
Chapter 1

GETTING TO THE AIRPORT:
THE OLDEST PLANNING PROBLEM IN AI

Vladimir Lifschitz
University of Texas at Austin

Norman McCain
Baker University

Emilio Remolina
University of Texas at Austin

Armando Tacchella
Università di Genova

Abstract The problem discussed in this paper is described in a 1959 paper by John McCarthy as
follows: Assume that I am seated at my desk at home and I wish to go to the airport. My
car is at my home also. The solution of the problem is to walk to the car and drive the car
to the airport. In the spirit of what is now known as the logic approach to AI, McCarthy
proposed to address this problem by first giving “a formal statement of the premises”
that a reasoning program would use to draw the relevant conclusions. Our goal here is
to take a careful look at this episode from the early history of AI and to identify some of
the logical and algorithmic ideas related to the airport problem that have emerged over
the years.

1. INTRODUCTION

The problem discussed in this paper is described in [McCarthy, 1959] as follows:

Assume that I am seated at my desk at home and I wish to go to the airport. My car is at
my home also. The solution of the problem is to walk to the car and drive the car to the
airport.

In the spirit of what is now known as the logic approach to AI, McCarthy proposed
to address this problem by first giving “a formal statement of the premises” that a

1

2

reasoning program would use to draw the relevant conclusions. Forty years ago, these
premises could not be identified and formalized in a satisfactory way: the advances
in knowledge representation and in formal commonsense reasoning that are required
for this purpose came much later.

Our goal here is to take a careful look at this episode from the early history of AI
and to identify some of the logical and algorithmic ideas related to the airport problem
that have emerged over the years. We show that some of the relevant ideas are of a
recent origin. Just a few years ago, formalizing the airport domain and turning this
formalization into an input for a planner would be more difficult than it is today.

The attempt to describe the airport domain in [McCarthy, 1959] includes, among
others, the following logical formulas:

at
�
I � desk ���

at
�
desk � home ���

at
�
car � home ���

at
�
home � county ���

at
�
airport � county ���

(1.1)

at
��� �����	� at

� �
������ at
��� ������� (1.2)

walkable
��� �	� at

� �
� � �	� at
� ��� � ��� at

��� � � �
 can

�
go
� ������� walking �����

drivable
��� �	� at

� ��� � �	� at
� ��� � ��� at

�
car � � ��� at

��� � car �
 can

�
go
� ������� driving �����

(1.3)

walkable
�
home ���

drivable
�
county ��� (1.4)

did
�
go
��� ���
�������� at

��� ������� (1.5)

The intention of formulas (1.3) and (1.4) is to explain why one can walk to the car but
not to the airport by postulating that the home is “walkable” (it is so small that one can
walk between any two locations within the home), but the county is only “drivable.”

According to McCarthy’s idea, a reasoning program would deduce, from these and
other axioms, a formula corresponding to the first step of the plan:

do
�
go
�
desk � car � walking ����� (1.6)

“The deduction of the last proposition initiates action.”
In the course of the discussion of this proposal at the Teddington Conference

on the Mechanization of Thought Processes in 1959, Yehoshua Bar-Hillel raised a
few objections, and these objections are discussed in Section 2. below. Many other
difficulties transpired years later; the best known of them is the frame problem. (How
do we know that after the execution of the first step of the plan—walking to the
car—the car is still at home? Perhaps it has moved to another part of the world by

Getting to the Airport:The Oldest Planning Problem in AI 3

that time, and driving to the airport became impossible!) We talk about the frame
problem and other difficulties in Section 3..

The second half of the paper demonstrates that today all these problems—with
one notable exception, discussed in Section 2.4—can be successfully resolved.
In Section 4. we formalize the airport domain using recent work on action
languages [Giunchiglia and Lifschitz, 1998]. In Section 5. we show how the “causal
calculator” written by one of us (NMC) can be used to generate McCarthy’s two-step
solution.

2. BAR-HILLEL’S OBJECTIONS

2.1 TRANSITIVITY OF “AT”
Bar-Hillel’s first objection against McCarthy’s proposed formalization of the airport

example deals with the assumption that the relation at is transitive (1.2):
����� since he takes both “at

�
I � desk � ” and “at

�
desk � home � ” as premises, I presume—

though this is never made quite clear—that at means something like being-a-physical-
part-or-in-the-immediate-spatial-neighborhood-of. But then the relation is clearly not
transitive. If � is in the immediate spatial neighborhood of � , and � in the immediate
spatial neighborhood of � , than � need not be in the immediate spatial neighborhood of
� . Otherwise, everything would turn out to be in the immediate spatial neighborhood of
everything, which is surely not Dr. McCarthy’s intention.

McCarthy said in reply that he

was not trying to formalize the sentence form, � is at � , as it is used in English: at
merely was intended to serve as a convenient mnemonic for the relation between a place
and a subplace.

(See [McCarthy, 1990], pages 17 and 20.)
In spite of this clarification, it seems to us that Bar-Hillel’s objection is well taken.

To sit at the desk does not mean to occupy a subplace of the desk. The symbol at can
be understood to represent the relation between a place and a subplace in the last 4 of
axioms (1.1), but not in at

�
I � desk � .

One way out of this difficulty is to replace this axiom by

at
�
I � neighborhood

�
desk �����

where neighborhood represents a function that maps every region to a slightly larger
region—its “immediate neighborhood.” We would write, for instance,

at
�
scissors � desk �

to express that the scissors are in a drawer (or perhaps on top) of the desk, but
at
�
I � desk � would not be an acceptable postulate. The difference between at

�
I � car �

and at
�
I � neighborhood

�
car ��� could be used to distinguish between being inside the

car and standing next to it.
Alternatively, we can justify the first of axioms (1.1) as given above if we agree

to understand the symbol desk to represent an immediate neighborhood of the desk.
This convention would not apply to the other symbols: car, as before, denotes the

4

part of space occupied by the car, rather than a neighborhood of the car, and similarly
for I, home, airport and county.

The formalization given in Section 4. below uses this simpler (although admittedly
ad hoc) solution.

2.2 ARRIVING AT A PLAN BY DEDUCTION
About the expected conclusion (1.6) Bar-Hillel said:

It sounds rather incredible that the machine could have arrived at its conclusion—which,
in plain English, is “Walk from your desk to your car!”—by sound deduction. This
conclusion surely could not possibly follow from the premise in any serious sense.
Might it not be occasionally cheaper to call a taxi and have it take you over to the airport?

(See [McCarthy, 1990], pages 17–18.)
Indeed, the idea that a plan is a deductive consequence of the statement of the

planning problem seems to presuppose the uniqueness of the plan: the problem is
solved only if this particular plan is executed. In algebra, if 5 is a solution to a
given equation, we do not expect

�����
to be “deducible” from the equation in any

sense—unless 5 is the only solution.
The relationship between a formal statement of the problem and a plan is not the

provability relation. It is better to say that the plan “satisfies” the statement of the
problem in some sense. Whatever the precise meaning of this word is, it’s essential
that several different objects may “satisfy” the statement of a planning problem. (And
there are no objects with this property if the problem is not solvable.)

In deductive planning, for instance, plans are represented by ground terms of the
situation calculus [Green, 1969]. A problem is described by specifying, first, an
axiomatic theory � that describes the initial situation and the effects of actions, and,
second, a goal condition � ��� � . A situation term � “satisfies” 	
� ��� ��� �� if � entails
� � � � .

In satisfiability planning [Kautz and Selman, 1992], plans are represented by
propositional interpretations, and the satisfaction relation in question is essentially
the satisfaction relation of propositional logic. Answer set planning [Subrahmanian
and Zaniolo, 1995, Dimopoulos et al., 1997, Lifschitz, 1999a] is similar, except that
its underlying satisfaction relation is nonmonotonic.

2.3 THE TIME FACTOR

Further in Bar-Hillel’s comments, we read:

Let me also point out that in the example the time factor has never been mentioned,
probably for the sake of simplicity. But clearly this factor is here so important that it
could not possibly be disregarded without distorting the whole argument. Does not the
solution depend, among thousands of other things, also upon the time of my being at my
desk, the time at which I have to be at the airport, the distance from the airport, the speed
of my car, etc.

(See [McCarthy, 1990], page 18.)
Over the years, several temporal formalisms were proposed for use in formalizing

actions, beginning with the situation calculus [McCarthy and Hayes, 1969]. As to the

Getting to the Airport:The Oldest Planning Problem in AI 5

description of the airport domain in [McCarthy, 1959], it is not correct to say that the
time factor is ignored there altogether: the use of did in (1.5) hints at a time difference
between action go

��� ���
����� and its effect at
��� ��� � . This syntactic mechanism helps us

distinguish the effects of an action, as in (1.5), from its preconditions, as in (1.3).
But it does not allow us to talk about the execution of several actions in a row. In
this respect, it is similar to the language of STRIPS operators [Fikes and Nilsson,
1971], to ADL [Pednault, 1987] and to other action description languages [Gelfond
and Lifschitz, 1998].

The temporal formalism used in this paper is action language � [Giunchiglia and
Lifschitz, 1998], reviewed in Section 4.1 below. This language has a simple syntax
but is substantially more expressive than STRIPS.

2.4 IDENTIFYING THE RELEVANT PREMISES
Bar-Hillel said also in his comments:

A deductive argument, where you have first to find out what are the relevant premises, is
something that many humans are not always able to carry out successfully. I do not see
the slightest reason to believe that, at present, machines should be able to perform things
that humans find trouble in doing. I do not think there could possibly exist a program
which would, given any problem, divide all facts in the universe into those which are
and those which are not relevant for that problem. Developing such a program seems to
me by ������� orders of magnitude more difficult than, say, the Newell—Simon problem
of developing a heuristic for deduction in the propositional calculus. This cavalier way
of jumping over orders of magnitude only tends to becloud the issue and throw doubt
on ways of thinking for which I have a great deal of respect. By developing a powerful
program language, you may have paved the way for the first step in solving problems of
the kind treated in your example, but the claim of being well on the way towards their
solution is a gross exaggeration. This was the major point of my objections.

(See [McCarthy, 1990], page 19.)
Today, admittedly, AI researchers have about as little to say on this subject as

they did in 1959. There is no need to explain that, in setting up the formalization
of the airport example below, the task of identifying the relevant premises was not
automated.

3. OTHER DIFFICULTIES

3.1 GOING TO A REGION

The destination of the action go may be a large “region” that has subregions (rather
than a specific “location,” as in the case of the move action in the blocks world). This
leads to an interesting question. If I go to a region � then, according to (1.5), fluent
at
��� ��� � becomes true; but what about the effect of this action on fluent at

��� ���	� � ,
where �
� is a part of � ? For instance, when I go home, how does this action affect
fluent at

��� � desk � ?
We see here three choices.

6

One is to say that fluent at
��� � desk � may remain false or may become true, depending

on the particular way of executing the action of going home. The action becomes
nondeterministic.

Second, we can say that this fluent always remains false. Going home is understood
then as going to an unspecified location within the home that is disjoint from all the
subregions of home that have names in the language (desk and car, in the initial state
of the airport problem).

Finally, we can say that going home sometimes “involves” going to the desk, and
sometimes it does not. In the first case, fluent at

��� � desk � becomes true; in the second
case, it does not. This view is adopted in the formalization below.

The idea that an execution of an action of type ��� “involves” an execution of an
action of type ��� may be understood in two ways. We may think that there is a
single event which instantiates both the � � and � � action types, or we may think that
there are two events appropriately related—they at least must happen concurrently.
Formally, we are not committed to either interpretation. When we say that the action
��� occurs, we mean that some event occurs that instantiates the ��� action type.
When we say that the action ��� also occurs, we mean that some event occurs that
instantiates the ��� action type. Whether these are the same event or two is not an issue
that we address. � The view that a single event may instantiate distinct action types or
descriptions has been articulated by the philosopher Donald Davidson [1967].

3.2 NEED FOR NONMONOTONIC REASONING

The discovery of the frame problem and the invention of the nonmonotonic
formalisms that are capable of solving it may have been the most significant events
so far in the history of research on reasoning about actions. A large part of this story
is described in [Shanahan, 1997].

In simple cases, the frame problem can be solved monotonically [Schubert, 1990],
but in the case of the airport domain the use of nonmonotonic reasoning seems almost
imperative. The reason for this is that going to a region may have rather complicated
ramifications. Axiom (1.5) describes the direct effect of going to � : in the resulting
state, I am at � . But this action has also indirect effects. First, for every region � �
that includes � , I am at � � . Second, for every region � � that is disjoint from � , I am
not at � � . Formal nonmonotonic reasoning helps us describe these indirect effects in
a concise way.

A nonmonotonic solution to the frame problem provides a formalization of the
informal principle called the “commonsense law of inertia.” In application to a fluent�

, this principle asserts that, as time goes by,
�

tends to keep the same value that it
had in the past. The approach to expressing inertia adopted in action language � is
outlined in Section 4.1.

Another use of nonmonotonic reasoning in our formalization of the airport example
has to do with the closed world assumption. Axioms (1.4) give little information about
the extents of the predicates walkable and drivable; they do not tell us, for instance,
whether the airport has any of these two properties, or whether the county is walkable.
We can observe that if a region

�
is so small that one can walk (or drive), in principle,

Getting to the Airport:The Oldest Planning Problem in AI 7

between any two locations within it, then any subregion of
�

has the same property.
The axiom expressing this idea will allow us to derive, for instance, drivable

�
airport �

from the axioms drivable
�
county � and at

�
airport � county � . It also will allow us to

derive drivable
�
home � . (We understand drivable

�
X � to mean only that the distances

within � are not too large, not necessarily that there are no obstacles against driving
within � .) Even so, we will not be able to prove any negative facts about walkable
or drivable. One way to overcome this difficulty is to postulate the closed world
assumption for these two predicates: by default, a region is not walkable and not
drivable. This idea, just like the idea of inertia, calls for the use of a nonmonotonic
formalism.

4. AIRPORT DOMAIN IN ACTION LANGUAGE �
4.1 LANGUAGE

According to [Giunchiglia and Lifschitz, 1998] (see also [Gelfond and Lifschitz,
1998, Section 6]), a description of an action domain in action language � is a set of
propositions of two kinds: static laws

�������
	������� �
and dynamic laws ��������	������� � ������	���� �
Here , � and � are logical formulas. The atomic subformulas of and � are
names of propositional fluents. � may contain, in addition, names of “elementary
actions”; these names are used as atomic formulas also. An assignment of truth values
to the names of elementary actions represents, intuitively, the composite action that
consists in executing concurrently, during some fixed time interval, all elementary
actions to which the value t is assigned. According to the semantics of � , every
action description represents a “transition system”—a directed graph whose edges
correspond to the transitions caused by the execution of actions.

To illustrate the use of � notation, consider a few examples.
1. The effect of go

��� ���
����� on at
��� ����� that McCarthy represented by formula (1.5)

would be expressed in � by

go
��� ��������� ��� ���
	�� at

��� ��� ���
This expression stands for the dynamic law

��������	�� at
��� ����� �!� true ������	�� go

��� �����������
The general definition of the abbreviation causes, as well as the definitions of other
abbreviations for � propositions, can be found in [Gelfond and Lifschitz, 1998,
Section 6].

2. Consider now the first of formulas (1.3), which expresses a sufficient condition
for the executabilty of go

� ����� � walking � . In � , a similar condition might be written as
"�# " 	�$%	���������&('�	 go

� ����� � walking �����)+* � � walkable
��� ��� at

� �
� � �	� at
� ��� � �	� at

��� �������

8

which stands for the dynamic law

�������
	�� false ��� true������	���)+* � � walkable
��� �	� at

� ��� � ��� at
� ��� � �	� at

��� ��� ����� go
� �
����� walking ���

Actions described in � are presumed to be executable if there is no evidence to the
contrary, and the nonexecutable construct provides a way to express such evidence.
The version of � described in the papers mentioned above and used in this paper does
not permit quantifiers. To comply with this limitation, * � can be replaced by a finite
disjunction over the regions represented in the language.

3. The closed world assumption for walkable (Section 3.2) can be expressed in �
by � 	�� ��� '!�) walkable

��� �
which stands for the static law

�������
	��) walkable
��� � �!��) walkable

��� ���
The role of this proposition in � is similar to the role of the normal default

�) walkable
��� �

) walkable
��� �

in default logic [Reiter, 1980]. Intuitively, it says that, whenever
�

is not walkable,
there is a cause for this; when

�
is walkable, however, this fact requires a special

explanation provided by “positive” postulates such as

�������
	�� walkable
�
home ���

This expression, similar to the first of postulates (1.4), stands for the static law

�������
	�� walkable
�
home � ��� true �

4. One possible counterpart of (1.2) in � is

��'�� ���%� at
��� ��� �	� at

� �
����� at
��� �����

which stands for the static law

�������
	�� false ����) � at
��� �����	� at

� �
������ at
��� ���������

This proposition eliminates the states of the world in which at is nontransitive, so that
any action whose effect is to make (1.2) false is nonexecutable. This version of (1.2)
is a “qualification constraint” in the sense of [Lin and Reiter, 1994].

Another possibility is to postulate the static law

��������	�� at
��� ����� ��� at

��� ��� �	� at
� ���������

This is the version used in our formalization of the airport example. Besides
eliminating the “bad” states, it allows us to draw conclusions about indirect effects of

Getting to the Airport:The Oldest Planning Problem in AI 9

actions. It tells us, in particular, that any action which makes at
��� ������� at

� ������� true
has also another effect: it makes at

��� ����� true. For instance, if I go to a subregion �
of � then one ramification of this is that at

��� ����� becomes true; this was discussed in
Section 3.2.

5. The commonsense law of inertia is not a “built-in” feature of � , but the inertia
assumption can be easily expressed in this language. For instance,

� " 	���������' at
��� ��� �

stands for dynamic law

�������
	�� at
��� ��� � ��� at

��� ����� ������	�� at
��� ��� ���

If at
��� ����� was true and remained true after executing an action then there is a cause

for this. Whenever this fluent changes its value from t to f, a causal explanation is
required. Such explanations are provided by other causal laws—the dynamic and
static laws describing the direct and indirect effects of actions on at

��� ��� � .
4.2 FORMALIZATION

In our formalization of the airport example, action names are expressions of the
form go

� � ��� � where the metavariable � ranges over the symbols for regions

i � desk � car � home � airport � county (1.7)

and � is either walking or driving. This is more concise than McCarthy’s notation
go
��� ���
����� : we suppress the “source” argument

�
and keep only the “destination”

argument and the “mode” argument.
We use fluent names of three kinds:

at
� � ��� �

where each of the argument positions is occupied by one of symbols (1.7), and

walkable
� � ��� drivable

� � �
where � is one of the symbols in (1.7) that represent “big areas”:

home � airport � county � (1.8)

Although walkable
� � � and drivable

� � � are formally treated as fluents, their truth
values are not going to be affected by any actions.

The first group of postulates consists of the static laws describing properties of at:

�������
	�� at
� � ��� � ��� at

� � ��� � � at
� � ��� ����������
	��) at

� � ��� � ��� at
� � ��� �	� disjoint

� ����� � � ���� � ����������
	��) at
� � � � ���

Here � , � , � range over (1.7), and disjoint
� � ��� � stands for

) at
� ����� � �) at

� � ��� ��� (1.9)

10

This abbreviation is motivated by the stipulation that the regions occupied by
objects (1.7) never overlap: if two different regions � , � from that list satisfy (1.9)
then they are disjoint.

The next two groups of postulates describe the direct effects of actions:

go
� � ��� � ��� ���
	�� at

��� � � ���
go
� � � driving � ��� ���
	�� at

�
car � � �

and their preconditions:

"�# " 	�$%	���������&('�	 go
� � ��� � �!� at

��� � � ���"�# " 	�$%	���������&('�	 go
� � � driving � ���) at

��� � car ���"�# " 	�$%	���������&('�	 go
� � � walking � ���)���� �����	��
������� � � � � at

��� � � �	� at
� � � � �����"�# " 	�$%	���������&('�	 go

� � � driving � ���) � � ���	������������ � � ��� at
��� � � ��� at

� � � � �����
Here � ranges over the names of big areas (1.8).

We also postulate two restrictions on the concurrent execution of actions. First, it
is impossible to walk and to drive simultaneously:

"�# " 	�$%	����%����& '�	 go
� � � walking �	� go

� � � driving ���
Second, going to a region involves going to all supersets of that region (see
Section 3.1):

"�# " 	�$%	���������&('!	 go
� � ��� ���) go

� ����� � ��� at
� � ��� ���) at

��� ��� ���
The next group of postulates provides information related to the sizes of objects:

��'�� � �%�) at
�
car � desk ����������
	�� walkable

�
home ����������
	�� walkable
� � � �!� at

� � ��� � � walkable
� � ����������
	�� drivable

�
county ����������
	�� drivable
� � � �!� at

� � ��� �	� drivable
� � ���

The first of them expresses that the car is too big to be fully contained in the immediate
neighborhood of the desk. This fact is relevant because it explains why it would be
impossible to get back from the airport to the desk in one step, by driving not followed
by walking. (Alternatively, this could be explained by the impossibility of driving
inside the home, in spite of the fact that the home is small enough to be “drivable.”)

Finally, we need to postulate that at satisfies the commonsense law of inertia

� " 	���������' at
� � ��� ���) at

� � ��� �
and that walkable and drivable are normally false:

� 	�� ����'!�) walkable
� � ���� 	�� ����'!�) drivable
� � ���

Getting to the Airport:The Oldest Planning Problem in AI 11

at(car,home) at(car,airport)

at(i,car)

{ }

at(i,desk)

at(car,home)

{ }

at(i,car)

{ }

{go(car,walking)} {go(airport,driving)}

{go(desk,walking)} {go(home,driving)}

Figure 1.1 Part of the transition system describing the airport domain

4.3 TRANSITION SYSTEM

The semantics of � [Giunchiglia and Lifschitz, 1998] defines how the propositions
above describe a transition system. Every state of this transition system is
characterized by an assignment of truth values to the fluent names

at
� � ��� ��� walkable

� � ��� drivable
� � ���

One of the states,
���

, is the initial state of the airport problem. The fluents that are
true in state

���
are

walkable
�
home ���

drivable
�
airport ��� drivable

�
county ��� drivable

�
home ���

at
�
airport � county ��� at

�
home � county ���

at
�
desk � county ��� at

��� � county ��� at
�
car � county ���

at
�
desk � home ���

(1.10)

at
��� � desk ��� at

��� � home ��� at
�
car � home ��� (1.11)

Fluents (1.10) are not affected by any of the actions go
� � ��� � , so that they hold not

only in state
� �

but also in all states that are reachable from
� �

in the transition system.
Fluents (1.11) may become false after the execution of a sequence of actions.

Figure 1.1 shows state
���

along with the two states that can be reached from it by
executing actions. State

���
is shown on the left. There are two actions that can be

executed in this state: doing nothing (the loop labeled
���

) and walking to the car.
In the new state shown in the center, one can either do nothing, or walk back to the
desk, or drive to the airport (the state on the right). In this last state, one can either do
nothing or drive back home.

12

5. SOLVING THE PLANNING PROBLEM

5.1 CAUSAL CALCULATOR AND SATISFIABILITY
PLANNING

The Causal Calculator � is an implementation of the propositional causal logic
from [McCain and Turner, 1997]. Domain descriptions in � are translated by the
Causal Calculator first into the language of causal theories and then into propositional
logic. The models of the propositional theory correspond to paths in the transition
system described by the original domain description in � .

Planning is carried out by satisfiability checking, as proposed in [Kautz and Selman,
1992]. The Causal Calculator conjoins the formulas describing an initial state and goal
to the propositional theory, and then calls a propositional solver, such as ������� [Zhang,
1997], to find a model. If a model is found, it corresponds to a possible history of the
domain, and the assignments it makes to the action symbols correspond to a plan. For
deterministic domains, any plan found in this way is guaranteed to be valid [McCain
and Turner, 1998].

A � input file for the Causal Calculator consists of declarations, propositions
in language � (or, more often, schemas with metavariables whose instances are
propositions in �), problems (for instance, planning problems) and comments. Among
its declarations, a � input file usually contains a directive to include the “standard” file
C.t which contains rewrite rules for translating from � into the language of causal
theories, as well as various sorts, variables, constants, and domain independent causal
laws that have been found useful in formalizing action domains.

5.2 AIRPORT DOMAIN IN THE CAUSAL CALCULATOR

The input file for the airport domain (airport-domain.t) shown below
corresponds to the formalization of the domain in � described in Section 4.2. The sort
names inertialFluent, defaultFalseFluent, and action that appear
below in the constants declaration are declared in C.t. The declarations

:- constants
at(object,object) :: inertialFluent ;
walkable(object), drivable(object)

:: defaultFalseFluent.

are equivalent to the declarations

:- constants
at(object,object) :: fluent ;
walkable(object), drivable(object) :: fluent.

together with the schemas postulated at the end of Section 4.2:

inertial at(X,Y), -at(X,Y).
default -walkable(X).
default -drivable(X).

Getting to the Airport:The Oldest Planning Problem in AI 13

(X and Y are meta-variables of sort object). Hopefully, these remarks will suffice
to enable the reader to understand the following file.

�

%%% File ’airport-domain.t’

:- macros
disjoint(#1,#2) ->

(-((#1)=(#2)) && -at(#1,#2) && -at(#2,#1)).

:- include ’C.t’.

:- sorts
object >> region; mode.

:- variables
X,Y,Z :: object;
U,V :: region;
M :: mode.

:- constants
i, car, desk :: object;
home, airport, county :: region;
walking, driving :: mode;
at(object,object) :: inertialFluent;
walkable(region), drivable(region)

:: defaultFalseFluent;
go(object,mode) :: action.

% Properties of at

caused at(X,Z) if at(X,Y) && at(Y,Z).
caused -at(X,Z) if at(X,Y) && disjoint(Y,Z).
caused -at(X,X).

% Effects of actions

go(X,M) causes at(i,X).
go(X,driving) causes at(car,X).

% Action preconditions

nonexecutable go(X,M) if at(i,X).

nonexecutable go(X,driving) if -at(i,car).

14

nonexecutable go(X,walking)
if - (\/ U: (walkable(U) && at(i,U) && at(X,U))).

nonexecutable go(X,driving)
if - (\/ U: (drivable(U) && at(i,U) && at(X,U))).

% Restrictions on the concurrent execution of actions

nonexecutable go(X,walking) && go(Y,driving).

nonexecutable go(X,M) && -go(Y,M)
if at(X,Y) && -at(i,Y).

% Sizes of objects

always -at(car,desk).

caused walkable(home).
caused walkable(U) if at(U,V) && walkable(V).

constant walkable(U).

caused drivable(county).
caused drivable(U) if at(U,V) && drivable(V).

constant drivable(U).

5.3 PLANNING

Besides the description of the airport domain shown above, the input given to the
Causal Calculator includes the description of the planning problem:

%%% File ’airport-problem.t’

:- include ’airport-domain.t’.

:- plan
facts ::
0: at(i,desk),
0: at(desk,home),
0: at(car,home),
0: at(home,county),
0: at(airport,county),
0: -at(desk,car),
0: disjoint(home,airport);

Getting to the Airport:The Oldest Planning Problem in AI 15

goal ::
2: at(i,airport).

Each of the lines beginning with the time stamp 0 is an initial condition. These
conditions express that

���
(Section 4.3) is the initial state of the planning problem.

The line beginning with the time stamp 2 tells us that the goal is to make at
��� � airport �

true after the execution of 2 actions.
�

Given this input file, the Causal Calculator produces the following output:

calling sato...
run time (seconds) 0.08

0. drivable(airport) drivable(county) drivable(home)
walkable(home) at(airport,county) at(car,county)
at(car,home) at(desk,county) at(desk,home)
at(home,county) at(i,county) at(i,desk) at(i,home)

ACTIONS: go(car,walking)

1. drivable(airport) drivable(county) drivable(home)
walkable(home) at(airport,county) at(car,county)
at(car,home) at(desk,county) at(desk,home)
at(home,county) at(i,car) at(i,county) at(i,home)

ACTIONS: go(airport,driving)

2. drivable(airport) drivable(county) drivable(home)
walkable(home) at(airport,county) at(car,airport)
at(car,county) at(desk,county) at(desk,home)
at(home,county) at(i,airport) at(i,car) at(i,county)

The output shows the � ��� � runtime, the actions to be executed at times 0 and 1, and
the fluents that hold at each of the time instants 0, 1, 2 when the plan is executed.

6. CONCLUSION

The solution to the airport problem presented in this paper is based on a number of
ideas—some old, some new—coming from several areas of logic-based AI.

Nonmonotonic Reasoning. As a nonmonotonic formalism, the input language of
the Causal Calculator can be viewed as a subset of default logic in the sense of
Reiter [1980]. The process of “literal completion” [McCain and Turner, 1997]
that translates rules of causal logic into propositional formulas is a modification
of the completion semantics of negation as failure in logic programming [Clark,
1978] that treats positive and negative literals in a symmetric way, in the style
of [Gelfond and Lifschitz, 1991]. As discussed in [Lifschitz, 1997, Section 3],

16

the formalization of the closed world assumption in causal logic can be viewed as the
use of circumscription [McCarthy, 1986].

Frame Problem. The solution to the frame problem incorporated in � and in the
Causal Calculator is related to the method of [Reiter, 1980, Section 1.1.4]. Claims to
the opposite [Hanks and McDermott, 1987] notwithstanding, Reiter’s solution turned
out to be completely satisfactory after the rest of the postulates were formulated in the
right way ([Turner, 1997, Section 5.2]; see also [Lifschitz, 1999b, Section 3]). The
frame problem becomes more difficult in the presence of actions with indirect effects.
This issue, known as the “ramification problem,” was clarified over the last decade on
the basis of the ideas of [Geffner, 1990] and [Lin and Reiter, 1994].

Action Languages. The idea of an action language as a language for describing
transition systems was articulated by Pednault [1994]. After action language

�
was

defined and related to logic programming in [Gelfond and Lifschitz, 1993], it was
extended and modified by several authors. Language � is one of the most expressive
action description languages introduced so far.

Satisfiability Planning. The success of this idea (due to Kautz and Selman [1992,
2000]) is determined by the remarkable progress in the development of fast
propositional solvers. “Between 1991 and 1996 the size of hard satisfiability problems
that could be feasibly solved grew from ones involving less than 100 variables to ones
involving over 10,000 variables” [Selman et al., 1997]. On the other hand, the Causal
Calculator demonstrates that the method is applicable to planning problems described
in very expressive languages. This last fact is particularly essential in case of the
airport problem whose difficulty is representational rather than algorithmic.

The approach to actions and planning described in this paper represents only one
of several streams of research in this area. References to the work not mentioned here
can be found in [Shanahan, 1997] and in recent issues of the Electronic Transactions
on AI: Reasoning about Actions and Change. �

Acknowledgements

We are grateful to Esra Erdem, Jack Minker and Hudson Turner for constructive
criticisms. This work was partially supported by National Science Foundation under
grant IIS-9732744.

Notes

1. The issue is, however, of some importance. The number of distinct actions in a plan is one useful measure of
its quality. In order to count actions we have to be able to tell when we have two and when we have one.

2. http://www.cs.utexas.edu/users/tag/cc/ . See [Lifschitz, 2000] for other examples of the
use of this system.

3. Both this file and the file airport-problem.t are available on-line at http://www.cs.utexas.
edu/users/tag/ccalc/ccalc.1.23/examples/airport/.

4. If the number of steps required to solve a planning problem is unknown, the Causal Calculator can explore a
range of possibilities. For instance, by writing goal :: 5-20 we instruct the Causal Calculator to look first for
a plan of length 5; if there is no such plan, try 6, etc., up to 20.

5. http://www.ida.liu.se/ext/etai/rac/ .

References

Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic
and Data Bases, pages 293–322. Plenum Press, New York, 1978.

Donald Davidson. The logical form of action sentences. In The Logic of Decision and
Action, pages 81–120. University of Pittsburgh Press, 1967.

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning problems
in non-monotonic logic programs. In Sam Steel and Rachid Alami, editors,
Proc. European Conf. on Planning 1997, pages 169–181. Springer-Verlag, 1997.

Richard Fikes and Nils Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

Hector Geffner. Causal theories for nonmonotonic reasoning. In Proc. AAAI-90, pages
524–530. AAAI Press, 1990.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365–385, 1991.

Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic
programs. Journal of Logic Programming, 17:301–322, 1993.

Michael Gelfond and Vladimir Lifschitz. Action languages. � Electronic Transactions
on AI, 3, 1998.

Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal
explanation: Preliminary report. In Proc. AAAI-98, pages 623–630. AAAI Press,
1998.

Cordell Green. Application of theorem proving to problem solving. In Donald Walker
and Lewis Norton, editors, Proc. IJCAI, pages 219–240. The MITRE Corporation,
1969.

Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379–412, 1987.

Henry Kautz and Bart Selman. Planning as satisfiability. In Proc. ECAI-92, pages
359–363, 1992.

Henry Kautz and Bart Selman. Encoding domain and control knowledge for
propositional planning. 2000. This volume.

Vladimir Lifschitz. On the logic of causal explanation. Artificial Intelligence, 96:451–
465, 1997.

17

18

Vladimir Lifschitz. Answer set planning. In Proc. ICLP-99, pages 23–37, 1999.
Vladimir Lifschitz. Success of default logic. In Hector Levesque and Fiora Pirri,

editors, Logical Foundations for Cognitive Agents: Contributions in Honor of Ray
Reiter, pages 208–212. Springer-Verlag, 1999.

Vladimir Lifschitz. Missionaries and cannibals in the causal calculator. In Principles
of Knowledge Representation and Reasoning: Proc. Seventh Int’l Conf., pages
85–96, 2000.

Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of Logic and
Computation, 4:655–678, 1994.

Norman McCain and Hudson Turner. Causal theories of action and change. In
Proc. AAAI-97, pages 460–465, 1997.

Norman McCain and Hudson Turner. Satisfiability planning with causal theories. In
Anthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors, Proc. Sixth Int’l
Conf. on Principles of Knowledge Representation and Reasoning, pages 212–223,
1998.

John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463–502. Edinburgh University Press, Edinburgh,
1969. Reproduced in [McCarthy, 1990].

John McCarthy. Programs with common sense. In Proc. Teddington Conf. on the
Mechanization of Thought Processes, pages 75–91, London, 1959. Her Majesty’s
Stationery Office. Reproduced in [McCarthy, 1990].

John McCarthy. Applications of circumscription to formalizing common sense
knowledge. Artificial Intelligence, 26(3):89–116, 1986. Reproduced in [McCarthy,
1990].

John McCarthy. Formalizing Common Sense: Papers by John McCarthy. Ablex,
Norwood, NJ, 1990.

Edwin Pednault. Formulating multi-agent, dynamic world problems in the classical
planning framework. In Michael Georgeff and Amy Lansky, editors, Reasoning
about Actions and Plans, pages 47–82. Morgan Kaufmann, San Mateo, CA, 1987.

Edwin Pednault. ADL and the state-transition model of action. Journal of Logic and
Computation, 4:467–512, 1994.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

Lenhart Schubert. Monotonic solution of the frame problem in the situation calculus:
an efficient method for worlds with fully specified actions. In H.E. Kyburg, R. Loui,
and G. Carlson, editors, Knowledge Representation and Defeasible Reasoning,
pages 23–67. Kluwer, 1990.

Bart Selman, Henry Kautz, and David McAllester. Ten challenges in propositional
reasoning and search. In Proc. IJCAI-97, pages 50–54, 1997.

Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press, 1997.

V.S. Subrahmanian and Carlo Zaniolo. Relating stable models and AI planning
domains. In Proc. ICLP-95, 1995.

References 19

Hudson Turner. Representing actions in logic programs and default theories: a
situation calculus approach. Journal of Logic Programming, 31:245–298, 1997.

Hantao Zhang. An efficient propositional prover. In Proc. CADE-97, 1997.

