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3BAbstract 
That computer science is somehow a mathematical activity was a view held by many of the 

pioneers of the subject, especially those who were concerned with its foundations. At face value it 

might mean that the actual activity of programming is a mathematical one. Indeed, at least in 

some form, this has been held. But here we explore a different gloss on it. We explore the claim 

that programming languages are (semantically) mathematical theories. This will force us to 

discuss the normative nature of semantics, the nature of mathematical theories, the role of 

theoretical computer science and the relationship between semantic theory and language design. 

Introduction 

The design and semantic definition of programming languages has 
occupied computer scientists for almost half a century. Design questions 
centre upon the style or paradigm of the language, e.g.  functional, logic, 
imperative or object oriented. More detailed issues concern the nature 
and content of its type system, its model of storage and its underlying 
control mechanisms. Semantic questions relate to the form and nature of 
programming language semantics (Tennent, 1981; Stoy, 1977; Milne, 
1976; Fernandez, 2004). For instance, how is the semantic content of a 
language determined and how is it expressed? 

Presumably, one cannot entirely divorce the design of a language from 
its semantic content; one is not just designing a language in order to 
construct meaningless strings of symbols. A programming language is a 
vehicle for the expression of ideas and for the articulation of solutions to 
problems; and surely issues of meaning are central to this. But should 
semantic considerations enter the picture very early on in the process of 
design, or should they come as an afterthought; i.e. should we first 
design the language and then proceed to supply it with a semantic 
definition?  

An influential perspective on this issue is to be found in one the most 
important early papers on the semantics of programming languages 
(Strachey C. , 2000). 

I am not only temperamentally a Platonist and prone to talking about abstracts if I think they 

throw light on a discussion, but I also regard syntactical problems as essentially irrelevant to 

programming languages at their present state of development. In a rough and ready sort of 

way, it seems to be fair to think of the semantics as being what we want to say and the syntax 
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as how to say it. In these terms the urgent task in programming languages is to explore the 

field of semantic possibilities….When we have discovered the main outlines and the principal 

peaks we can go about describing a suitable neat and satisfactory notation for them. But first 

we must try to get a better understanding of the processes of computing and their description 

in programming languages. In computing we have what I believe to be a new field of 

mathematics which is at least as important as that opened up by the discovery (or should it be 

invention) of the calculus.  

Apparently, the field of semantic possibilities must be laid out prior to the 
design of any actual language i.e., its syntax. More explicitly, the things 
that we may refer to and manipulate, and the processes we may call 
upon to control them, needs to be settled before any actual syntax is 
defined. We shall call this the Semantics First (SF) principle. According to 
it, one does not design a language and then proceed to its semantic 
definition as a post-hoc endeavour; semantics must come first. 

This leads to the second part of Strachey's advice. In the last sentence of 
the quote he takes computing to be a new branch of mathematics. At 
face value this might be taken to mean that the activity of programming 
is somehow a mathematical one. This has certainly been suggested 
elsewhere (Hoare, 1969) and criticized by several authors e.g. (Colburn 
T. R., 2000; Fetzer, 1988; Colburn T. , 2007). But, whatever its merits, this 
does not seem to be what Strachey is concerned with. The early part of 
the quote suggests that he is referring to programming languages and 
their underlying structures. And his remark seems best interpreted to 
mean that (semantically) programming languages are, in some way, 
mathematical structures. Indeed, this is in line with other publications 
(Strachey C. , 1965) where the underlying ontology of a language is 
taken to consist of mathematical objects.  This particular perspective 
found its more exact formulation in denotational semantics (Stoy, 1977; 
Milne, 1976), where the theory of complete lattices supplied the 
background mathematical framework. This has since been expanded to 
other frameworks including category theory (Oles, 1982; Crole, 1993).  

However, we shall interpret this more broadly i.e., in a way that is 
neutral with respect to the host theory of mathematical structures (e.g. 
set theory, category theory, or something else). We shall take it to mean 
that programming languages are, via their provided semantics, 
mathematical theories in their own right. We shall refer to this principle 
as the Mathematical Thesis (MT).  

Exactly what MT and SF amount to, whether they are true, how they are 
connected, and what follows from them, will form the main focus of this 
paper. But before we embark on any consideration of these, we need to 
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clarify what we understand by the terms mathematical theory and 
semantics.  

Mathematical Theories 

The nature of mathematical theories is one of the central concerns of the 
philosophy of mathematics (Shapiro, 2004), and it is not one that we can 
sensibly address here. But we do need to say something; otherwise our 
claim is left hanging in the air. Roughly, we shall be concerned with 
theories that are axiomatic in the logical sense. While we shall make a 
few general remarks about the nature of these theories, we shall largely 
confine ourselves to illustrating matters and drawing out significant 
points by reference to some common examples. 

Geometry began with the informal ideas of lines, planes and points; 
notions that were employed in measuring and surveying. Gradually, 
these were massaged into Euclidean geometry: a mathematical theory of 
these notions. Euclid’s geometry was axiomatic but not formal in the 
sense of being expressed in a formal language, and this distinction will 
be important later. Euclidean geometry reached its modern rigorous 
formulation in the 20th century with Hilbert's axiomatisation. 

A second, and much later example, is Peano arithmetic. Again, this 
consists of a group of axioms, informally expressed, but now about 
natural numbers.  Of course, people counted before Peano arithmetic 
was formulated. Indeed, it was intended to be a theory of our intuitive 
notion of number, including the basis of counting. In its modern guises 
it is formulated in various versions of formal arithmetic.  These theories 
are distinguished in terms of the power of quantification and the 
strength of the included induction principles. 

ZF set theory (Jech, 1971) began with the informal notion of set that was 
operating in 19th century mathematics. It was developed into a 
standalone mathematical theory by Cantor who introduced the idea of 
an infinite set given in extension. It had some of the characteristics of the 
modern notion, but it was still not presented as an axiomatic theory.  
This emerged only in 20th century with the work of Zermelo and 
Fraenkel.  The modern picture that drives the axioms of ZF is that of the 
cumulative hierarchy of sets: sets arranged in layers where each layer is 
generated by forming sets made of the elements of previous layers.  

These axiomatic theories began with some informal concepts that are 
present in everyday applications and mathematical practice. In many 
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cases, the initial pre-axiomatic notions were quite loose, and most often 
the process of theory construction added substance and precision to the 
informal one. This feature is explicitly commented upon by Gödel in 
regard to Turing’s analysis of finite procedure or mechanical computability 
(Turing, 1937). In the words of Wang (Wang, 1974.), Gödel saw the 
problem of defining computability as: an excellent example of a concept 
which did not appear sharp to us but has become so as a result of a careful 
reflection. The pre-theoretic analogues of such theories are not always 
sharp and decisive, and the informal picture is often far from complete. 
In this respect, the process of theory construction resembles the creation 
of a novel. And, as with the notion of truth in the novel, some things are 
determined (John did kill Mary) but not everything is (it is left open 
whether he killed Mary’s dog). The mathematical process itself brings 
these theories into existence. They are in this sense, definitional theories.  

Although all this is still quite vague, it captures something about what is 
demanded of an axiomatic theory for it to be considered mathematical. 
Arbitrary sets of rules and axioms will not do: to be mathematically 
worthy an axiomatic theory must capture some pre-theoretical intuitive 
notions in an elegant, useful and mathematically tractable manner. And 
this is roughly the notion of mathematical theory that we have in mind 
in the proposition that programming languages are mathematical 
theories (MT).  

With this much ground cleared, we may now turn to the function and 
nature of semantics. This will take a few sections to unravel. 

Normative Semantics 

Syntax is given via a grammar of some sort e.g., context free, BNF, 
inference rules or syntax diagrams. But a grammar only pins down what 
the legal strings of the language are. It does not determine what they 
mean; this is the job of the semantics. We shall illustrate some issues 
with the following toy programming language. 

 
 

 

The expressions (E) are constructed from variables (x), 0 and 1 by 
addition and multiplication. The Boolean expressions (B) are constructed 
from variables; true, false, the ordering relation (<) on numbers, 
negation and conjunction. Finally, the programs of the language (P) are 
built from a simple assignment statement (x: =E) via sequencing (P;Q), 
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conditional programs (if B then P else Q) and while loops (while B do 
P). According to the grammar, with parenthesis added, the following 
program is legitimate, where n is an input variable. 

 
 

But in order to construct or understand this program, one needs to know 
more than the syntax of its host language; one must possess some 
semantic information about the language (Turner R. , 2007). Most 
importantly, in general, a semantic account of a language of any kind 
must tell us when we are using an expression correctly, and when we 
are not. 

The fact that the expression means something implies that there is a whole set of normative 

truths about my behavior with that expression; namely, that my use of it is correct in 

application to certain objects and not in application to others. .... The normativity of meaning 

turns out to be, in other words, simply a new name for the familiar fact that, regardless of 

whether one thinks of meaning in truth-theoretic or assertion-theoretic terms, meaningful 

expressions possess conditions of correct use. Kripke's insight was to realize that this 

observation may be converted into a condition of adequacy on theories of the determination 

of meaning: any proposed candidate for the property in virtue of which an expression has 

meaning, must be such as to ground the 'normativity' of meaning-it ought to be possible to 

read off from any alleged meaning constituting property of a word, what is the correct use of 

that word. (Boghossian, 1989) 

A semantic account must provide us with an account of what constitutes 
correct use. It seems generally recognized (Gluer, 2008) that this 
requirement on a theory of meaning has two components: a criterion of 
correctness and an obligation to do what is correct. We shall only be 
concerned with the first. Although aimed at theories of meaning for 
ordinary language, it is not hard to see that any semantic account of a 
programming language must equally distinguish correct from incorrect 
uses of program constructs. Indeed, in the case of programming 
languages, there are several central applications of semantic definitions 
that involve notions of correctness. 

A semantic account must guide a compiler writer in implementing the 
language. It must enable a distinction to be drawn between the correct 
and incorrect implementation of a construct. In other words, it must 
facilitate a specification of compiler correctness. The compiler must 
correctly translate the source code into the target code, and correctness 
demands that the semantic definitions of the two languages must 
somehow agree under the translation. 

From the user perspective, a semantic account must enable a distinction 
to be drawn between correct and incorrect use of programming 
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constructs - not just syntactically, but in the sense of meeting their 
intended specifications (formal or otherwise). For instance, assume the 
specification is a specification of the factorial function. Then a semantic 
account must determine whether or not the following program meets it. 
Syntax alone cannot do this. 

 
 

More generally, a semantic account must enable a distinction to be 
drawn between software that is intended for different ends i.e., meet 
different user requirements. For example, it must enable a distinction to 
be drawn between software intended to act as a web browser and 
software intended to aid in asset management of power generation. 
Presumably, a programmer who supplies one rather than the other will 
get told off. 

Given these normative demands, how is a semantic definition of a 
language to be given? One not obviously implausible suggestion is via 
an interpretation into another programming language (or a subset of the 
source one). This is little more than a demand that a compiler provides 
the semantics. But a little reflection should be sufficient to convince the 
reader that such an approach does not satisfy our normative demands. 
Unless the semantics of the target language is given, and thus grounded, 
the semantics of the source language is not grounded: it just passes the 
burden of normativity from one language to another. We also need to 
have some semantic account of the language in which the translation is 
written. So, by itself, a translation cannot guide the implementer; it is an 
implementation, not an independent guide to one1. 

The Role of Machines 

One way in which this picture might be grounded is in terms of a 
machine of some sort. This may be achieved stage by stage, one 
language getting its interpretation in the next, until a machine provides 
the final and actual mechanism of semantic interpretation. For instance, 
for our toy language, we require a machine with an underlying state 
whose role is to store numerical values in locations. Pictorially, this 
might take the following shape. 

 

                                                 
1
 But see (Rapaport, 2004). 
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x y z w.... 

5 7 9 7.....
. 

The semantics of assignment is then unpacked by its impact on it.  But 
what is the nature of this store? Is it physical or abstract? One common 
sense view is that, in order to block the potentially infinite regress of 
languages, it must be a physical device that grounds the meaning in the 
physical world. More explicitly, the intended meaning of the language is 
to be given by the actual effect on the state of a physical machine. 

In particular, consider the following assignment instruction. 

 

How is its semantics to be given on a physical machine? Apparently, the 
machine does what it does when the program is run - and what it does 
determines the meaning of assignment. But there are dissenters to such a 
view. 

Actual machines can malfunction: through melting wires or slipping gears they may give the 

wrong answer. How is it determined when a malfunction occurs? By reference to the 

program of the machine, as intended by its designer, not simply by reference to the machine 

itself. Depending on the intent of the designer, any particular phenomenon may or may not 

count as a machine malfunction. A programmer with suitable intentions might even have 

intended to make use of the fact that wires melt or gears slip, so that a machine that is 

malfunctioning for me is behaving perfectly for him. Whether a machine ever malfunctions 

and, if so, when, is not a property of the machine itself as a physical object, but is well 

defined only in terms of its program, stipulated by its designer. Given the program, once 

again, the physical object is superfluous for the purpose of determining what function is 

meant. (Kripke, 1982) 

There is no appeal to an independent specification; meaning is 
completely determined by what the machine does. It follows that there is 
no notion of malfunction, and no notion of correctness. So there is no 
sense to be made of the demand that the machine behave correctly. For 
this, some machine independent account is needed. This may be 
expressed in the following way. 

When the state is updated by placing v in location x, and then the contents of x is 

retrieved, v will be returned. For any other location, the contents remain unchanged.  

Where Update changes the value in a given location and Lookup returns 
the value at a given location, we may rewrite this more symbolically as 
follows. 
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But these simple equations determine an operation on an abstract 
machine. And it is this that supplies the specification of the physical one, 
and makes the latter (semantically) superfluous. If the command x:=10 
places 28 in location y, this is not correct.  

It would seem that any normative semantic account of our toy language 
must be given in terms of its impact upon such an abstract machine. 
Physical operations may conform to the specification given by the 
abstract ones, but they cannot provide a semantic correlate for a 
program.  

Informal Semantics 

But the nature of the machine is only part of the story. We still need to 
say how a whole programming language is to be interpreted. The most 
common approach employs natural language, where such accounts most 
often take the form of a reference manual for the language. And they can 
be big: the one for Java Language is almost 600 pages. The following is 
taken from The Java Language Specification, Third Edition - TOC 

A while statement is executed by first evaluating the expression. If the result is of type 

Boolean, it is subject to unboxing conversion (§5.1.8). If execution of the expression or the 

subsequent unboxing conversion (if any) completes abruptly for some reason, the while 

statement completes abruptly for the same reason. Otherwise, execution continues by making 

a choice based on the resulting value: If the value is true, then the contained statement is 

executed. Then there is a choice: If execution of the statement completes normally, then the 

entire while statement is executed again, beginning by re-evaluating the expression. If 

execution of the statement completes abruptly, see §14.12.1 below. If the (possibly unboxed) 

value of the expression is false, no further action is taken and the while statement completes 

normally. If the (possibly unboxed) value of the expression is false the first time it is 

evaluated, then the statement is not executed. 

This is the standard semantics of the while statement within the Java 
language. However, there are several complications that pertain to the 
special character of this language. For the time being, we shall ignore 
most of these and concentrate on the central issues. For this purpose we 
shall illustrate the semantic process with our toy language. Later we 
shall consider some of the complexities that arise with real languages. 

As with the semantic conception of truth, our abstract notion of execution 
emerges from a recursive semantic description of the whole language.  

1. If the execution of E in the state s returns the value v, then the 
execution of x:=E in a state s, returns the state that is the same as s 
except that the value v replaces the current value in location x i.e., 
Update(s,x,v). 
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2. The execution of skip in a state s, returns s. 

3. If the execution of P in s yields the state s' and the execution of Q in 
s' returns the state s", then the execution of P;Q in s, returns the 
state s" 

4. If the execution of B in s returns true and the execution of P in s 
returns s', then the execution of if B then P else Q in s, evaluates to 
s'. If on the other hand, the execution of B in s returns false and the 
execution of Q in s returns s', then the execution of if B then P else 
Q in s, evaluates to s'. 

5. If the execution of B in s returns true, the execution of P in s 
returns s', and the execution of while B do P in s' yields s", then the 
execution of while B do P in s, returns s”. If the execution B in s 
returns false, then the execution of while B do P in s, return s. 

6. The execution of a variable in state s returns the value obtained by 
looking it up in s. 

7. If the execution of E in state s returns v and the execution of E’ 
returns v’ then the execution of the addition of E and E’, returns 
the addition of v and v’. We proceed similarly for multiplication.  

This provides a natural language semantic account for our toy language.  
But being based upon an underlying abstract machine, it is an abstract 
account i.e., the semantics is given in terms of relations on the abstract 
machine.  

Such an approach works well with simple languages, but with real ones 
matters are less clear. It is difficult to express essentially technical 
notions in natural language. For one thing, it does not always facilitate 
being clear about what we are talking about. Furthermore, the 
consequences of design decisions, articulated in natural language, may 
not be as sharp as they could be. 

In particular, Java has integrated multithreading to a far greater extent than most 

programming languages. It is also one of the only languages that specifies and 

requires safety guarantees for improperly synchronized programs. It turns out that 

understanding these issues is far more subtle and difficult than was previously 

thought. The existing specification makes guarantees that prohibit standard and 

proposed compiler optimizations; it also omits guarantees that are necessary for safe 

execution of much existing code (Pugh, 2000) 

This indicates that there are deeper problems than ambiguity, the 
normal source of problems with natural language definitions.  Lack of 
clarity cuts deeper than scope distinctions. In particular, there is a lack of 
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semantic clarity over the basic notions such as threading and 
synchronization. It is not a reformulation in a more formal language that 
is required, but a better conceptual understanding of these fundamental 
notions. Nor can we glean what they are supposed to do by running 
experiments on a machine. What they are supposed to do must be fixed 
by an abstract normative account.  

Furthermore, even the simple consequences of the semantics are not 
easy to articulate. For example, to ensure that it is coherent, we shall 
need to establish that expression execution does not change the state. 
This much we have assumed in our informal semantic account. 
Similarly, a compiler writer will need to argue, with some degree of 
precision, that the compiler is correct. This will involve an inductive 
argument that must take place during the construction not after it. Such 
arguments are not optional; at some level, and with some degree of 
precision, one cannot construct a compiler without undertaking such 
reasoning. 

So despite its prevalence, there are non-trivial problems with natural 
language accounts. 

Operational Semantics 

However, a little notation will help with some of them. More 
specifically, we shall write 

 

to indicate that evaluating P in state s terminates in s'. With this notation 
we can rewrite the whole semantic account of our simple language. It 
will be little more than a rewrite of the informal account with this 
notation replacing the words execute/execution. 

1. Assignment 

 

2. Skip 

 

3. Sequencing 

 

4. Conditionals 
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5. While 

 

6. Variables 
 

7. Addition and Multiplication 

 

In addition to the use of our simple notation, we have replaced the 
conditional form of the informal semantics by rules. In particular, the 
antecedents of the informal rules e.g. 

If the execution of B in s returns true and the execution of P in s returns s', then… 

are represented as the premises of the formal ones e.g. 

 

So, apart from the fact that the inferential structure of the rules is now 
made explicit, these are minor changes. 

But with this version of the semantics in place, we can more explicitly 
state a result that guarantees that the evaluation of expressions has no 
side effects. 

 For all expressions E and states s  

 

The actual proof proceeds by induction on the expressions using the 
rules for the respective cases: we argue, by induction, that the execution 
of expressions does not yield side effects. For the base case, we observe 
that the execution of variables does not change the state. For the 
induction step, on the (inductive) assumption that the execution of E and 
E′ do not, i.e., 

 

it is clear that the execution of E+E′ does not i.e., 

 

And the same result hold for multiplication. 

Such arguments ensure that the informal semantics is safe. Without 
them, the semantic account for the execution of programs needs to be 
adjusted in order to take account of state change during expression 
execution. 
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So our simple notation enables a more transparent formulation of the 
results about the theory. It is not that far removed from the informal 
account, but it is more wholesome. 

A Theory of Programs 

But it is not just a semantic account; looked at more abstractly, our 
semantics constitutes a theory of programs.  More exactly, we can read the 
above semantic account as a theory of operations determined by their 
evaluation rules. Here the relation ⇓ is taken to be sui-generis in the 
proposed theory and axiomatised by the rules.  

To emphasize this mathematical nature, we shall mathematically explore 
matters a little. For example, we may define 

 

This provides a notion of terminating program. We may also define a 
notion of equivalence for programs. 

P≃Q ≜ ∀s⋅∀s′⋅<P,s>⇓s′↔<Q,s>⇓s′ 

i.e., we cannot tell them apart in terms of their extensional behaviour. 
Technically, this is an equivalence relation. Moreover, we have the 
provability of the following three propositions that govern the partial 
equality of our programming constructs. 

1. if true then P else Q ≃ P 
2. if false then P else Q ≃ Q 
3. while B do P ≃ if B then (P; while B do P) else skip 

So we have the beginnings of a theory of programs. It certainly captures 
ones intuitions about the evaluation mechanism that is implicit in the 
standard informal understanding of these constructs. While not a deep 
and exciting one, it is still a mathematical theory.  Consequently, it 
would appear that a programming language (i.e., the bundle that is its 
syntax and semantics) is a mathematical theory i.e., we appear to have 
arrived at MT.  

Unfortunately, this claim may be challenged at every step. 

Empirical Semantics 

We can attempt to block matters at the outset i.e., we may attack the 
practical necessity for any kind of semantics, even of the informal 
variety, i.e., one might claim that semantics is irrelevant in practice. 
Whatever, the intention of the original designer, it is how the language 
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functions in the working environment that determines the activity of 
programming. And for this, any pre-determined normative semantic 
description is largely irrelevant. This would block SF; indeed it seems to 
deny any role for semantics. So is it plausible?  Here is one set of 
considerations in its favour. 

A programmer attempting to learn a programming language does not 
study the manual, the semantic definition. Instead, she explores the 
implementation on a particular machine. She carries out some 
experimentation, runs test programs, compiles fragments etc. until she 
figures out what the constructs of the language do. Learning a language 
in this way is a practical affair. Moreover, this what programmers 
require in practice. Indeed, in order to program a user needs to know 
what will actually happen on a given physical machine. And this is 
exactly what such a practical investigation yields.  

In other words, a programming language is treated as an artefact that is 
subject to experimental investigation. The programmer still needs to 
construct her own theories about the semantic content of the language.  
But presumably, through testing and experimentation, together with her 
previous knowledge of programming languages and their constructs, 
she could systematically uncover the evaluation mechanism of the 
language. Indeed, she might be able to piece together something like our 
operational semantics2. But such theories are constructed as scientific 
theories about the language and its implementation, and as such they 
are subject to falsification. On this scenario, it is this experimental 
method that enables us to discover the actual meaning of the language. 
This is a very different methodological picture to that supplied by the 
normative one. 

 Of course, we might doubt whether such theory construction is 
practically feasible: can one from scratch unpack matters to the point 
where one has enough information to use the language? But even 
assuming that we find such methodology persuasive, and that we can 
write down the evaluation mechanism, there is a more significant 

                                                 
2
This might be seen as similar in spirit to Quine’s field linguist engaged in what he refers to as radical 

translation (Quine, 1960). In so far as a user could by some form of experimentation fix the interpretation of the 

language, it is. However, this form of empirical uncovering of semantics is not an argument against its 

normative function. It is merely a route to finding out what it means. Once the translation manual has been 

constructed, it provides a means of fixing correct use. Indeed, this provision is built into Davidson’s’ perspective 

(Davidson, 1984) where the role of the field linguist is radical interpretation not translation. Here the goal is the 

construction of a theory of meaning that is compositional. But these issues require more careful analysis than is 

possible here.  
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problem with this empirical approach. Empirical theories are subject to 
falsification and so, by their very nature, cannot be normative. So it 
would seem to follow that the advocate of this empirical picture must 
believe that no normative account is necessary, and that matters are 
always up for revision. But, this cannot be right. As we originally 
argued, without some normative account, there can be no criterion of 
correctness and malfunction, and no standard by which to measure 
progress.  Programming involves reasoning, and this requires a 
distinction between the correct and incorrect use of expressions of the 
language. And this can only take place against a semantic account of the 
language that fixes the correct use of its constructs. Although the activity 
of programming will almost always involve some form of 
experimentation and testing, this must take place against the backdrop 
of some normative account. 

To square this demand with the present empirical picture we might 
amend matters slightly in order to make room for a normative role for 
the extracted theory. We might begin with the empirical approach. But 
what may have been first formulated as a scientific theory of the 
language, in the activity of programming, must assume normative status 
i.e., once formulated, this initial scientific theory of the language must 
act as (a reverse engineered) semantic specification of the language. 
 
However, there are serious objections to even this picture. In particular, 
there must still be an initial normative account that underpinned the 
original compiler. Even the compiler writer, who just happens also to be 
the language designer, has semantic intentions. So this experimental 
picture cannot gain any purchase without some initial normative 
foundation. Moreover, assuming a normative status for any empirically 
derived theory faces the very same problem that made the construction 
of the scientific theory seem necessary in the first place: in the future, the 
whole system may malfunction in new ways not predicted by the 
theory. In this empirical setting, the user requirement that initiated the 
scientific perspective (i.e., the user needs to know what actually 
happens) will lead to the development of a new theory. And so on. 
Indeed, it would seem that this user requirement is unobtainable: 
continual revision is required to feed this desire to know what actually 
happens. This is not to say that some experimentation of the sort 
described, may not occur in practice. All sorts of things may occur in 
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practice. But it is to say that one cannot dispense with a normative role 
for theories of the language, however they are come by.  

Indeed, this whole approach to the semantics of a language seems 
confused. There is a clear difference between what the language is taken 
to mean and how we discover its meaning. Any attempt to discover the 
meaning of the language by testing and experimentation, presupposes 
that there is some pre-determined notion of meaning to discover. 

So there seems little possibility of undermining MT by this route i.e., 
arguing away the need for a normative semantics. However, we might 
challenge the second step i.e., the move from the informal to the formal 
semantics. 

Informal Mathematics 

Have we not assumed the conclusion of MT in moving from the 
informal to the formal account i.e., by providing a rule based account 
using the more formal notation, have we not pre-judged the issue? 
Indeed, the objector might agree that the formal account is 
mathematical, but argue that we do not need it for practice, thereby 
undermining MT.  

The arguments given for the formal account were essentially pragmatic 
in nature; they insist that precise accounts enable us to more carefully 
articulate the ontology and express and prove the properties of the 
language. But such arguments are not arguments that show the 
necessity of such a formal semantics. The informal ones, carefully 
formulated, might still be sufficient to define and explore the language. 

However, even if we doubt the need for the more formal account, it is 
not clear that we need to give up MT: if we stick to informal semantics 
and informal argumentation, does it follow that we lose mathematical 
status for our theories? Not obviously. Actually, it seems that not much 
hangs on the formalization step. 

In our brief account of the nature of mathematical theories we alluded to 
the distinction between being formal and being mathematical. Although 
formal logic and set theory have influenced the style and presentation of 
proofs, ordinary mathematical proofs are not articulated in any formal 
language. Most mathematicians do not work inside formal theories 
expressed in some variant of predicate logic; most mathematics is 
articulated in ordinary language with a sprinkling of notation to pick 
out the underlying concepts. Moreover, the use of the formal notation 
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does not transform a non-mathematical account into a mathematical 
one. The mathematical status of the theory does not depend upon such 
formal presentation: its mathematical nature is not brought into 
existence by it. In fact, the move from the informal to the formal is 
common place in mathematics. Informal theories often get rigorously 
axiomatised later e.g., Hilbert's Geometry. But the informal accounts are 
still mathematical. Euclid's geometry, despite its informality, is still 
taken to be a mathematical theory. It did not suddenly get mathematical 
status in the 20th century with Hilbert’s axiomatisation. 

In the case of our toy language, apart from the fact that one is expressed 
in English and the other with some abbreviational notation, and in the 
formal version the rule based structure has been made explicit, there is a 
no difference between the two versions of the semantics. Surely such 
cosmetic changes cannot have such a significant conceptual 
consequence.  

Consequently, the argument that semantic accounts are mathematical 
does not depend upon the semantics and underlying theory being 
formally articulated. And this is consistent with the standard 
development of axiomatic mathematical theories. In our case, there 
seems to be an underlying theory of operations that forms part of the 
thing that is a programming language. Consequently, at this point, at 
least for our toy language, we have no compelling reason to give up MT 
in its present form. In particular, the thing that is our programming 
language is a theory of programs, formally presented or not. 

Conservative Extensions 

However, although we might allow that simple theories such as our 
theory of programs are worthy of mathematical status, we might still 
insist that this is not so for actual programming languages; what might 
hold for simple toy languages does not scale up. In particular, theories 
acceptable to the mathematical community must have some aesthetic 
qualities: they must have qualities such as elegance and ease of 
application in their intended domain of application. Moreover, part of 
being elegant involves the ability to be mathematically explored. If they 
cannot, for whatever reason (e.g. their complexity), they will not be 
given the mathematical communities stamp of approval. And while it is 
possible to provide semantic definitions of the kind given for our toy 
language for large fragments, and even whole languages (for example, 
(Wikibooks, 2009) provides a semantic definition of Haskell), in general, 
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such definitions are not tractable theories. They are hard, if not 
impossible, to mathematically explore. They are often a complex mixture 
of notions and ideas that do not form any kind of tractable mathematical 
entity. Consequently, when provided, such semantic definitions are 
often complicated and unwieldy, and therefore of limited mathematical 
value. Often, the best one can do with some of these is to marvel at the 
persistence and ingenuity of the person who has written the semantic 
description.  Given this, it is harder to argue that actual programming 
languages are genuine mathematical theories.  

However, there is an observation that, on the face of it, might be taken to 
soften this objection. And this involves the logical idea of a conservative 
extension. Suppose that we have constructed a theory  of a language . 
Suppose also that, in the sense of mathematical logic, we have shown 
that  is a conservative extension of a smaller theory , a theory of a 
language , a subset of . Further suppose that  meets our criteria for 
being a mathematical theory. Can we then claim that  is also a 
mathematically acceptable theory? In other words, is a theory that is a 
conservative extension of a mathematical theory, also a mathematical 
theory? A positive answer fits mathematical practice where 
mathematical exploration results in the construction of conservative 
extensions. Indeed, the construction of these extensions is itself part of 
the exploration process of the core theory.  

Programming languages admit of a similar distinction. While the whole 
language/theory may not have sufficient simplicity and elegance to be 
mathematically explored, it may nevertheless possess a conceptual core 
that may be. Such a core should support the whole language in the sense 
that the theory of the latter is a conservative extension of the theory of its 
core. This offers a slightly different interpretation of MT. But it is one in 
line with mathematical practice. 

Unfortunately, there are further problems to overcome. No doubt there 
are some simple economies of syntax and theory that may be made for 
almost all languages. But it will generally be a non-trivial task to locate 
such mathematically acceptable cores for existing languages.  Many 
languages have been designed with a meagre amount of mathematical 
input, and it would be somewhat miraculous if such languages/theories 
could post-hoc be transformed into elegant cores.  
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MT and SF 

But there is another route. And one that brings SF back to the fore. The 
nature of existing languages does not dictate how new languages might 
be designed. It does not logically prevent elegant computational theories 
from being used as an aid to the design of new languages; languages 
that come closer to achieving mathematical status.  

And this brings in the role of theoretical computer science. One of its 
goals has been to isolate pure computational theories of various kinds. 
Some of these notions were already embedded in actual programming 
languages, and, in many cases, formed the source of the underlying 
intuitions that were sharpened and moulded into an axiomatic theory. 
Mostly they have not been devised to be used, but to provide careful 
axiomatic articulations of informal, yet significant, computational 
concepts. Such theories include axiomatic theories of the following 
notions. 

 Operations 

 Types and Polymorphism 

 Concurrency and Interaction 

 Objects and Classes 

Theories of operations mostly emanate from the Lambda Calculus 
(Church, 1941). This was invented as a formalism to provide a formal 
account of computability. But from a computer science perspective 
(Landin P. , 1965; Landin P. , 1964), it provides a mathematical account 
that underlies the notions of function/procedure definition and 
function/procedure call as they occur in actual programming languages.  
Landin (Landin P. , 1966)  actually advocated that the calculus be used 
as the design core for future languages. Other variations on the calculus 
take seriously the fact that expressions in the language of the lambda 
calculus may fail to terminate under the standard rules of reduction. 
This leads to the Partial Lambda Calculus (Moggi.A., 1988).  

However, most programming languages admit some notion of type, and 
so these pure untyped theories of operations do not reflect the 
operational content of existing languages. Consequently, logicians and 
theoretical computer scientists have developed variations on the 
calculus that incorporate types (Barandregt, 1992). While the elementary 
theories have monomorphic type systems, most languages now admit 
some notion of polymorphism.  Theories of the impredicative notion (e.g. 
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System F) were invented independently by the logician Girard (Girard, 
1989) and the theoretical computer scientist Reynolds (Reynolds, 1974). 
This is an impredicative theory in that the polymorphic types are 
included in the range of the type variables. Less powerful theories, in 
particular predicative ones restrict the range to exclude these types from 
the range.  Others carve out various subsets of the type system and 
restrict the range to these. These theories and their mathematically 
established properties provide us with hard information for the activity 
of design. 

The π-calculus (Milner R. , 2006) belongs to the family of process calculi: 
mathematical formalisms for describing and analyzing properties of 
concurrent computation and interaction. It was originally developed as a 
continuation of the Calculus of Communicating Systems. Whereas the λ-
calculus is a pure theory of operations, the π-calculus is a pure theory of 
processes. It is itself Turing complete, but is has also inspired a rich 
source of extensions that get closer to being useable programming 
languages e.g. (Barnes, 2006).   

Our final example concerns objects, classes and inheritance.  (Abadi, 1996) 
contains an extensive source for such calculi (e.g. , including 
some with type structure. The authors also consider the interaction of 
such theories with other notions such as polymorphism. 

One would be hard pushed to argue that such theories are not 
mathematical ones. They not only reflect clear computational intuitions, 
often derived from existing languages, but they are capable of being 
mathematically explored. Indeed, the pure lambda calculus is now a 
branch of mathematical logic/theoretical computer science with its own 
literature and mathematical goals (Barendregt, 1984).  

The design and exploration of such theories might well be used, as one 
tool among many, to aid the process of language design. Actual 
programming languages might then be designed around such cores with 
actual implemented programming languages and their theories as 
conservative extensions. Some languages have been designed using this 
broad strategy. For example, the logic of computable functions of (Scott, 
1993) is an extension of the simple typed lambda calculus that includes a 
fixpoint/recursion operator. A predicative polymorphic version of this 
(with type variables ranging over types with decidable equality) forms 
the logical spine of ML (Milner R. T., 1999). But one would need to do a 
fair amount of work to even articulate the theory of the whole language, 
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let alone investigate whether or not it is a conservative extension of this 
core. Still, it is within the spirit of the present proposal. 

Moreover, programming languages are rarely based upon a single core 
notion. In reality we require languages that support quite complex 
mixtures of such.  For example, we might form a theory made up from 
the , the  and some predicative version of 
system F. This should enable us to explore combinations of 
polymorphism, concurrency and objects i.e., we may subject such a 
theory to mathematical analysis. We might for example show that type 
membership is decidable. This informs the language design process. 
Indeed, we would be able to investigate and prove safety guarantees for 
improperly synchronized programs (Pugh, 2000). While putting such 
theories together in coherent ways is no easy task, there are theoretical 
frameworks that support such merging activity (Goguen, 1992; Turner 
R. , 2009). 
 
Strachey's plan was that such fundamental notions should be first 
clarified and languages designed with this knowledge to hand. This idea 
has actually furnished a whole industry of language design. More 
specifically, the last forty years have seen the employment of 
denotational and operational semantics as tools in programming 
language design (Tennent, 1977; Schmidt, 1986).   
 
Our approach is slightly different but still in line with the SF principle. 
In our case it is our core theories that supply the material from which 
actual languages may be constructed. Of course, Strachey never put it in 
these terms; such theories were largely not around at the time of his 
pronouncement. His original idea alluded to some underlying structures 
that were left unspecified. The interpretation that resulted in 
denotational semantics came later. Nevertheless, the spirit of what we 
are suggesting is much the same. It is a version of Strachey’s idea with 
his informal ideas being fleshed out with foundational axiomatic 
theories.  

This is a very clean picture, but it must represent the ideal situation. In 
practice, there is more to design than devising and exploring such core 
theories and their combinations. One also needs also to take pragmatic 
issues, into account. Central here are issues of programming practice 
and implementation (Wirth, 1974). Indeed, the whole enterprise of 
language design is a two-way street with theory and practice informing 
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each other. In order to build pure computational theories, one must have 
some practice to reflect upon. Practice plus some theory leads to actual 
languages, which in turn generates new theories that feed back into 
language design. The various activities bootstrap each other. This finds 
the appropriate place for theory: it advocates a theory first principle, for 
each new generation of programming languages. This endorses both a 
more realistic interpretation of the semantics first principle, and 
increases the chances that the resulting theory will be mathematically 
kosher.  

Conclusion  

This is just one topic in the conceptual analysis of the nature of 
programming languages. Such work should form a significant part of a 
philosophy of computer science. In particular, the status of 
programming languages, as mathematical theories, raises issues that 
impinge upon some of the central and contemporary questions in the  
philosophies of language, mathematics, science and engineering. In 
particular, in examining Strachey's claims, we are as much engaged in 
clarifying the nature of mathematical theories as we are in examining the 
nature of programming languages.  
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Key Terms and Their Definitions 

1. Axiomatic Theories: Theories constituted by groups of axioms/rules. These 

are not necessarily cast within a formal language i.e., they may be 

informally presented. 

2. Computational Theories: Theories that are axiomatisations of computational 

notions. Examples include the λ and π calculi. 

3. Informal Mathematics: Mathematics as practised; not as formalised in 

standard formal systems. 

4. Operational semantics: A method of defining programming languages in 

terms of their underlying abstract machines. 

5. Mathematical Theories. In this paper these are interpreted as axiomatic 

theories in the logical sense.  

6. Theoretical Computer Science: the mathematical theory of computer science. 

In particular, it includes the development and study of mathematical 

theories of computational notions. 


