CSE 663, Fall 2003

Robert C. Moore, "Reasoning about Knowledge and Action", IJCAI-77: 223-227.

Logical Axioms (Definitions):

Def $[[T(w, \alpha)]]$ = The object-language wff $[[\alpha]]$ is true in possible world [[w]].

L1 True(α) $\equiv T(w_0, \alpha)$

L2 $T(w, (\alpha \text{ And } \beta)) \equiv (T(w, \alpha) \wedge T(w, \beta))$

L3 $T(w, (\alpha \text{ Or } \beta)) \equiv (T(w, \alpha) \lor T(w, \beta))$

L4 $T(w, (\alpha \Rightarrow \beta)) \equiv (T(w, \alpha) \supset T(w, \beta))$

L5
$$T(w, (\alpha \Leftrightarrow \beta)) \equiv (T(w, \alpha) \equiv T(w, \beta))$$

L6 $T(w, Not(\alpha)) \equiv \neg T(w, \alpha)$

Definitions & Axioms for Knowledge:

Def [[K(a, w, w')]] = [[w']] is a world that is possible according to what agent [[a]] knows in world [[w]].

K1 $T(w, \operatorname{Know}(a, \alpha)) \equiv \forall w' [K(a, w, w') \supset T(w', \alpha)]$

K2
$$K(a, w, w)$$

K3 $K(a, w, w') \supset [K(a, w', w'') \supset K(a, w, w'')]$

K4 $K(a, w, w') \supset [K(a, w, w'') \supset K(a, w', w'')]$

• ∴ *K* is an equivalence relation for fixed *a*; ∴ this is an S5 modal (epistemic) logic.

Definitional Axioms for Quantifiers:

L7 $T(w, \text{Exist}(v, \alpha(v))) \equiv \exists x [T(w, \alpha(x/v))], \text{ for } x \text{ not free in } \alpha.$

L8 $T(w, \text{All}(v, \alpha(v))) \equiv \forall x [T(w, \alpha(x/v))]$, for *x* not free in α .

L9 $T(w, \text{Eq}(t_1, t_2)) \equiv (t_1 = t_2)$

Definitional Axioms for Results of Actions:

Def $[[\text{Res}(e, \alpha)]] = \text{it is possible for event } [[e]] \text{ to occur, } \& \text{ wff } [[\alpha]] \text{ would be true in the } \frac{\text{Res}}{1 + 1} \text{ and } \frac{1}{1 + 1$

Def [[R(e, w, w')]] = [[w']] is a possible world that could result from event [[e]] occurring in world [[w]].

Def [[Do(a,c)]] = the event consisting of agent [[a]] <u>Doing command [[c]].</u>

R1 $T(w, \operatorname{Res}(e, \alpha)) \equiv (\exists w' [R(e, w, w')] \land \forall w' [R(e, w, w') \supset T(w', \alpha)])$

R2 $T(w, \operatorname{Res}(\operatorname{Do}(a, \operatorname{Loop}(\alpha, c)), \beta)) \equiv T(w, \operatorname{Res}(\operatorname{Do}(a, \operatorname{If}(\alpha, (c; \operatorname{Loop}(\alpha, c)), \operatorname{Nil})), \beta))$

R3 $T(w, \operatorname{Res}(\operatorname{Do}(a, \operatorname{If}(\alpha, c, c')), \beta)) \equiv ([T(w, \operatorname{Know}(a, \alpha)) \land T(w, \operatorname{Res}(\operatorname{Do}(a, c), \beta))]$ $\lor [T(w, \operatorname{Know}(a, \operatorname{Not}(\alpha))) \land T(w, \operatorname{Res}(\operatorname{Do}(a, c'), \beta))])$

R4 $T(w, \operatorname{Res}(\operatorname{Do}(a, (c; c')), \alpha)) \equiv T(w, \operatorname{Res}(\operatorname{Do}(a, c), \operatorname{Res}(\operatorname{Do}(a, c'), \alpha)))$

N1 $R(\text{Do}(a, \text{Nil}), w, w') \equiv (w = w')$

Definition of "Can"

C1 $T(w, \operatorname{Can}(a, \alpha)) \equiv \exists c [T(w, \operatorname{Know}(a, \operatorname{Res}(\operatorname{Do}(a, c), \alpha)))]$

Note: The English words 'can' and 'know' are *etymologically* related in exactly this way! You "can" do something iff you "ken"—i.e., know—how to do it. From *American Heritage Dictionary of the English Language*, at dictionary.com: 'can' comes from "Middle English, first and third person sing. present tense of connen, *to know how*."

Frame Axioms (Definitions) for Dialing Combinations of Safes

D1 $\exists w'[R(\text{Do}(a, \text{Dial}(x_1, x_2)), w, w')] \equiv [T(w, \text{Comb}(x_1)) \land T(w, \text{Safe}(x_2)) \land T(w, \text{At}(a, x_2))]$ **D2** $R(\text{Do}(a, \text{Dial}(x_1, x_2)), w, w') \supset \bullet [T(w, \text{Is-comb-of}(x_1, x_2)) \supset T(w', \text{Open}(x_2))] \land [(\neg T(w, \text{Is-comb-of}(x_1, x_2)) \land \neg T(w, \text{Open}(x_2)) \supset \neg T(w', \text{Open}(x_2)))] \land [T(w, \text{Open}(x_2)) \supset T(w', \text{Open}(x_2))]$

D3 $R(\operatorname{Do}(a,\operatorname{Dial}(x_1,x_2)),w,w') \supset : [K(a,w',w'') \equiv .$ $[(T(w',\operatorname{Open}(x_2)) \equiv T(w'',\operatorname{Open}(x_2))) \land \exists w'''[K(a,w,w'') \land R(\operatorname{Do}(a,\operatorname{Dial}(x_1,x_2)),w''',w'')]]]$

Facts about Combinations

A1 $T(w, \text{Is-comb-of}(x_1, x_2)) \supset [T(w, \text{Comb}(x_1)) \land T(w, \text{Safe}(x_2))]$

A2 $T(w, \operatorname{At}(a, x)) \supset T(w, \operatorname{Know}(a, \operatorname{At}(a, x)))$

The Problem

Given: True(At(John, safe₁)) \land True(Exists(X₁, Know(John, Is-comb-of(X₁, safe₁))))

Prove: True(Can(John, Open(safe₁)))

file:663/F03/moore77.pdf ©2003, William J. Rapaport rapaport@cse.buffalo.edu