dis-
tributed memories.

6. Programs that play checkers, chess, and other games
of strategy.

7. Working speech synthesizers, recognizers.

8. Working robotic machines, static and mobile.

9. HUMAN-COMPUTER COMMUNICATION

This area deals with the efficient transfer of informa-
tion between humans and machines via various
human-like sensors and motors, and with information
structures that reflect human conceptualizations. Fun-
damental questions include; What are efficient methods
of representing objects and automatically creating pic-
tures for viewing? What are effective methods for re-
ceiving input or presenting output? How can the risk of
misperception and subsequent human error be mini-
mized? How can graphics and other tools be used to
understand physical phenomena through information
stored in data sets?

9.1 Theory
Major elements of theory in human-computer commu-
nication are:

1. Geometry of two and higher dimensions including
analytic, projective, affine, and computational
geometries.

2. Color theory.

. Cognitive psychology.

4, The supporting areas of Fourier analysis, linear alge-
bra, graph theory, automata, physics, and analysis.

w

9.2 Abstraction
Major elements of abstraction in the area of human-
computer communication are:

1. Algorithms for displaying pictures including meth-
ods for smoothing, shading, hidden lines, ray tracing,
hidden surfaces, transparent surfaces, shadows,
lighting, edges, color maps, representations by
splines, rendering, texturing, antialiasing, coherence,
fractals, animation, representing pictures as hierar-
chies of abjects.

Models for computer-aided design (CAD).

Computer representations of physical objects.

Image processing and enhancement methods.
Man-machine communication, including psycholog-
ical studies of modes of interaction that reduce hu-
man error and increase human productivity.

@k

January 1989 Volume 32 Number 1

9.3 Design

Major elements of design and experimentation in the
area of human-computer communication are:

1. Implementation of graphics algorithms on various
graphics devices, including vector and raster dis-
plays and a range of hardcopy devices.

2. Design and implementation of experimental graphics

algorithms for a growing range of models and phe-

nomena.

3. Proper use of color graphics for displays; accurate
reproduction of colors on displays and hardcopy

devices.

Paul Abrahams

J. Mack Adams
Robert Aiken
Donald Bagert
Alan Biermann
Frank Boesch
Richard Botting
Albert Briggs, Jr.
Judy Brown

Rick Cartson
Thomas Cheatham
Neal Coulter
Steve Cunningham
Verlynda Dobbs
Caroline Eastman

REFERENCES

1. Abelson, H., and Sussman, G. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, Mass., 1985.

. Graphics standards (e.g., GKS, PHIGS, VDI}, graphics

languages {e.g., PostScript), and special graphics
packages (e.g., MOGLI for chemistry).

. Implementation of various user interface techniques

including direct manipulation on bitmapped devices
and screen techniques for character devices.

. Implementation of various standard file interchange

formats for information transfer between differing
systems and machines.

. Working CAD systems.
8. Working image enhancement systems (e.g., at JPL for

pictures received from space probes).

ACKNOWLEDGMENTS

Many people generously provided written comments in response to drafts of this report. Although it was not possible to
accommodate every comment in detail, we did take every comment into account in revising this report. We are grateful to the
following people for sending us their comments:

Richard Epstein
Frank Friedman
C.W. Gear
Robert Glass
Nico Habermann
Judy Hankins
Chariles Kelemen
Ken Kennedy
Elliot Koffman
Barry Kurtz
Doris Lidtke
Michael Loui
Paul Luker
Susan Merritt
John Motil

2. Arden, B., ed. See What Can Be Automated? Report of the NSF Com-
puter Science and Engineering Research Study (COSERS). MIT

Press, Cambridge, Mass., 1980.

January 1989 Volume 32 Number 1

J. Paul Myers
Bob Noonan
Alan Perlis
Jesse Poore
Terrence Pratt
Jean Rogers
Jean Sammet
Mary Shaw

J. W. Smith
Dennis Smolarski
Ed Upchurch
Garret White
Gio Wiederhold
Stuart Zweben

3. Denning, P. What is computer science? Am. Sci. 73 (Jan.-Feb. 1985),
16-19.

4. Flores, F., and Graves, M. Education. (working paper available from
Logonet, Inc., 2200 Powell Street, 11th Floor, Emeryville, Calif.
94608.)

5. Newell, A,, Perlis, A., and Simon, H. What is computer science? Sci.
157 (1967), 1373-1374. (reprinted in Abacus 4, 4 (Summer 1987}, 32.)

Communications of the ACM

Report

23

