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REASONING ABOUT KNOWLEDGE AND ACTION

Robert C. Moore
Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Abstract

This paper discusses the problems of representing and
reasoning with information about knowledge and action. The
first section discusses the importance of having systems that
understand the concept of knowledge, and how knowledge is
related to action. Section 2 points out some of the special problems
that are involved in reasoning about knowledge, and section 3
presents a logic of knowledge based on the idea of possible worlds.
Section 4 integrates this with a logic of actions and gives an
example of reasoning in the combined system. Section 5 makes
some concluding comments.

1. [ntroduction

One of the most important concepts an intelligent system needs
to understand is the concept of knowledge. Al systems need to
understand what knowledge they and the systems or people they
interact with have, what knowledge is needed to achieve
particular goals, and how that knowledge can be obtained. This
paper develops a formalism that provides a framework for stating
and solving problems like these. For example, suppose that there
is a safe that John wants to open. The common sense inferences
that we would like to make might include:

If John knows the combination, he can immediately open
the safe.

If jJohn does not know the combination, he cannot
immediately open the safe.

If John knows where the combination is written, he can
read the combination and then open the safe.

In thinking about this example, consider how intimately the
concept of knowledge is tied up with action. Reasoning about
knowledge alone is of limited value. We may want to conclude
from the fact that John knows A and B that he must also know C
and D, but the real importance of such information is usually that
it tells us something about what John can do or is likely to do. A
major goal of my research has been to work out some of the
interactions of knowing and doing.

That this area has received little attention in Al is somewhat
surprising. It is frequently stated that good interactive Al
programs will require good models of the people they are
communicating with. Surely, one of the most important aspects of
a model of another person is a model of what he knows. The
only serious work on these problems in- Al which I am aware of is
a brief disscussion in McCarthy and Hayes (1969), and some more
recent unpublished writings of McCarthy. In philosophy there is
a substantial literature on the logic of knowledge and belief. A
good introduction to this is Hintikka (1962) and papers by Quine,
Kaplan, and Hintikka in Linsky (1971). Many of the ideas I wiil
use come from these papers.

In representing facts about knowledge and actions, I will use
first-order predicate calculus, a practice which is currently
unfashionable. It seems to be widely believed that use of

predicate calculus necessarily leads to inefficient reasoning and
information retrieval programs. I believe that this is an over-
reaction to earlier attempts to build domain-independent theorem
provers based on resolution. More recent research, including my
own M.S. thesis (Moore, 1975), suggests that predicate calculus can
be treated in a more natural manner than resolution and
combined with domain-dependent control information for greater
effictency. Furthermore, the problems of reasoning about
knowledge seem to require the full ability to handle quantifiers
and logical connectives which only predicate calculus posseses.

Section 2 of this paper attempts to bring out some of the
special problems involved in reasoning about knowledge. Section
3 presents a formalism which I believe solves these problems, and
Section 4 integrates this with a formatism for actions. Section 5
makes some concluding comments.

2. Problems in Reasoning about Knowledge

Reasoning about knowledge presents special difficulties. It
turns out that we cannot treat "know" as just another relation. If
we can represent "Blockl is on Block2” by On(Blockl Block2), we
might be tempted to represent “John knows that P" simply by
Know(John,P). This approach glosses over a number of problems.
We might be suspicious from the first, since P is not the name of
an ob ject but is rather a sentence (or proposition). The semantics
of predicate calculus forbid the arbitrary intermingling of
sentences and terms for good reason. For one thing, the second
argument position of Know is a referentially opaque context.
Ordinarily in logic we can freely substitute an expression for one
that is extensionally equivalent (i.e, one that has the same referent
or truth value), without affecting the truth of the formula that
contains the expression. This is called referential transparency.
For example, if X + Y = 7 and X = 3, then 3 « ¥ s 7. This pattern
of reasoning is not valid with Know. We cannot infer from
Know{John,(X + Y = 7)) and X = 3 that Know(John,(3 + Y = 7)) is true,
since John might not know the value of X. '

One possible solution to this problem is to make th: - ~ond
argument of Know the name of a formula rather thant. - . ‘tla
jtself. This is essentially the same idea as Goedel kS
although it is not necessary to use such an obscure ¢ i as
the natural numbers. We won’t specify exactly how the encoding
is done, but simply use "P" to represent a term denoting the
formula P. The representation of "John knows that P" now
becomes Know(John,"P"). We are no longer in any danger of
infering Know({John,"P(A)") from Know(John,"P(B)") and A = B,
because A is not contained in "P(A)". Only the name of A, ie.
“A" is contained, and since "A" does not equal "B", there is no
problem.

There is, however, a more serious problem, the fact that
people can reason with their knowledge. We would expect 2
reasoning system to have built into it the ability to conclude B
from A and A > B. But if we treat Know as just an ordinary
predicate, we will have no reason to suppose that Know(John,"A")
and Know(John,"A > B") might suggest Know{John,"B"). This
problem is emphasised by the fact that there is no formal
connection between a formula and its name. The fact that we
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regard "P” as the name of P is entirely outside the system. To get
around thjs, it is necessary to re-axiomatize the rules of logic
within the system, eg. Va,pq(Know(a,"p > q") A Know(a,"p") 2
Know(s,"q™)). But if we hope to do automated reasoning, this
amounts to re-programming the deductive system in first-order
logic, and using the top-level inference routines as the interpreter.
When we consider the complexities of quantification and
matching, it seems likely that this would be an inefficient process.

A different idea which initially seems very appealing is to use
the multiple data-base capabilities of advanced Al languages to
set up a separate data base for each person whose knowledge we
have some information about. We then can record what we know
about his knowledge in that data base, and simulate his reasoning
by running our standard inference routines in that data base.
Tu« iea seems to have wide currency in Al circles, and I

“-ed it myself in an earlier paper (Moore, 1973).

~fortunately, it doesn’t work very well. It can handle simple
s.aiements of the form "John knows that P,” but more complicated
expressions cause trouble. Consider "John knows that P or John
knows that Q" We can’t represent this by simply adding “P or
Q" to the data base representing John's knowledge, because this
would mean "John knows that P or Q" - something quite
different. We could try setting up two data bases, DB1 and DB2,
add "P" to one and "Q" to the other, and then assert in the main
data base "DBI represents John's knowledge, or DB2 represents
John's knowledge." However, if we also wanted to assert "John

knows that C, or John knows that D, or John knows that E,” we-

would need six data bases to represent all the possibilites for
John'’s knowledge - one for each of the combinations A" and "C",
B" and "C", "A" and "D", etc. As we add more disjunctive
assertions, we get a combinatorial explosion in the number of data
bases.

We also have a problem in representing "John doesn’t know
that P.” We can’t add "not P" to john's data base, because this
would be asserting "John knows that not P,” and simply omitting
"P" from John's data base means that we don’t know whether
John knows that P. So it seems that what John doesn't know has
to be kept separate from what he does know. But there are
inferences that require looking at both. For example, if we have
"John doesnt know that P,” and "John knows that Q implies P,”
we might want to conclude that "John doesn’t know that Q," is
probably true. This is representative of a class of inferences that
the data base approach doesn’t capture. There seems to be a
fundamental problem in saying things about a person’s knowledge
that go beyond simply enumerating what he knows.

3. Reasoning about Knowledge via Possible Worlds

While there may be ways to directly attack the difficulties we
have been discussing, there is a way to avoid them entirely by
reformulating the problem in terms of possible worlds. When we
want to reason about someone’s knowledge, rather than talking
about what facts he knows, we will talk about which of the
various possible worlds might be, so far as he knows, the real
world. A person is never completely sure which possible world (or
possible state of the world) he is in, because his knowledge is
incomplete. We will be willing to conclude that a person knows a
particular fact, if the fact is true in all the worlds that are possible
according to what he knows. This idea is due to Hintikka (1969),
and is an adaptation of the semantics for modal logic developed
chiefly by Kripke (1963). '

Hintikka uses these ideas about possible worlds to provide a
.model theory for a modal logic of knowledge. In order to use this
theory directly for reasoning, we will axiomatize it in first-order
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logic. To do this, we must encode a language that talks about
knowing facts (which we will call the object language) into term
expressions of a first-order language that talks about possibje
worlds (which we will call the meta-language). Then we will have
a relation T, such that T(W,P) means the ob ject-language formula
denoted by P is true in the possible world denoted by W. So that
we can talk more easily about truth in the actual world, we will
have a predicate True, such that True(P) ¥ T(WO,P), where WO is o
constant which refers-to the actual world. We will also have a
relation K(A,W1,W2), which means that W2 is a world which is
possible according to what A knows in W1. The fundamental
axiom of knowledge is then vwl,s,p(T(wl Know({ap) .
vw2(K(a,wl,w2) ® T(w2,p)). This simply says that a person knows
the facts that are true in every world that is possible according to
what he knows.

One problem with this axiom is that it is not universally true.
For a person to know everything that is true in all worlds which
are possible as far as he knows, he would have to know all the
logical consequiences of his knowledge. Of course, he can know
only some of them. But in any particular case, if we can see that
a certain conciusion follows from someone's knowledge, we are
probably justified in assuming that he can see this also. So we
can regard this axiom as a rule of plausible inference, using it
when needed, but being prepared to retract our conclusions if they
generate contradictions. [ will not attempt here to deviop a
general theory of plausible reasoning, but I believe that a theory.
can be worked out that will allow us to use this axiom in

essentially its current form.

1 should clarify what type of possible worlds 1 have in mind.
Rather than all logically possible worlds, we will consider only
those worlds which are possible according to “common
knowledge”. So, I will feel free to say that facts like "Fish live in
water,” are true in all possible worlds. This gives us an easy way
of saying that not only does everyone know something, but
everyone knows that everyone knows it, and everyone knows that
everyone knows that everyone knows, etc.

We can now give the full axiomatization of knowledge in
terms of possible worlds:

L1. True(pl) = T(WO,pl1)

L2. T(wl,(p] And p2)) = (T{wl,pl) A T(wl,p2}}
L3. T(wl,(pl Or p2)} & (T(wl,pl) v T(wl,p2))
LA. T(wl,(pl => p2)) = (T(wl,pl) > T(wi,p2))
LS. T(wl,(pl <> p2)) » (T(wl,pl) = T(wl,p2))
L6. T(wl,Not(p1)) = ~T(wlpl)

K1. T{w1,Know(al,pl)) * Yw2(K(el,wl,w2) T{w2,p1))
K2. K(al,wl,wl)

K3. K(at,wl,w2) o (K(al,w2,w3) > K(al,wl,w3))

K4. K(al,wi,w2) > (K(al,wl,w3) 2 K(al,w2,w3))

Axioms L1 - L6 just translate the logical connectives from the
object language to the meta-language, using the ordinary Tarski
definition of truth. For instance, according to L2, (A And B) is
true in a world if and only if A is true in the world and B is true
in the world. K1 is the fundamental axiom of knowledge which
we already looked at. K2 says that each world is possible as far as
anyone in that world can tell, which is another way of saying that
if something is known then it is true. Although it may not be
obvious, K3 and K4 imply that everyone knows whether he
knows a certain fact. K2 - K4 imply that for fixed A, K(A,wi,w2)
is an equivalence relation. This makes our logic of knowledge
isomorphic to the modal logic §5. The correspondence between
various modal logics and and possible-worlds models for them is
discussed in Kripke(1963).

This representation gives us what we need. The meta-
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translations of the ob ject-language statements have a

" jangu3e? that reflects their logical properties. To illustrate the use .

; f:ff“:;‘uer; axioms, we can prove that people can do simple
{nferences:
s TruefKnow(AP) And Know(A,(P > Q)
'( -Prov.z TFU.(KMW(AIQ”
now(A,P) And Know(A,(P => Q))) Given
I ;m(ﬁl(now(A.P) And Know(A,(P => Q)))) L1,
2 7oWoKnow(A,P)) A T(WO,Know(A,(P => Q)) L2,2
r T(Wo,Know(A,P)) 3
5. K(AWOwl) 2 T(wl,P) K1,4
&, T(Wo,Know(A,(P = Q)) 3
7. K(AWOW1) 2 T(w1,(P => Q) K16
T UUK(A,WO,wE) Ass
© T(wl,P) 5,8
10. T(wl,(P = Q) 7.8
11, T(wiP) 2 TwlQ) L4,10
2. T(wl,Q) 11,9
13, K(AWO,w1) 2 T(w1,Q) Dis(8,12)
14. T(WO,Know(A,Q)) fll'll 2

15. True(Know(A,Q))

Proofs in this paper use natural deduction. The right hand
column gives the axioms and preceding lines which justify each
step. Indented sections are subordinate proofs, and Ass marks the
assumptions on which these subordinate proofs are based. Dis
indicates the discharge of an assumption.

This proof is completely straight-forward. Lines | - 7 simply
expand the given facts into possible-worlds notation. Then we
ick wl as a typical world which is possible according to what A
knows. In lines 9 - 12, we do the inference that we want to
attribute to A. Since this inference can be done in an abitrarily
chosen member of the set of worlds which are possible for A, it
must be valid in all of them (line 13). From this we conclude that
A can probably do the inference also (lines 14 - 15).

So far 1 have avoided dealing with the problem of quantifiers.
Exactly what do expressions like 3x(Know(A P(x))). mean? This is
not a simple assertion that someone knows a certain fact, so its
intuitive meaning may not be clear. The best paraphrase seems to
be "There is something that A knows has property P." It is a
matter of great dispute in.philosophy exactly how to handle this.
I will take a pragmatic approach. To say that a person knows of
something that it has property P means that he can name
something that has property P. Furthermore, just any sort of
name won't do. "The thing that has property P" is no good, for
instance. We wili say that A must know the standard name of the
thing that has P. This is, of course, a simplification. Not all
things have standard names, and some things have different
standard names in different contexts, but we will ignore these
difficulties to preserve the simplicity of the ordinary case.
Abstract entities usually have unproblematical standard names -
28" is the standard name of 23, "15 + 8" is not.

Turning to the model theory, the interpretation of the formula
we are considering would be that there is something that is P in
all worlds compatible with what A knows. That means that
standard names must refer to the same thing in all possible
worlds. There is a term for this in philosophy, rigid designator.
We can ‘greatly simplify our formalism if we require that all
ordinary terms in the object language be rigid designators. We
would then have to have a special notation for non-rigid
designators, but this will not come up in our examples, so I will
not develop that idea here. We can now give the axioms for
quantifiers and equality:

L7. T(w1 Exist(vi,P)} ® Ix(T(w1,PIx/v1]))
provided x is not free in P

L8. T(wl,All(v1,P)) & Vx(T(wl Px/v1]}}
provided x is not free in P

LS. T(wl,Eq(xl,;Z)) 2 (x] = x2)

L7 and L8 are axiom schemas relative to P and x, and vl is a
meta-language variable that ranges over ob ject-language
variables. P[x/v1] means the result of substituting x for vl in-P.

These three axioms may seem somewhat peculiar in that they
appear to say that individuals in the world can be part of ob ject-
language expressions. In L7 and L8, we took x, a variable
ranging over real objects, and inserted it into P, the name of a
sentence, implying that objects can be contained in sentences. To
preserve the simplicity of the notation, without this apparent
absurdity, we will make the interpretation that all functions which
represent atomic predicates in the object language (eg. Eq) take
individuals as arguments and return expressions containing the
standard names of those individuals. )

4. Integrating Knowleage and Action

In order to integrate knowledge with actions, we need to
formalize a logic of actions in terms comparable to our logic of
knowledge. Happily, the standard Al way of looking at actions
does just that. Most Al programs that reason about actions view
the world as a set of possible situations, and each  action
determines a binary relation on situations, one situation being the
outcome of performing the action in the other situation. We will
integrate knowledge and action by identifying the possible worlds
in our logic of knowledge with the possible situations in our logic
of actions.

First, we need to define our formalism for actions exactly
parallel to our formalism for knowledge. We will have an ob ject-
language relation Res(E,P) which says that it Is possible for event
E to occur, and P would be true in the resulting situation. In the
meta-language, we will have the corresponding relation
R(E,W1,W2) which says that W2 is a possible situation/world which
could result from event E happening in W1. These two concepts
are related in the following way:

R1. T(wl,Res(el,pl)) s
Gw2(R(e1,wl,w2)) A Yw2(R(el,wl,w2) > T(w2,p1)})

The existential clause on the right side of R1 says that it is
possible for the event to occur, and the universal clause says that
in every possibie outcome the condition of interest is true. There
is a direct parallel here with concepts of program correctness, the
first clause expressing termination, and the second, partial
correctness.

We can extend the parallel with programming-language
semantics to the structure of actions. We will have a type of event
which is an actor performing an action, Do(A,C). (C stands. for
"command”) Actions can be built up from simpler actions using
loops, conditionals, and sequences:

R2. T(w! Res(Do(al Loop(pl,cl))p2) »
T(wl,Res(Do(al lf(pl,(cl;Loop(pl,cl)),Nil)),p2))

R3. T(wl,Res(Dol(al,lf(pl,cl,c2)),p2) &
((T(wl Know(al,p1)) A T(wl,Res(Do(al c1),p2))) v
(T(w1,Know(al,Not(p1))) A T(wl Res(Do(al ,c2),p2))))
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R4. T(wl,Res(Do,al,(cl1;c2)),pl)) ®
T(w1,Res(Do(al,c1)Res(Dolal c2),p1)))

N1. R(Do(al,Nil),wi,w2) = (w] = w2)

R2 defines the step-by step expansion of while-loops: if the
test is true, execute the body and repeat the loop, else do nothing.
To prove general results we would need some sort of induction
axiom. R3$ defines the execution of a conditional action. Notice
that being able to execute a conditional requires knowing whether
the test condition is true. This differs from ordinary program
conditionals, where the test condition is either assumed to be a
decidable primitive, or is itself a piece of code to be executed. R4
says that the result of carrying out a sequence of actions is the
result of executing the first action, and then executing the rest.
N1 simply defines the no-op action we need for the definition of

Loop.

One of the most important problems we want to look at is
how knowledge affects the ability to achieve a goal. Part of the
answer is given in the definition of the notion Can. We will say
that a person can bring about a condition if and only if there is
an action which he knows will achieve the condition:

Ci. T(wl,Can(al,pi)) = 3c1(T(wl Know(al,Res(Do(al c1),p)))}

The idea is that to achieve something, a person must know of a
plan for achieving it, and then be able to carry out the plan.

We have seen a couple of ways that knowlez:- :ffects the
possibility of action in R3 and Cl. We now want « .=:zribe how
actions affect knowledge. For actions that are - .{ormation-

acquiring, we can simply say that the actor knos: that he has
performed the action. Since our axiomatization of particular
actions implies that everyone knows what their effects are, this is
sufficient. For information-acquiring actions, like looking at
something, we will also add that the information has been
acquired. This is best explained by a concrete example. Below,
we will work out an exampie about opening safes, so we will now
look at the facts about dialing combinations:

D1. 3w2(R(Do(al Dial{x] x2)),wl,w2) =
(T(w1,Comb(x1)) A T(wi,Safe(x2)) A T{wl,At(al x2)))

D2. R(Do(al,Dial(x1,x2)),wl,w2)
({T(wl is=comb-of(x],x2)) > T(w2,0penix2)}) A’
((<T(wl,ls-comb=-0f(x},x2)) A ~T(wi,0pen(x2)) =
~T(w2,0pen(x2))) A
(T(w1,0pen(x2)) » T(w2,0pen(x2)))

D3. R{Do(al,Dial(x1,x2))wl,w2)
(K(al,w2,w3) s ({T(w2,0pen{x2)) = T(w3,0pen{x2))) A
3wa(K(al,wl,wa) A R(Do(a] Dial(x],x2)),w4,w3)})

D1 says that an actor can perform a dialing action if the thing
he is dialing is a combination, the thing he is dialing it on is a
safe, and he is at the same place as the safe. D2 tells how dialing
a combination affects whether the safe is open: if the combination
is the combination of the safe, then the safe will be open; if it is
not the combination of the safe and the safe was locked, the safe
stays locked; if the safe was already open, it stays open.

D3 describes how dialing affects the knowledge of the dialer.
Roughly it says that the actor knows he has done the dialing, and
he now knows whether the safe is open. More precisely, it says
that the worlds that are now possible as far as he knows are
exactly those which are the result of doing the action in some
previously possible world and in which the information acquired
matches the actual world. Notice that by making the consequent
of D3 a bi-conditional, we have said that the actor has not
acquired any other information by doing the action. Also notice

that D38 is more subtle than just saying that whatever he knew
before he knows now. This is not strictly trus  He might have
known before that the safe was locked, an=  xnow that the
safe is open. According to D3, if the actor . -fore the action
P is true”, after the action he knows "P was - . efore I did this

action.”

Having presented the basic formalism, I would now like to
work out a simple example to illustrate its use. Simply stated,
what I will show is that if a person knows the combination of a
safe, and he is where the safe is, he can open the safe. Besides
the axioms for Dial, we will need two more domain-specific -

axioms:

Ai. T(wl,is=comb-of(x] x2))
(T(w1,Comb(x1)) A T(wl,Safe(x2)))

A2. T(wil,At{al x1)) > T(wl Know(al At(sl x1))

Al says that if one thing is the combination of another, the first
thing is a combination and the second thing is a safe. A2 says
that a person knows what is around him. The proof is as follows:

Given: True(At{John,Sf))
True(Exists(X1 ,Know(John,ls=comb=0{(X1,5))})

Prove: True{Can(John,Open(Sf)))

1. True(Exists(X1,Know(John,is=comb=0t(X1,51)))) Given
2. T(WO,Exists{X 1 ,Know(John,ls~comb=of(X1,51)))) L1,
3. T(WO0,Know{John,ls-comb-01(C,5f))) ) L7,2
4, K(John,WO,wi) » T(w},is~comb-of(C,5t)} K1,3
5. True(At(John,Sf)) Given
6. T(WO0,At(John,Sf)) L5
7. T(WO0,Know(John,At{John,Sf)}) A2,6
8. K(John,WO,wl1) > T(wi At(John,Sf)) K1,7
9. K(JohnWO,wl) Ass
10. T(wl,ls-comb-of(C,Sf)) 4,9
11.  T(wl,Comb{(C)) 2},:3

12.  T(wl,Safe(Sf))
13.  T(w2,At(John,Sf)) 8,9

14, 3w2(R(Do(John,Dial(C,5)),w!,w2) Bl,11,12,13
15. R(Do{John,Dial(C,51)),wl,w2) Ass

16. T(w],ls=comb-0f(C,Sf)) @ T(w2,0pen(Sf)) D2,15

17. T(w2,0pen(Sf)) 16,10

18. R(Do(John,Dial(C,5f)),wl,w2) > T(w2,0pen(Sf)} Dis(15,17)
19. T(wl,Res(Do(John,Disi(C,S1)),0pen(Sf))) R1,14,18
20. K(John,WO,wl) > Dis(9,19)

T(w1,Res{Do(John,Dial(C,5f)),0pen(S1)})
21. T(WO,Know{John,Res{Do(John,Dial{C,5)),0pen($1)))) KI,20
22. T(WO,Can(John,Open(St))) Cl,2i
23. True(Can(John,Open(St))) L1,22

The proof is actually simpler than it may look. The real work
is done in the ten steps between 10 and 19; the other steps are the
overhead involved in translating between the ob ject language and
the meta language. Notice that we did not have to say explictly
that someone needs to know the combination in order to open a
safe. Instead we said something more general, that it is necessary
to know a procedure in order to do anything. In this case, the
combination is part of that procedure. It may also be interesting
to point out what would have happened if we had said only that
John knew the safe had a combination, but not that he knew
what it was. If we had done that, the existential quantifier in the
second assertion would have been inside the scope of Know. Then
the Skolem constant C would have depended on the variable wi,
and the step from 20 to 21 would have failed.

5. Conclusions

In summary, the possible-worlds approach seems to have twa
major advantages as a tool for reasoning about knowledge. First,
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it allows "lifting” reasoning in knowledge contexts into the basic
deductive system, eliminating the need for separate axioms or
rules of inference for these contexts. Second, it permits a very
elegant integration of the logic of knowledge with the logic of

actions.

This approach seems to work very well as far as we have
taken it, but there are some major issues we have not discussed. I
have said nothing so far about' procedures for reasoning
automaticaily about knowledge. I have some results in this area
which appear very promising, but they are too fragmentary for
inclusion here. 1 have also avoided bringing up the frame

roblem, by not looking at any sequences of action. I am also
working in this area, and I consider it one of the largest 1I0U’s
generated by this paper. However, the possible-worlds approach
has an important advantage here. Whatever method is used to
handle the frame problem, whether procedural or axiomatic,
knowledge contexts will be handled automatically, simply by
applying the method uniformly to all possible worlds. This
should eliminate any difficulties of representing what someone
knows about the frame problem.
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