

ii

Copyright @1996, 1997, 1998, 1999, 2001 Joao Pavao Martins

All Rights Reserved

No part of this book may be reproduced in any form or by any means, electronic or mechanical,

including photocopy, recording, or any information storage or retrieval system without permission

in advance, in writing, from the author:

Joao Pavao Martins

Grupo de Inteligencia Artificial

Departamento de Engenharia Informatica

Instituto Superior Tecnico

Av. Rovisco Pais

1096 Lisboa CODEX

Portugal

jpm~gia.ist.utl.pt

172 CHAPTER 6. SEMANTIC NETWORKS

Figure 6.15: Alternative representation for "John gave Marya book".

from the other arcs:

1. The arcs we had before represent statements. Their presence in the
networks corresponds to a proposition about the two nodes that they
connect. These are called assertional arcs, since they make assertions
about the nodes that they relate;

2. New arcs represent "parts" of a proposition. For example, the meaning
of SO01 is given by all arcs that emanate from it, not only by a subset
of these arcs. These new arcs are called structuml. We can argue that
these arcs represent the statement that the agent of SO01 is John, the
recipient of SO01 is Mary, and so on. In this representation SO01 has
no meaning other that what is ascribed by the structural links to other
nodes.

One of the important aspects raised by [Woods 75], and later on by [Woods
91], is that we must be careful in making interpretations on the basis of a
clear understanding of the semantics of the notation ant not on the basis of
the informal semantics implied by the names of the nodes and arcs.

6.3 SNePS: A case study

In this section, we consider, in detail, a propositional semantic network,
SNePS ("Semantic Network Processing System"), developed by Stuart C.
Shapiro and his research group. The goal of building SNePS was to produce
a network that would be able to represent virtually everything that is used

6.3. SNEPS: A CASE STUDY 173

in natural language. For this reason, SNePS offers a high expressive power.
SNePS has undergone several versions, the most important of which are
SNePS 1.0 [Shapiro 79a], [Shapiro and Rapaport 87] and SNePS 2.1 [Shapiro
and Martins 90]. A detailed description of the historical evolution of SNePS

is presented in [Shapiro and Rapaport 92].

SNePS uses structural relations, as described at the end of the last section.
SNePS is called a propositional semantic network because each proposition
is represented by a node and not by an arc. In SNePS, nodes represent con-
cepts, and arcs represent non-conceptual relations2 between concepts. Arcs
are only used to structure concepts. The fact that concepts are represented
by nodes means that, in SNePS, we can only talk about the information
represented by nodes and we cannot refer to the information represented by
arcs. Arcs are considered to be part of the syntactic structure of the node
from where they emanate.

SNePS imposes certain restrictions on the representation it uses. It is impor-
tant to understand these restrictions, because they distinguish SNePS from
a general labeled, directed graph, and from many other semantic network

formalisms.

6.3.1 Nodes in SNePS

In SNePS, nodes represent concepts. There are two important aspects re-
garding the concepts represented in SNePS:

1. Nodes represent intensional concepts;

2. Each concept is reprE',sented by a unique node and each node represents
a unique concept. This is known as the uniqueness principle [Maida
and Shapiro 82].

The notion of a concept is vague and it corresponds to anything that we can
talk about. Concepts, thus, represent, among other things, propositions.
The benefit of representing propositions by nodes is that propositions about
propositions can be represented with no limits.

2That is, information that does not correspond to a concept in the network.

174 CHAPTER 6. SEMANTIC NETWORKS

If there is a direct arc3 from node m to node n, it is said that m immediately
dominates n. If there is a path of direct arcs from node m to node n, it is
said that m dominates n. There are no cycles composed only by direct arcs,
so no node dominates itself. If there is a direct arc, r, from node m to node
n, it is said that n "is the value of' r(m).

According to their position in the network, nodes can be atomic or struc-

tured.

1. A node is said to be atomic, if it dominates no other node. Atomic
nodes can be further divided into constant and variable nodes:

(a) Atomic constant nodes, also called base nodes, represent non- ~

structured concepts, and correspond, in a sense, to the constants ~:_j
of first-order logic. Atomic constant nodes are represented, in ~
our notation,4 by a rectangle, inside of which there is the name ~
of the node. These nodes are labeled by a string that stands for :

the name of an individual concept, for the name of a relation, for
the name of a property, and so on.

(b) Atomic non-constant nodes, also called variable nodes, represent
variables, and correspond, in some sense, to the variables in first-
order logic.5 Variable nodes are represented by a circle, inside
of which there is the name of the node, labeled in SNePS by an
identifier of the form Vn, where n is a positive integer.

2. A node is said to be structured if it dominates other node(s) (structured
nodes are represented by a circle, inside of which there is the label of
the node). Structured nodes can be further divided into constant and
variable nodes:

(a) Constant structured nodes represent either propositions or struc-
tured concepts. These nodes correspond either to well formed
formulas in first-order logic without free variables or to complex
terms. Constant structured nodes are labeled in SNePS by an
identifier of the form Mn, where n is a positive integer. This iden-
tifier may be followed by the character"!", meaning that the

3Direct arcs will be defined in the next section. For the purpose of the description
that we present here, we can think of direct arcs as the arcs that appear in the graphical
descriptions of the networks.

4This is not a standard notation within SNePS.
5These may also represent arbitrary propositions.

- .
b_~"

6.3. SNEPS: A CASE STUDY 175

corresponding node is believed by SNePS. In this case, we say
that the node is asserted in the network.

(b) Non-constant structured nodes, also called pattern nodes, domi-
nate at least a node corresponding to a free variable. These nodes
correspond to well formed formulas in first-order logic with free
variables. Non-constant structured nodes are labeled in SNePS
by an identifier of the form Pn, where n is a positive integer.

. 6.3.2 Arcs in SNePS

In SNePS there are two kinds of arcs, direct and inverse arcs. For each
relation represented by a direct arc, there is a converse relation represented
by an inverse arc. Inverse arcs have the same name as the corresponding
direct arcs, followed by a "-", and will not be shown in our diagrams.

The labels of the arcs used in SNePS are defined by the person who is using
it to represent knowledge. However, in order to enable the inference engine
to interpret the propositions involving logical connectives, there are some
pre-defined arcs in SNePS.

6.3.3 Knowledge representation in SNePS

SNePS has no pre-defined arcs, except for those related with the logical
connectives (these are described in Section 6.3.4). Therefore, the first step
towards representing knowledge in SNePS corresponds to the choice and
definition of the arcs that will be used.

Since arcs in SNePS correspond to structural arcs (in the sense of [Woods
75], as described in Section 6.2), to define a piece of knowledge in SNePS we
have to use a "case frame" of arcs that emanate from a node and correspond
to the relation or proposition that the node represents. Although there are
no fixed guidelines for the definition of these case frames (they depend on
the intended application), there are some commonly used representations,
some of which are described in this section. For a more complete description,
refer to [Shapiro and Rapaport 87] and [Shapiro et. ai. 93].

Two of the basic aspects that appear in most applications are the statements
that an individual is member of a given class and that a class is a subclass of
another class. The first statement is usually represented by the case frame

176 CHAPTER 6. SEMANTIC NETWORKS

Figure 6.16: Case frame for class membership.

Figure 6.17: Case frame for class containment. c.

:;.f3~

"member/class" (Figure 6.16), where the arc labeled "member" points to ~,-,J~~
the node that corresponds to the concept about which we are asserting ~~~~

"~':'~c"i
membership and the arc labeled "class" points to the node that corresponds :~~~~

. ;~';"",O:rto the class. The second statement IS usually represented by the case frame ~~
,."~;,,..

"subclass/superclass" (Figure 6.17), where the arc labeled "subclass" points f;f;;:S;
to the node that corresponds to the subclass and the arc labeled "superclass" t~
points to the node that corresponds to the superclass. ~,

~Using these case frames, we show in Figure 6.18, the representation that ~

John is a man (node Ml!) and that the class of men is a subclass of the
class of mammals (node M2!). It is important to notice that, from this
information alone, SNePS is not able to know that John is a mammal because
the "operational semantics" associated with these case frames is not part of
the network yet. The "operational semantics" can be specified through the
use of the connectives described in Section 6.3.4.

It is common to need to explicitly represent arbitrary relations in SNePS.
This can be done using the case frame "rel/argl/.../argn", where the arc
labeled "reI" points to the node that corresponds to the relation and the arc
labeled "argi" (1 ~ i ~ n) points to the node that corresponds to i-th argu-
ment of the relation (Figure 6.19). This case frame can be used to represent

6.3. SNEPS: A CASE STUDY 177

Figure 6.18: John is a man and men are mammals.

Figure 6.19: Case frame for a n-ary relation.

any relation, namely the membership and subset relations that we discussed
before (see Figure 6.20). The representational difference between the use of
the case frame of Figure 6.20 and the case frame presented in Figure 6.18 is
the fact that using the case frame of Figure 6.20, the membership relation
itself becomes a concept in the network, and thus something we can talk
about, whereas with the representation of Figure 6.18, the membership re-
lation is implicit in the structure of the arcs and thus cannot be referred by
SNePS.

We could also think of the representation shown in Figure 6.21 to represent

Figure 6.20: Alternative representation for "John is a man".

178 CHAPTER 6. SEMANTIC NETWORKS

M1!

0"
III

3
II)
~

Figure 6.21: Bad representation for "John is a man".

that "John is a man".6 This representation is a step backwards when com-
pared with the representation of Figure 6.18, since the membership to the
class of men is no longer a concept, but rather a relation between two nodes.
With the representation of Figure 6.21, we cannot talk about the class of
men nor about the relationship that John bears with it.

From this discussion, it may seem that the explicit representation of rela-
tions, since it corresponds to a more fine grained representation, should be
preferred over the representation of relations through case frames that do
not use the explicit concept of relation. You should be aware, however, that
a generalized use of the case frame "rel/arg1/ .../argn" for the representation
of relations has a negative effect on the efficiency of the inference process
because the pattern matcher will be overloaded with information (basically,
all the nodes that represent relations can match with a generic relation).

The idea behind the "rel/arg1/ .../argn" case frame can be used to represent
instances of verbs, in the same way as is presented in Figure 6.15. In Fig-
ure 6.22, we represent that "John knows that Mary believes that whales are
fish" (node M3!) and that "Moby Dick is a whale" (node M4!). Besides the
case frames member/class and subclass/superclass, we use the case frame
agen~/verb/object to represent instances of verbs. Notice that only nodes
M3 and M4 are asserted in the network (their identifier is followed by"!").

The distinction between asserted and non-asserted nodes enables to under-
stand which nodes are believed by SNePS (the asserted nodes) and which
nodes are part of the structure of propositions, but not believed by SNePS.
The distinction between asserted and non-asserted nodes is made by the user
of SNePS and also by the inference system while deducing new information. 7

61 am grateful to Antonio Leitao for suggesting this representation.
71n fact, the distinction between asserted and non-asserted nodes is more complex

because it resorts to an ATMS-based context shadowing operations.

6.3. SNEPS: A CASE STUDY 179

Figure 6.22: Example of representation in SNePS.

,-

180 CHAPTER 6. SEMANTIC NETWORKS

With this network, if we ask SNePS whether "whales are fish" it answers "I
don't know", but if we ask whether" John knows that Mary believes that
whales are fish", it answers "yes".

The meaning of the nodes labeled "John" "Mary" "whale" "fish" "be-
, , , ,

lieve", and "Moby Dick" will be defined by the additional network structure
that will be connected to them.

6.3.4 Logical connectives in SNePS

An important aspect regarding the research in semantic networks, concerns
the study of how to represent relations between propositions. One of the
obvious alternatives is to use the traditional logical connectives, which has
the advantage of having the guarantee that the inferences produced are solid,
well known, and well understood. However, the choice of logical connectives
depends on other aspects, such as the ease of representation, the ease of
proving properties about the system, the proof of equivalence with other
logical systems, and so on. If the number of logical connectives is small,
it is easy to prove properties about the system and it is difficult to prove
properties in the system; if the number of logical connectives is large, the
opposite holds.

In the choice of the logical connectives to use in SNePS, the main guidelines
were an adequate expressive power and the naturalness of the representation.
As [Shapiro 7gb] argues, "the set of connectives used in traditional first-order
logic presents some disadvantages from the network representation point of
view. ... the main disadvantage relates to the fact that all the connectives,
except negation, are binary and therefore expressing sentences about sets of
propositions becomes cumbersome. ... having to choose between (aV/3)V/
and a V (/3V /) is unnecessary and unfairly distinguishes one of the disjuncts" .

On the other hand, suppose, for example, that given three propositions, a, {3
and /, we wanted to express the fact that exactly one of them is true. Using
the traditional logical connectives this would be done as (((a !\ ,/3) !\ '/)
V ((,a!\ /3) !\ 'I)) V ((,a!\ ,/3) !\ /),8 which is a lengthy and difficult to
read wff. Sentences involving more than three propositions (e.g., exactly
five out of ten propositions are true) are even more complicated. Since this
type of sentence often occurs in some of the intended applications of SNePS,

8 Again, in each of the conjunctions we had to make the choice of associations because

logical connectives are binary.

6.3. SNEPS: A CASE STUDY 181
~

the need was felt to find a more powerful and simpler way of defining such
sentences (for a detailed discussion about the disadvantages of the standard
connectives refer to [Shapiro 7gb]).

~ "'

Non-standard connectives ~$c!~

rR!:;f~:74~
The problems that we just outlined, lead Stuart Shapiro to the definition of ~;;E~;~f~
non-standard connectives [Shapiro 7gb]. All logical connectives in SNePS ~~~,
take sets of propositions (represented by nodes) as arguments. The following ~~fi,
connectives are defined in SNePS: ~

1. And-or, represented by)X. The proposition

n)X{ {aI, ..., an}

asserts that at least i and" at most j of its n arguments (propositions)
are true. In this way:

. I)XI{a} represents the assertion of aj

. I)Xg{a} represents the negation of a, -,aj

. 2)X~{ a, fJ} represents the conjunction of a and fJ, a 1\ fJ;

. 2)X~{ a, fJ} represents the disjunction of a and fJ, a V fJ.

We have to consider now to represent a proposition whose main connec-
tive is an and-or. In order to do so, we have to address two questions:
(1) How the individual propositions that compose the and-or are rep-
resented in the proposition that corresponds to the and-or; (2) How
do we represent the and-or connective. The first question is answered
by the introduction of case frames es defined in Section 6.2. A propo-
sition corresponding to an and-or is represented by a structured node
that relates the nodes corresponding to the individual propositions. In
SNePS, there are pre-defined arcs that emanate from the node that
corresponds to the and-or, and whose semantics is known by the in-
ference engine. The second question is answered by the kinds of arcs
that emanate from this structured node: arcs labeled arg pointing to
the nodes corresponding to the propositions that are the arguments of
the and-or, and arcs labeled min and max pointing to the parameters
i and j, respectively. In Figure 6.23 we show the representation of
and-or in SNePS. In this figure, a triangle below a node represents the
network structure of the proposition that is written below it.

182 CHAPTER 6. SEMANTIC NETWORKS

. min max.
I J

a, an

Figure 6.23: Representation ofnxx1 {ai, ..., on}.

j threshmax thresh I

a, an

Figure 6.24: Representation of n8i{01, ..., on}.

2. Thresh, represented by 8. The proposition

neJ;{Ol, ..., on}

means that either fewer than i or more than j of its n arguments are
true. The parameter j may be omitted, in which case, it defaults to
n-1. Ifi = 1 andj is omitted, n81{01, ..., on} states that 01, ...,
on are equivalent.

Similarly to what we did for and-or, the representation of a propo-
sition whose main connective is thresh is done by a structured node
with arcs labeled arg pointing to the nodes that correspond to the
arguments of the propositio, with an arc labeled thresh pointing to
the parameter i of the connective, and with an arc labeled threshmax
pointing to the parameter j of the connective. In Figure 6.24 we show
the representation of thresh in SNePS.

3. And-entailment, represented by /\=>. The proposition

--'-' .

6.3. SNEPS: A CASE STUDY 183

R'" R..
a1 an Y1 Ym

Figure 6.25: Representation of {aI, a2, ..., an} /\~ {'Yl, 'Y2, ..., 'Ym} .

{aI, a2, ..., an} /\~ {'Yl, 'Y2, ..., 'Ym}

means that the conjunction of the antecedents aI, a2, ..., an entails
the conjunction of the consequents, 'Yl, 'Y2, ..., 'Ym.

And-entailment i5 represented by a node, with arcs labeled &ant point-
ing to the nodes corresponding to the antecedents of the entailment
and with arcs labeled cq pointing to the nodes corresponding to the
consequents of the entailment (Figure 6.25).

4. Or-entailment, represented by v~. The proposition

{aI, a2, ..., an} V~ {'Yl, 'Y2, ..., 'Ym}

states that the disjunction of the antecedents aI, a2, ..., an entails
the conjunction of the consequents 'Yl, 'Y2, ..., 'Ym.

Or-entailment is represented by a node with arcs labeled ant, pointing
to the nodes corresponding to the antecedents, and arcs labeled cq
pointing to the nodes corresponding to the consequents (Figure 6.26).

5. Numerical entailment, represented by i~. The proposition

{aI, a2, ..., an} i~ {'Yl, 'Y2, ..., 'Ym}

states that the conjunction of i antecedents aI, a2, ..., an entails
the conjunction of the consequents 'Yl, 'Y2, ..., 'Ym. Notice that nu-
merical entailment generalizes both and-entailment (if i = n) and or-
entailment (if i = 1), so, in fact, only numerical entailment is needed.

-

184 CHAPTER 6. SEMANTIC NETWORKS

~

Zoo'Ro.
a1 an Y1 Ym

Figure 6.26: Representation of {aI, a2, ..., an} V~ {'YI, 'Y2, ..., 'Ym}.

i

Ro.. Ro.
a1 an Y1 Ym

Figure 6.27: Representation of {aI, a2, ..., an} i~ {'YI, 'Y2, ..., 'Ym} .

However, since the most commonly used statements involve asser-
tions corresponding to either or-entailment or and-entailment, these
are kept.

Numerical entailment is represented by a node with arcs labeled &ant
pointing to the nodes corresponding to the antecedents of the entail-
ment, an arc labeled thresh pointing to the parameter i, and arcs
labeled cq pointing to the nodes corresponding to the consequents
(Figure 6.27).

Quantifiers in SNePS

There are three quantifiers in SNePS, all of them applicable to a set of
variables:

1. Universal quantifier, represented by 'v'. The proposition

'v'x[a(x)]

.

6.3. SNEPS: A CASE STUDY 185

means that every constant that can replace x makes the proposition
o(x) true.

The universal quantifier is represented in SNePS by an arc labeled
f orall that links the node where the quantification is stated to the
nodes that correspond to the quantified variables.

2. The existential quantifier, is not implemented in the current version of
SNePS. In a previous version, it was represented by 3. The proposition

3x[o(x)]

means that there is at least one constant that can replace x and make
the proposition o(x) true. The existential quantifier was represented
in SNePS by an arc labeled exists that links the node where the
quantification is stated to the nodes that correspond to the quantified
variables.

To represent the effects of the existential quantifier, the current ver-
sion of SNePS makes use of Skolem functions: whenever an existen-
tially quantified variable y is bound within the scope of a universally
quantified variable x, y can be replaced by the skolem function f(x),
provide that f is not used anywhere else. In this case, the existential
quantifier that binds y can be eliminated.

3. Numerical quantifier, represented by n~. The proposition

n~ X [{Ol(X), ..., Ok (x) : {3(x)}]

means that there are n constants that when replaced by x make 01 (x)
!\ ... !\ Ok (x) true. However, at least i and at most j of them also
satisfy {3(x).
Numerical quantifier is represented by an arc labeled nexists that
links the node where the quantification is made to the nodes that cor-
respond to the quantified variables. From the node where the quan-
tification is made, there are also arcs labeled etot, emax and emin,
pointing, respectively, to n, i and j. There are also arcs labeled &ant
pointing to the nodes that correspond to the antecedents (01 (x), ...,
Ok (x)) and an arc labeled cq that points to the consequent ({3(x)).

Numerical quantification enables to represent propositions such as
"there are exactly two numbers such that x2 + 4 = 4x"; "there are
at least two numbers such that z + 2 < 6".

~IIIII.

186 CHAPTER 6. SEMANTIC NETWORKS

Another advantage of the numerical quantifier is to allow reasoning
by exclusion. For example, knowing that every person has exactly one
mother and that Betty is John's mother, we may conclude that Mary
is not John's mother.

A node that represents a proposition and dominates one or more pattern
nodes, may have arcs labeled forall or nexists pointing to one or more
nodes. However, there is the restriction that only one of these types of arcs
may emanate from a single node (so that an ordering may be imposed in the
use of quantification). Therefore, if more that one quantifier is to be used
node embedding is required.

6.3.5 Putting it all together

In this section we discuss the representation in SNePS involving both user-
defined case frames and the pre-defined case frames used to represent logical
connectives and quantifiers. Every node in SNePS that corresponds to a
connective or that contains a quantifier is called a rule node or just a rule.
We will use the case frames described in Section 6.3.3.

We will start by defining rules that specify some of the properties of the
membership and subclass relations. The first statement that we represent
asserts that if an element is member of a class, then it is also member of a
superclass of that class. Using the non-standard connectives, this statement
can be expressed as follows:

'v'(m, C1, C2){member(m, C1), subclass(C1, C2)}/\ ~ {member(m, C2)}.

The representation of this statement in SNePS is shown in Figure 6.28.
This figure makes use of both user-defined case frames (member/class and
subclass/superclass) and system-defined case fames to represent the rule.
Node M4! states that for all Vi, V2, and V3, if Vi is a member of class V2
and V2 is a subclass of V3, then Vi is a member of class V3.

If we intend to use the class-subclass relation we should also state that if a
class is a subclass of another class, which, in turn, is a subclass of a third
class, then the first class is a subclass of the third class. This is a statement
of the transitivity relationship that holds between the class-subclass relation.
This statement can be expressed as:

'v'(C1, C2, C3){ subclass(C1, C2), subclass(C2, C3)}/\ ~ {subclass(C1, C3)}.

6.3. SNEPS: A CASE STUDY 187

Figure 6.28: Thansitivity of membership.

subclass

Figure 6.29: Thansitivity of subclass.

-

188 CHAPTER 6. SEMANTIC NETWORKS

The representation of this statement is SNePS is shown in Figure 6.29.

With these two rules and the network shown in Figure 6.18, SNePS is now
capable of knowing that John is a mammal.

If we adopt the previous representation for asserting the transitivity of a
relation, we would have to write similar rules for all the relations (case
frames) represented in the network that satisfy the transitivity relation. An
alternative way of representing the transitivity of the subclass relation is to
explicitly state that the relation is transitive, and to have a rule that states
what it means for a relation to be transitive (this representation is shown in
Figure 6.30):

V(R) {Transitive(R)}
v~
{V(C1, C2, C3)[{R(C1, C2), R(C2, C3)}A => {(R(C1, C3)}]}

Stating that a relation is transitive, requires the possibility of talking about
the relation. Since the case frames member/class and subclass/superclass
do not allow to explicitly talk about the relation involved, the approach used

- in Figure 6.30 requires the use of the case frame rel/arg1/ .../argn.

Notice that, due to the fact that, in SNePS nodes represent propositions
(among other things), we are able to write propositions about propositions.
In this way, the logic underlying the reasoning of SNePS is a higher-order
logic. The advantage of this second approach of representation is that it can
be applied to any transitive relation. Thus, a SNePS's user, after defining
the network structure of Figure 6.30, just has to state that a certain relation
is transitive to obtain the desired behavior. On the other hand, this second
approach requires additional work from the inference system.

6.3.6 Inference in SNePS

There are two types of inference in SNePS, node-based inference and path-
based inference.

Node-based inference

Node-based inference allows a node or a structure of nodes to be inferred
from the existence of instances of patterns of nodes. Node-based inference

I

6.3. SNEPS: A CASE STUDY 189

reI

Figure 6.30: Meaning of a transitive relation.

.-

190 CHAPTER 6. SEMANTIC NETWORKS

relies on a pattern matching operation that takes a node (either a constant
node or a pattern node) and locates the nodes in the network that match
with it.

The SNePS inference system (in what concerns node-based inference) has
the following characteristics: it allows both backward and forward inference
to be performed; every rule in the network may be either used in backward
or forward inference, or both; when a rule is used it is activated and re-
mains active until explicitly de-activated by the user; the activated rules are
assembled into a set of processes, called an active connection graph (acg)
[McKay and Shapiro 81], which carry out the inferences; the acg also stores
all the results generated by the activated rules; if during some deduction,
the inference system needs some of the rules activated during a previous
deduction, it uses their results directly instead of re-deriving them.

There are two main concepts involved in the implementation of the inference
package, pattern-matching and the use of procedural (or active) versions of
rules:

. The pattern-matching process is given a piece of the network (either to
be deduced in backward inference or to be added in forward inference)
and locates relevant rules in the network [Shapiro 77];

. The rules located by the pattern matcher are then compiled into a set
of processes which are given to a multi-processing system for execution.
The multi-processing system used by SNePS, called MULTI [McKay
and Shapiro 80] is a LISP-based system mainly consisting of a simple
evaluator, a scheduler, and system primitives.

In node-based inference SNePS's inference engine looks for nodes that cor-
respond to propositions, using the non-standard connectives, and matches
nodes against components of these propositions.

For example, from the network of Figure 6.31, Node M1! matches node
M3 with the substitution {V1/John, V2/man} and node M2! matches node
M4 with the substitution {V2/man, V3/mammal} (the nodes that match are
linked, in Figure 6.31, by a dashed line). This allows the inference of an
instance of the consequent of proposition represented by node M6! (M5) with
the substitution {V1/ John, V3/mammal}, this new node, M7! is represented
as shadowed in Figure 6.31.

Node-based inference may either work in backward inference mode, trying

6.3. SNEPS: A CASE STUDY 191

I I I "
I I I II I ,
1 I I I
I I I " I :

I " I I
I I I , 1 I

'f :

~~~ !\~ i~ I

\!'\!'

member

Figure 6.31: Network used in node-based inference.



-

!,
.I.

192 CHAPTER 6. SEMANTIC NETWORKS

to prove instances of consequents, or in forward inference mode, trying to
find consequences of antecedents.

Path-based inference

Path-based inference allows an arc, or a path of arcs, between to nodes to
be inferred, from the existence of a specified path of arcs between the same
two nodes.

The result obtained in the previous section could have been obtained in a
rather different way: Suppose that we have nodes Mi! and M2! of Figure 6.31

I that we tell SNePS that whenever the sequence of arcs

I member-/class/subclass-/superclass
.

is found from a node x to a node y then it can infer the existence of the
I sequence of arcs member-/class from node x to node y; under these cir-

cumstances SNePS could obtain the same results as before.

I However, the way this result is obtained is very different from the previous
derivation: rather than relying on the existence of instances of patterns of
nodes we rely on the existence of a sequence of arcs (which we call a path)

I from a node to another, this is path-based inference [Shapiro 78], [Srihari

81].

I 6.3.7 Foundations of the reasoning in SNePS

I The reasoning of SNePS is ruled by a logic called SWM*9 that was developed
to support an ATMS-like system. The interesting aspect of supporting an
ATMS-like system in SWM* is that the dependencies among propositions

I are computed by the system itself rather than having to force the user (or
an outside system) to do this, as in many existing systems.

SWM* is loosely based on relevance logic [Anderson and Belnap 75]. The
I main features of relevance logic used in SWM* are the association of each

wff with (1) a set containing all hypotheses (non-derived propositions) that

I 9 After Shapiro, Wand, and Martins. The SWM* system is a successor to the SWM

system [Martins and Shapiro 83, 88], which, in turn, is a successor to the system of [Shapiro
and Wand 76].

I

I

!



-

6.3. SNEPS: A CASE STUDY 193

were really used in its derivation (the origin set) and (2) the statement of
the rules of inference taking origin sets into account, specifying what should
be the origin set of the resulting wff.

Another important issue in systems capable of revising their beliefs consists
in the recording of the conditions under which contradictions may occur.
This is important, because once the BRS discovers that a given set is incon-
sistent, it may not want to consider it again, and even if it wants to consider
it, it wants to keep in mind that it is dealing with an inconsistent set.

Knowledge states

A knowledge state, written [[KB, KIS]], is a pair that contains a knowledge
base (KB) and a set of known inconsistent sets (KIS). The knowledge base
is a set of supported wffs (propositions, written as wffs, together with an
indication of dependencies between that particular wff and other wffs in the
knowledge base); the known inconsistent sets is a set containing those sets
of wffs in the KB that are known to be inconsistent.1o

A knowledge state is intended to represent the knowledge that we have at
a particular moment: K B contains all the propositions that were received
from the outside world up to that moment and the subset of their conse-
quences that was derived so far; and K I S contains information about all
the sets that have been discovered to be inconsistent. The knowledge base
does not necessarily contain all the consequences that can be drawn from
the propositions it contains. It may even happen that the knowledge base is
inconsistent but that the inconsistency has not been discovered. Whenever
new inconsistencies are detected, they are recorded in the known inconsistent
sets.

The knowledge base is a set of supported wffs. Supported wffs are of the
form <A, 'T, Q>, where A is a wff with origin tag 'T and origin set Q. The pair
('T, Q) is called the support of the supported wff <A, 'T, Q>. The support of
a supported wff is associated with a particular derivation of its wff. There
are standard formation rules for wffs, and the language that they define is
denoted by.c. The origin tag indicates how the supported wff was placed

lOlt is important to distinguish between a set being inconsistent and a set being known
to be inconsistent. An inconsistent set is one from which a contradiction can be derived'I
a set known to be inconsistent is an inconsistent set from which a contradiction has been
derived.



194 CHAPTER 6. SEMANTIC NETWORKS

in the knowledge base (i.e., whether it was supplied by an outside system or
was generated during deduction). It is an element of the set {hyp, der, ext}:
hyp identifies hypotheses, der identifies normally derived wffs within SWM*,
and ext identifies special wffs whose origin set was extended. A supported
wff with ext origin tag has to be treated specially in order to avoid the
introduction of irrelevancies (for a discussion on this issue see [Martins and
Shapiro 88]). The origin set indicates the dependencies of the supported wff
on other wffs in the knowledge base. It is a set of hypotheses. The rules of
inference of SWM* guarantee that the origin set of a supported wff contains
all and only the hypotheses that were used in its derivation.

Some inference rules

The rules of inference of SWM* are grouped into two sets, pure logic rules
and computational rules. Pure logic rules allow the introduction of new
supported wffs into the knowledge base; computational rules update the
information about sets known to be inconsistent.

The rules of inference make use of a function (A) to compute the origin tag
of a supported wff resulting from the application of the rules of inference.
The origin tag of a derived proposition will be ext if the origin tag of any of
the propositions used in its derivation is ext, and will be der otherwise. The
function A is defined as:

A
(7 ~ ) = { ext if 71 =.ext or 72 = ext

1, 2 der otherwIse

1. Pure logic rules. These rules correspond to traditional inference rules.
They have the effect of adding new supported wffs to the K B. The
addition of new supported wffs to the K B may be done in two different
ways: a new supported wff is introduced from the outside (this is called
a hypothesis) or a supported wff is derived from other supported wffs
in the KB. Pure logic rules transform [[KB,KIS]] into [[KB',KIS]]
where KB c KB'. The following are some of the pure logic rules:

(a) Hypothesis (Hyp). Fl-om [[KB, KIS]] and any wffA E £, we may
infer [[KB U {<A, hyp, {A}>}, KIS]].
The wff A in <A, hyp, {A}> is called a hypothesis.

(b) Negation Introduction (-.1). This rule states that from the hy-
potheses underlying a contradiction we can conclude that the



6.3. SNEPS: A CASE STUDY 195

conjunction of any number of them must be false under the as-
sumption of the others.
From [[KB,KIS]], in which <AA..,A,T, aU{Hl'.'.' Hn}>E KB,
we may infer [[KB U {<..,(H1 A... A Hn), A(T, T), a>}, KIS]].

(c) Implication Introduction (-+1). From [[KB,KIS]], in which <a,
der, aU {H}>E KB, we may infer [[KBu {<H -+ C, der, a>},
KIS]].

(d) Implication Elimination (-+E). From [[KB,KIS]], in which <A,
Tl, al>E KB and <A -+ B,T2,a2>E KB, we may infer [[KBu
{<B, A(Tl, T2), 01 U a2>}, KIS]].

(e) And Introduction (AI). From [[KB, KIS]] in which <A, Tl, a>E
KB and <B, T2, a> E KB, we may infer [[KB U {<AAB, A(Tl,
T2), a>}, KIS]]; From [[KB, KIS]] in which <A, Tl, 01> E KB,
<B, T2, 02> E K B, and 01 # 02, we may infer [[K B u {<A
AB, ext, 01 U a2>}, KIS]].

(f) And Elimination (AE). From [[KB, KIS]] in which <AAB, T, a>E
KB, and T # ext, we may infer either [[KB U {<A, der, a>},
KIS]] or [[KBU{<B,der,a>},KIS]].

2. Computational rules. These rules are triggered upon the discovery
of inconsistent sets. They are obligatorily applied whenever a new
inconsistent set is discovered. When this happens a new set is added
to KIS. These rules transform [[K B, K I S]] into [[K B, K IS']] in which
KIS # KIS'.

(a) Updating of Inconsistent Sets (UIS). This rule is obligatorily ap-
plied whenever a new contradiction is detected.
From [[KB,KIS]] in which <A A ..,A,T,a>E KB, and (vs E
KIS)[s i a], - this condition guarantees that the set a had not
been discovered to be inconsistent - we must generate the knowl-
edge state [[KB, Min(KIS U {a})]], where Min is a function
that removes maximal sets.

(b) Derived Hypothesis (DH). This rule is obligatorily applied when
a supported wff is derived such that there is already a hypothesis
in the K B with the same wff and that hypothesis belongs to a
known inconsistent set.
Given [[KB,KIS]] in which <H,hyp,{H}>E KB, <H,T,a>E
KB, T # hyp, and (3s E KIS)[(H E s) and (Vr E KIS) [r i
((s - {H}) U a)]], - this means that the set (s - {H}) U a had



..- . . :. "-

'1lllllflr -.'111

196 CHAPTER 6. SEMANTIC NETWORKS

not been discovered to be inconsistent - then we must generate

the knowledge state [[KB, Min(KIS U{u : (3s E KIS)[(H E
sand U = (s - {H}) Uo) and (Vr E KIS)[r ~ u]]})]].

Derivability

We define derivability within SWM* (I-SWM.) as follows: Given [[KB, KIS]],
we write

[[KB, KIS]] I-SWM. [[KB', KIS']]

if and only if there is a non-empty sequence of rules of inference of SWM*
that transforms the knowledge state [[K B, K IS]] in the knowledge state

[[KB', KIS']].

The rules of inference of SWM* guarantee the following results involving
the derivability relation:

1. Every supported wff in the K B can be derived from a subset of other
supported wffs in the KB. Given [[KB,KIS]], (VF E KB) (36 c
K B) such that:

[[6,{}]] I-sWM. [[KB'U{F},KIS']].

2. The hypotheses in every known inconsistent set produce a contradic-
tion. Given [[KB,KIS]], Vs E KIS:ll

[[{ < H, hyp, {H} > : H E s}, {}]] I-SWM. [[KB' U {.L}, KIS']])].

Given a set of wffs (6 c 1:,) and a single wff (C E 1:,), we say that the single
wff is derivable from the set of wffs, written 6 I- C, if and only if,

[[{<H,hyp,{H}> : HE6},{}]] I-SWM. [[KBu{<C,r,o>},KIS]].

Contexts and Belief Spaces

As we said at the outset, among the propositions in the knowledge base,
there are some in which the system believes and there may be some others
in which the system does not believe. Inputs from the outside world or rea-
soning carried out by the system may lead to the detection of contradictions,

lIThe symbol 1. denotes a contradiction.



6.3. SNEPS: A CASE STUDY 197

in which case the system has to revise its beliefs in order to get rid of the
contradiction and to accommodate the new information.

Up to now, we have been concerned with the definition of the rules of rea-
soning of a system. In this section, we address the issues of defining the
beliefs of a system based on SWM*. The system we define is called MBR,
for Multiple Belief Reasoner.

We define a context to be a set of hypotheses. A context determines a belief
space, which is the set of all hypotheses defining the context and all the wffs
in K B that were derived exclusively from them. A belief space is represented
by« ([KB,KIS)],C », where ('v'H E C)[<H,hyp, {H}>E KB].

The belief space determined by a context is the subset of all the wffs existing
in the K B that were derived (according to the rules of inference of SWM*)
from the supported wffs corresponding to the hypotheses in the context. It
contains those wffs that have been derived in the K B among all possible
derivable wffs. The wffs in a belief space are characterized by the existence
of a supported wff in K B with an origin set that is contained in the context,
i.e.,

«[[KB,KIS]],C »= {F : (3 < F,r,a >E KB) and (a C C)}.

Any operation performed by MBR (query, addition, etc.) is associated with
a context. We refer to the context under consideration, i.e., the context
associated with the operation currently being performed, as the current
context. While the operation is being carried out, the only propositions that
will be considered are the propositions in the belief space defined by the
current context. This belief space will be called the current belief space. A
proposition is said to be believed if it belongs to the current belief space.

MBR and SNePS

The concepts that we described about SWM* and MBR have been imple-
mented in SNePS. Every SNePS node that corresponds to a proposition is
associated with a support in SWM*'s sense. The whole SNePS network cor-
responds to the K B in SWM*'s sense and a context is any set of hypotheses
(nodes that were directly introduced by the user).

The interaction between a user and SNePS can be reduced to three main
kinds of operations:



-

198 CHAPTER 6. SEMANTIC NETWORKS

1. Assert hypothesis H. This operation generates the creation of a node in
the network corresponding to the hypothesis H, <H, hyp, {H}> and
also adds the hypothesis H to the current context.

The effect of this operation can be expressed as:

Assert«< [[KB,KIS]],C », H) =
«[[KBu{<H,hyp,{H}>},KIS]], Cu{H}».

2. Deduce F. This operation originates backward inference in the network
(K B) trying to deduce the node corresponding to the wff F. The effect
of this operation depends on the contents of K B and on the wff F,
but the following things can happen:

(a) New nodes (corresponding to supported wffs) are added to the
knowledge base. K B is transformed into K B', where K B C
KB' c Cn(KB), where Cn(KB) is the set of all logical conse-
quences of KB, it is defined as Cn(KB) = {F : (3[[KB*, KIS*]])
[F E KB* and [[KB,KIS]] I-SWM* [[KB*,KIS*]]]}.
It may happen that <F, T, a>E K B' and this is the desired result.
This will happen whenever there are relevant rules in the network
that allow the derivation of F.

(b) During the inference originated by this operation new contradic-
tions may be discovered, and, in this case, K ISis updated.

(c) It may be discovered that the current context is inconsistent and
that it should be revised (see next section).

The effect of this operation can be expressed as:

Deduce«< [[KB,KIS]],C », F) = «[[KB',KIS']],C' »,

where KB c KB', KIS c KIS', and C' c C.

3. Add hypothesis H. This operation originates forward inference in the
network (K B) trying to deduce consequences of the node correspond-
ing to the hypothesis H. The effect of this operation depends on the
contents of K B and on the hypothesis H, but the following things
may happen:

(a) New supported wffs are added to the knowledge base. KB is
transformed into KB', where KB c KB' c Cn(KB U <H, hyp,
{H}». In this case <H, hyp, {H}>E KB'.



6.3. SNEPS: A CASE STUDY 199

(b) During the inference originated by this operation new contradic-
tions may be discovered, and, in this case, K ISis updated.

(c) It may be discovered that the current context is inconsistent and
that it should be revised (see next section).

The effect of this operation can be expressed as:

Add«< [[KB,KISJ],C», H) =
«[[KB'U{<H,hyp,{H}>},KIS']],C'u{H} »,

where KB c KB', KIS c KIS', and C' c C.
This operation is completed when no more information can be deduced
from H or its consequences.

Detection of contradictions

When a contradiction is detected within SNePS (and MBR) one of two
things can happen, depending on whether the contradiction belongs to the
current belief space or belongs to a belief space strictly containing the current
belief space. The main difference between them is that the former may
require changes in the current context and allows the deduction of new
supported wffs, while the latter leaves this context unchanged and does not
allow the addition of new wffs to the knowledge base.

Suppose that the current belief space is « [[K B, K IS]], C » and that K B
contains the supported wff <A t\ -,A, r, 0>. Suppose, furthermore, that 0
does not contain any member of KIS (('lis E KIS)[s <t 0]), meaning that
this contradiction had not been discovered yet. In this case, one of two
things will happen:

1. The contradictory wff does not belong to the CUT'1'ent belief space. This
means that 0 <t C. In this case, the contradiction is recorded (through
the application of VIS), but nothing more happens. The effect of
doing so is to record that the set of hypotheses 0 is now known to be
inconsistent.

2. The contradictory wff belongs to the CUT'1'ent belief space. This means
that 0 C C. In this case, VIS is applied, resulting in the updating
of the sets known to be inconsistent. The rule of -,1 can be applied
(generating new supported wffs in the knowledge base) and a revision



200 CHAPTER 6. SEMANTIC NETWORKS

of beliefs should be performed if we want to work within a consistent
belief space.

This revision of beliefs is accomplished by removing hypothesis from
the current context. Since MBR only considers wffs in the current
belief space, the removal of hypothesis from the current context en-
tails the removal of wffs from the current belief space. The resolution
of a contradiction in the current belief space entails a contraction in
Gardenfors and Makinson's sense [Gardenfors and Makinson 1988].
This contraction is performed through a family of functions Rji, in-
dexed by the wff, H, to be removed:

Rji«< [[KB,KIS]],C ») = «[[KB,KIS]],C- {H}».

From SWM*'s standpoint, after the discovery of the inconsistent set Q
(Q C C), the removal of anyone of the hypotheses in Q is guaranteed
to remove this contradiction from the current belief space and restore
unknown inconsistency to the current context if it was not known to
be inconsistent before discovery of this contradiction.

Examples

In this section we show two examples of the resasoning followed by SNePS,
using an interface called SNePSLOG [Shapiro, McKay, Martins, and Mor-
gado 81], [Matos and Martins 91]. SNePSLOG allows the use of logic for
the interaction with SNePS (all the input and output is done trough log-
ical formulas) and SNePSLOG translates the logical formulas to and fromSNePS nodes. .

Example 1: Flying horses12

Suppose that we begin with the knowledge state [[{}, {}]], and that we assert
the following hypotheses.13

swff1: < White(Pegasus),hyp,{wff1} >
swff2: < Horse(Tornado),hyp,{wff2} >

121 am gratefull for Maria R. Cravo for contributing this example.
13We use the notation swffl: <White(Pegasus),hyp,{wffl}> to denote that

<White(Pegasus),hyp,{White(Pegasus)}> is a supported wff called swffl and that
the wfJ White(Pegasus) is represented by wffl.



6.3. SNEPS: A CASE STUDY 201

sw113: < V(x)[Horse(x) -+ -,Plies(x)],hyp, {wI13} >
sw114: < V(x) [WingedHorse(x) -+ Plies(x)], hyp, {wI14} >
sw115: < V(x) [WingedHorse(x) -+ Horse(x)],hYP,{wI15} >
sw116: < V(x) [WingedHorse(x) -+ HasWings(x)], hyp, {wI16} >

At this point, our knowledge state is:

U{swl 11, swl 12, sw113, swl 14, swl 15, swl 16}, {}]].

And the current belief space is:

« U{ swill, swl 12, swl 13, swl 14, swl 15, swl 16}, {}]],
{wi 11, wi 12, wi 13, wi 14, wi 15, wi 16} ».

Suppose, that we add the following hypothesis (this originates forward in-
ference, trying to deduce the consequences of WingedHorse(Pegasus)):

sw117: < WingedHorse(Pegasus),hyp,{wI17} >

In the current belief space, we can derive sw I 18, sw I 19, and sw 1110:

swl 18: < -,Plies(Pegasus), der, {wi 13, wi 15, wi 17} >
sw119: < Plies(Pegasus),der,{wI14,wI17} >
swl 110: < Plies(Pegasus) A -,Plies(Pegasus), ext,

{wlf3,wI14,wI15,wI17} >

We thus discover that the set {wi 13, wi I 4, wi 15, wi 17} is inconsistent.
When this happens, the rule of VIS is applied, resulting in the following
updated knowledge state:

[[{swill, swl 12, swl 13, swl 14, swl 15, sw116, swl 17, sw118, swl 19,
swl lID}, {{wi 13, wi 14, wi 15, wi 17} }]].

We should revise the system's beliefs by removing from the current context
at least one hypothesis from the set {wi 13, wi I 4, wi 15, wi 17}. The most
natural decision would be to drop the hypothesis that V(x) [WingedH orse(x)
-+ Horse(x)], and to consider the belief space:



202 CHAPTER 6. SEMANTIC NETWORKS

« [[{swIll, swff2, swff3, swff4, swff5, swff6, swff7, swff8,

swf f9, swf flO}, {{ wf f3, wf f4, wf f5, wf f7} }]],
{wf fl, wf f2, wf f3, wf f4, wf f6, wf f7} ».

Example 2: The Russell set14

Suppose we have a knowledge state containing only one hypothesis, which
states that there is a set, 8, that contains all the sets that are not members
of themselves:

[[{ < V(x) [(-,(x Ex) -t X E 8) A (x E 8 -t -,(x EX))], hyp, {will} >, {}]].

If we add the following hypothesis to the current belief space

swff2: < 8 E 8,hyp, {wff2} >

we can generate the supported wff sw f f3, using the rule of universal elimi-
nation:15

swff3: < (-,(8 E 8) -t 8 E 8) 1\ (8 E 8 -t -,(8 E 8)),der, {will} >

Now, we can derive the following:

swff4: < 8 E 8 -t -,(8 E 8),der, {will} >
swff5: <-,(8E8),der,{wffl,wff2}>
swff6: < (8 E 8) A -,(8 E 8),ext,{wffl,wff2} >

At this point, a contradiction is detected (sw f f6), triggering the application
of VIS, which produces the knowledge state:

[[{swf fl, swf f2, swf f3, swf f4, swff5, swf f6}, {{wf fl, wff2}}]]

We can apply the rule of -,1 to sw f f6 to infer sw f f7:

swff7: < -'(8 E 8),ext, {will} >

We now revise the system's beliefs by applying the following contraction:

141 am gratefull for Stuart C. Shapiro for contributing this example.
15This rule was not discussed in this paper, but its use is obvious (see [Martins and

Shapiro 1988]).



6.4. OTHER KINDS OF SEMANTIC NETWORKS 203

R~ff2«< [[{swill, swff2, swff3, swff4, swff5, swff6, swff7},
{{wffl,wff2}}]], {wffl,wff2} ») =

« [[{swf fl, swff2, swff3, swf f4, swff5, swf f6, swff7},
{{wffl,wff2}}]], {wffl}»

We can perform further reasoning, generating sw f f8 by AE applied to
swff3; swff9 by MP applied to swff7 and swff8; and swfflO by AI
applied to sw f f7 and sw f f9:

swff8: < -,(B E B) -+ B E B,der, {will} >
swff9: <BEB,ext,{wffl}>
swfflO: < BE B A -,(B E B), ext, {will} >

Again, UIS is applied to sw f fl0, resulting in the knowledge state:

[[{swill, swff2, swff3, swf f4, swf f5, swff6, swf f7, swf f8,
swff9, swf flO}, {{wffl} }]].

If further reasoning is to be performed in a consistent belief space, then
wf fl (which is itself inconsistent) must be removed from the current con-
text.

6.3.8 Conclusions

I To be added. I

6.4 Other kinds of semantic networks

6.4.1 Semantic primitives

Associated with each representational formalism there is the problem of
deciding the vocabulary to be used in the formalism. For example, if we use
logic, we have to decide the names of the predicates, functions, and constants
to use; if we use SNePS we have to decide the case frames to adopt for our

representation.

The research in semantic primitives addresses this problem. We can define a
semantic primitive as a representational symbol that is used without defini-



-

6.8. EXERCISES 211

~~~~~--.!~{~~~~
Figure 6.38: Impossible representation in SNePS.

I understand
* A nostril is a part of a nose

I understand
* A professor is a teacher

I understand
* A teacher is a person

I understand
* Is a nostril part of a professor

Yes
* A person is a living-creature

I understand
* Is a nostril part of a living-creature

Sometimes

3. Woods introduces the distinction between assertional and structural
arcs. Explain the meaning of each of these types of arcs and provide
networks that use each one of them.

4. Consider the alternative representations for class membership shown
in Figures 6.16 and 6.18.

(a) Discuss the advantages and drawbacks of each of them in what
respects the expressive power of the representation.

(b) Discuss the advantages and drawbacks of each of them regarding
the possibility of defining rules that define the properties of the
membership relation.

5. SNePS does not allow the representation shown in Figure 6.38 for the
statement "Tweety is a bird". Explain the reason for this decision.

6. Explain the difference between the representations of figures 6.21 and
6.38. Why is the representation of Figure 6.21 legal?

212 CHAPTER 6. SEMANTIC NETWORKS

7. What does 2::a:x:1 {a, {3} represent?

8. What does n::a:x:8 {aI, ..., an} represent?

9. Using SNePS, represent, in a graphical form, the following statements:
Anna knows that John bought a dog. The dog is a German Shepherd.
John paid 300 dollars for the dog. Anna also knows that Stu sold his
dog. Anna believes that John bought Stu's dog.

10. Using SNePS, represent, in a graphical form, the following statements:
John and Mary are lawyers. Charles believes that all the lawyers are
rich. Charles knows John's address but he does not know that he and
Mary live together.

11. Using SNePS, represent, in a graphical form, the following statements:
John is a professor and earns 50,000 dollars a year. His friends believe
that he earns much more. They do not know that he earns as much
as a police officer.

12. Represent in SNePS the concept of a reflexive relation.

13. Represent in SNePS the concept of a symmetric relation.

14. Represent in SNePS the concept of an equivalence relation.

