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AN INTRODUCTION TO A
COMPUTATIONAL READER
OF NARRATIVES

Stuart C. Shapiro
William J. Rapaport
Srare University of New York ar Buffalo

In this chapter, we describe the SNePS knowledge-representation and reasoning
system. We look at how SNePS is used for cognitive modeling and natural
language competence. SNePS has proven particularly useful in our investigations
of narrative understanding. Several other chapters in this book (Almeida; Rap-
aport & Shapiro; Yuhan & Shapiro) use SNePS to discuss specific issues in areas
relevant to narrative understanding.

SNePS

SNePS is an intensional, propositional, semantic-network knowledge-repre-
sentation and reasoning system that is used for research in artificial intelligence
(AD) and in cognitive science. “Knowledge” representation is the study of the
representation of information in an Al system (because the information need not
be true, a more accurate name would be “belief” representation; cf. Rapaport,
1992).

SNePS (Shapiro, 1971, 1979; Shapiro & Rapaport, 1987, 1992) is a program-
ming language whose primary data structure is a semantic network (a labeled,
directed graph), with commands for building such networks and finding nodes
in such a network given arbitrary descriptions (including partial descriptions).
The particular kind of semantic network SNePS builds is propositional. Further-
more, the particular kind of propositional semantic network that we believe is
appropriate for cognitive modeling and natural-language competence is one that
is fully intensional. Both of these notions will be clarified later (cf. Maida &
Shapiro, 1982; Shapiro & Rapaport, 1987, 1991).
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80 SHAPIRO AND RAPAPORT

In addition to being able to build and find networks, the SNePS Inference
Package (SNIP) permits node-based reasoning, path-based reasoning, and belief
revision. Node-based reasoning can be thought of as conscious reasoning fol-
lowing explicit rules stated in the form of networks. These “rules” are really
axioms or nonlogical postulates, not rules of inference. The rules of inference
are not explicitly represented, but are implemented in the “inference engine”—
SNIP. Path-based reasoning can be thought of as subconsious reasoning; it is a
generalization of the notion of inheritance found in many other semantic-network
systems (cf. Shapiro, 1978, 1991; Srihari, 1981). A belief revision system is a
facility for detecting and removing inconsistent beliefs; the SNePS version is
based on a form of relevance logic (cf. Martins & Shapiro, 1988).

Finally, in addition to using the SNePS User Language (a programming lan-
guage written in Lisp) to build, find, and deduce information directly, one can
also interact with SNePS in natural language, using a generalized augmented-
transition-network parser-generator (Shapiro, 1982). This makes it especially ap-
propriate for use in our project of understanding narrative text.

PROPOSITIONAL SEMANTIC NETWORKS

A Brief Introduction to Semantic Networks

A semantic network is-usually thought of as a labeled, directed graph, whose
nodes represent entities and whose arcs represent binary relations between the
entities. In the stereotypical semantic network found in most Al texts, there are
arcs with such labels as “ISA” and “A-KIND-OF,” corresponding, roughly, to
set membership and the subset relation. When these labels prove insufficient,
labels such as “PROPERTY” are sometimes used, corresponding to the relation
of having-as-a-property.

Such networks, which can be thought of as descendents of the medieval
Porphyrian tree, are essentially taxonomic and “object-oriented”: The nodes rep-
resent individuals, classes, or other objects, as well as their properties. One
important feature of such networks is the property of inheritance: Information
~ stored about an object represented by some node need not be stored (redundantly)
at all the nodes that are related to it by ISA or A-KIND-OF. For example, if a
dog ISA mammal, and mammal is A-KIND-OF animal, then a dog ISA animal;
and if animal has as a PROPERTY mortal, then dog has as a PROPERTY mortal;
that is, if a dog is a mammal, mammals are animals, and animals are mortal,
then a dog inherits being an animal and being mortal. There are, of course, much
more sophisticated varieties of such taxonomic inheritance hierarchies (such as
the KL-ONE family of systems), and their logical properties have been exten-
sively investigated (for surveys, see Brachman & Levesque, 1985; Lehmann,
1992; Sowa, 1991, 1992).
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Representing Propositions

In a propositional semantic network, by contrast, the nodes can represent propo-
sitions in addition to objects, classes, and properties. To see how this can be
done, consider the network in Fig. 4.1. Suppose that the P1lato node represents
Plato, the philosopher node represents the class of philosophers, and the
isa arc represents the relationship that holds between Plato and the class of
philosophers. Now suppose that one wanted to deny that Plato was a philosopher.
How would negation be represented? One couldn’t, using only graph-theoretical
techniques, easily or simply negate the P1ato node or the philosopher node.
The former option would presumably mean that not-Plato is a philosopher, but
what is a “not-Plato™? The latter option would presumably mean that Plato is a
not-philosopher, but what is a “not-philosopher”? Nor could one negate the isa
arc without violating the conventions of graph theory.

The SNePS solution is to “split” the arc in two. There are several ways this
can be done, one of which is shown in Fig. 4.2. The Plato node can still
represent Plato, and the philosopher node can still represent the class of
philosophers. But now there is a third node, arbitrarily labeled M1, that can
represent the proposition that Plato is a philosopher. This node is “structured”:
It represents the proposition as explicitly consisting of an object (Plato), and a
class (of philosophers). The class membership relation represented by the arcs
is implicit.

Suppose, however, that we wanted to make the relation that holds between
Plato and the class of philosophers explicit, so that we could talk about it (in
SNePS, one can only talk about nodes, not arcs). There are several ways this
could be done; one way is shown in Fig. 4.3. Here, the Plato and philoso-
pher nodes can be interpreted as before, as can node M1. The new ISA node
represents the class membership relation itself. The arc labels reflect the new
structure of this proposition. In this network, the ISA relation is explicit, but the
higher order rel/object-1/object-2 ternary relation is implicit.

Case frames (cf. Fillmore, 1968) such as rel/object-1/object-2 can
also be thought of along the lines of Davidson’s analysis of events (Davidson,
1967): The proposition that Plato is a philosopher is represented by the network
of Fig. 4.3 as being structured as follows:

dplrel(p, 1SA) & object-1(p, Plato) &
object-2(p, philosopher)],

with M1 being thought of as the value of p or (better) as a Skolem constant. (For
more details on the nature of the case frames in SNePS, cf. Shapiro & Rapaport,

@ isa ohilosopher

FIG. 4.1. An ISA network representation.




82 SHAPIRO AND RAPAPORT

member class

' @ ' philosopher

FIG. 4.2. One possible SNePS representation.

1987; Shapiro, 1991. For a view of proposition nodes as functional terms, cf.
Shapiro, 1993. In using SNePS for cognitive modeling, we use both the implicit
case frame of Fig. 4.2 and the explicit case frame of Fig. 4.3, as discussed later.)

Advantages of Propositional Semantic Networks

Representing Beliefs. To see the advantage of propositional semantic net-
works over object-oriented ones, consider how we would represent the proposi-
tion:

Mary believes that John is rich, but he isn’t.

One way of representing this in SNePS is shown in Fig. 4.4. Nodes that are
marked with an exclamation point are said to be asserted; they represent “beliefs”
of the system. Node M2 ! represents the system’s belief that an agent, Mary,
performs the mental act of believing, directed (in a Meinongian sense) to the
object M1 (cf. Rapaport, 1978). Node M1 represents the proposition that John
is rich; thus, M2 ! represents the system’s belief that Mary believes that John is
rich. Node M3! represents the system’s belief that it is not the case that M1;
thus, M3! represents the “but he isn’t” part of the proposition. (The min/
max/arg case frame is used to represent the proposition that at least min and
at most max of the propositions pointed to by argument arcs are true; here,

()

object-1 rel object-2

‘/ ‘ hllosopher

FIG. 4.3. Another possible SNePS representation.
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FIG. 4.4. One SNePS representation of: Mary believes that John is rich, but he
isn’t.

between O and O of the single argument M1 are true—that is, M1 is false. For
details, cf. Shapiro, 1979; Shapiro & Rapaport, 1987.)

For ease of exposition, we will let [n]] represent the denotation of node
n—what n represents. For example, referring again to Fig. 4.4, we could say
that [[M2 ! ]] is the proposition that [Mary]lbelieves the proposition [M1]], and
[M1] is the proposition that [John]] has the property [rich].

Actually, the network of Fig. 4.4 is vastly oversimplified. It fails to take into
account the difference between de re and de dicto belief reports, for one thing.
A more accurate representation of Mary’s mistaken belief that John is rich is
shown in Fig. 4.5. Node M9 ! represents the system’s belief that an agent named
“Mary” believes that something (represented by B2) is rich. In particular, [[M2 ']
" is the proposition that [[B1]} has the propername [M1]], expressed in English
by the 1exical item “Mary.” Node M8 represents the object of Mary’s belief,
namely, that [[B2]] is an object with the property [[M7]], which is expressed
in English by “rich.” Node M6 ! represents the system’s belief that Mary believes
that [[B2]}—the rich object—is named “John.” So, taken together, M6 ! and
M9 ! represent the system’s belief that Mary believes de dicto that John is rich.
Finally, M10 ! represents the system’s belief that it is not the case that John is
rich. Consider the agent/act/object case frames whose act is [M3]. The
subnetworks at the heads of the object arcs form the “belief space” of the
agent. They represent the system’s beliefs about the agent’s beliefs.!

'Details of the representation of belief reports and belief spaces is given in Rapaport, 1986a;
Rapaport, Shapiro, & Wiebe, 1986; and Wiebe & Rapaport, 1986. A discussion of what the nodes
in such belief spaces represent can be found in Shapiro, 1993, and Shapiro & Rapaport, 1991. Recent
papers by Crimmins and Perry seem to be consistent with the ontology behind SNePS networks.
Their beliefs, ideas, and notions seem to correspond precisely to SNePS propositional nodes, property
nodes, and individual nodes, respectively (cf. Crimmins, 1989; Crimmins & Perry, 1989).
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FIG. 4.5. A more accurate SNePS representation of: Mary believes that John is
rich, but he isn’t.

Node-Based Reasoning. Another advantage of propositional semantic net-
works is their use in node-based reasoning. Rules can be represented as propo-
sitions in the same knowledge base as the propositions to which the rules are
intended to apply. This differs from the architecture of the typical production
system used to implement an expert system. In such architectures, the rules are
in long-term memory separate from the working memory containing the propo-
sitions the rules manipulate.

SNIP interprets certain propositional nodes as being rules and performs for-
ward- and backward-inference using them. For instance, the proposition:

Vv1[human(vl) — mortal(v1)]

might be represented by node M1! in Fig. 4.6. It has a universal quantifier arc
(forall) pointing to a variable node, V1; an antecedent arc pointing to node
P1; and a consequent arc pointing to node P2. Nodes P1 and P2 can be thought
of as propositional functions in Russell’s sense; they are called pattern nodes in
SNePS. Node P1 represents the propositional function that [[V1]] is human; node
P2 represents the propositional function that [[V1]) is mortal.
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FIG. 4.6. A SNePS representation of Vv1[human(vl) — mortal(vl)].

Suppose that the system is told that Socrates is human, resulting in node M2 !
being asserted (see Fig. 4.7). Note that the human node is shared by nodes M2 !
and P1; this is a result of the uniqueness principle: Every node represents some
entity in the domain of discourse, and no two nodes represent the same entity
(cf. Maida & Shapiro, 1982; Shapiro & Rapaport, 1987). Next, suppose that the
system is asked who is mortal. If the question is phrased in such a way that the
system is merely being asked to find asserted nodes representing propositions of
the form “x is mortal,” it will find none. However, if the question is phrased in
such a way that the system is asked to deduce whether anyone is mortal, it will
behave as follows: Imagine that it has been asked to find or to build asserted
propositional nodes matching (i.e., with the structure of) the pattern node P2.

2

A
&

class

nember

FIG. 4.7. After telling the system that Socrates is human.
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FIG. 4.8. After inferring that Socrates is mortal.

Finding none (because there aren’t any), it will backchain and seek asserted
propositional nodes matching P1. It will find M2!, which matches P1 if the
Socrates node is bound to V1. This information is used to assert a new node,
M3 !, matching P2, with V1 bound to the Socrates node. Node M3! is the
conclusion of the inference. The network has now grown, to look like Fig. 4.8.

INTENSION;AL KNOWLEDGE REPRESENTATION

SNePS is an intensional knowledge-representation system; that is, it supports
multiple representations of what could be one physical object.2 We argued in
earlier papers that the nodes of a semantic network not only can, but ought to,
represent intensional entities (Maida & Shapiro, 1982; Rapaport, 19854, in press;
Shapiro & Rapaport, 1987, 1991). By intensional entity, we have in mind things
like Fregean senses (Frege, 1892), Meinongian objects (Meinong, 1904), Cas-
tafiedian guises (Castafieda, 1972), and Routleyan items (Routley, 1979). There
does not seem to be a clear characterization in the literature of what these things
are, but they seem to satisfy the following:

1. They are nonsubstitutable in intensional contexts, even if they are “the
same” (i.e., they can be equivalent without being identical). The morning
star and the evening star are examples.

2We owe this way of putting the matter to Susan Haller.
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2. They can be indeterminate. That is, they can be “incomplete”, as in the
case of fictional entities. (Did Sherlock Holmes have a mole on his left
arm or not?)

3. They need not exist. The nonexisting golden mountain is an example.

4. They need not be possible. The round square is an example.

5. They can be distinguished even if necessarily identical. For example, the
sum of 2 and 2 and the sum of 3 and | are distinct objects of thought.

We claim that to model a mind, a knowledge-representation and reasoning system
must model only intensional entities. There are two main arguments for this. The
first may be called The Argument From Fine-Grained Representation and is
summarized as follows: IntenTional entities (i.e., objects of thought) are inten-
Sional. That is, one can have two obijects of thought that correspond to only one
extensional object (as in the familiar examples of the moming star and the evening
star). The second argument may be called The Argument From Displacement,
summarized thus: We can think and talk about nonexistent objects—fictional
ones, impossible ones, etc.—thus, we need to be able to represent and reason
about them, especially if we are interested in using the system for understanding
works of fiction.

As an example of how intensional objects can be represented in SNePS,
consider Fig. 4.9. It shows one of the possible networks that can represent “The
Morning Star has the property of being a planet.” Node M2! represents the
proposition that intensional entity [[B1]] is the Morning Star. The proposition is
structured as follows: [[B1]] is an object whose propername is [M1]}, and
[M1]] is expressed in English by the lexical item “The Morning Star.” (This is
neither the only or even the best way to represent this proposition, but it will
~ suffice.) Node M4 ! represents the proposition that [B1]] is a planet. This propo-

sition is structured as follows: [[B1]} is an object that has the property

W

propername ghject object Pproperty class

(s1) ()

lex lex

FIG. 4.9. A possible SNePS representation of: The Moming Star has the property
of being a planet.
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IM3]], which is expressed in English by the lexical item “planet.” The network
described thus far represents “The Morning Star is a planet.” To make it explicit
that being a planet is a property, we use node M6 !, whose structure is that [M3]]
is a member of the class [[M5]], expressed in English by “property.”

Note that being the Morning Star is predicated of [B1]}, and that [B1]} can
be considered as a bare particular (cf. Allaire, 1963, 1965; Landman, 1986).
Similarly, being a planet is predicated of [[B1]). Finally, being a property is
predicated of [[M3]] (though [[M3]] is not quite bare; it has structure, as do [[M1]]
and [[M5]}, all of which are structured objects).

If the system is next told, “The Moming Star is the Evening Star,” the structure
shown in Fig. 4.10 will be added. Here, [[B2]] is the intensional entity The
Evening Star, which is distinct from [[B1]). (Proposition [[M8 ! ]] asserts that [[B2]]
is named “The Evening Star.”) Node M9! represents the proposition that [B1]]
and [[B2]] are equivalent, that is, the Morning Star is the Evening Star. There
is no node that represents the extensional entity that is both the Morning and
Evening Stars. (You might think that it would be a node representing an entity
named “Venus,” but that would just be a third intensional entity, equivalent to
the other two. For a very different way of representing intensionality in SNePS,
see Wyatt, 1989, 1990, 1993.)

PUTTING IT ALL TOGETHER: CASSIE READS A NARRATIVE
We have been talking about the system as if it were (merely) an Al program. It is

that, of course, but it is, in particular, a program in the area of Al called cognitive
modeling. We are constructing a model of a cognitive agent who can reason, solve

ObJGCt propername

(D)

e -
- \@f
‘

lex
FIG. 4.10. After telling the system that: The Morning Star is the Evening Star.
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expressing new belief
FIG. 4.11. Communicating with or answering question
Cassie.

problems, and read and converse in natural language. We argued elsewhere that
such a model of a cognitive agent is a cognitive agent (or, more modestly, that such
a model will be such an agent when all of the problems of cognitive modeling will
have been solved; cf. Rapaport, 1986b, 1988a, 1988b; Shapiro & Rapaport, 1991).
We call our cognitive agent Cassie (the Cognitive Agent of the SNePS
System—an Intelligent Entity). SNePS nodes represent the objects of Cassie’s
thoughts. In addition, we can give a fully intensional semantic interpretation for the
nodes in terms of a Meinongian Theory of Objects without recourse to possible
worlds—which are neither needed or wanted, because we want to be able to deal
with impossible objects (cf. Rapaport, 1985a, in press; Shapiro & Rapaport, 1987).
Cassie can read a narrative in (a fragment of ) English, as indicated in Fig. 4.11.
Cassie has a set of background or current beliefs, represented in SNePS, and reads
or is asked something in English. The English statement or question is interpreted
by the parser fragment of a generalized augmented-transition-network parser-gen-
erator (Shapiro, 1982), which outputs a SNePS node. This node might be an
already-existing node in Cassie’s “mind” (cf. Rapaport, 1988a) or a new node
asserted as the result of an inference (as described previously). The result is a
possibly updated set of beliefs in Cassie’s mind (her mind may, literally, have
changed). The node that was found or asserted is then expressed in English by the
generator fragment of the generalized augmented-transition-network parser-gener-
ator. Figure 4.12 shows Cassie reading a short narrative, and occasionally being
asked questions to test her understanding. The sentence on the first line of each
interaction, following the “:” prompt, is either a sentence of the narrative or a
question posed to Cassie. Cassie’s response begins on the subsequent line.
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1: John petted a yellow cat.
I understand that John petted a yellow cat.

Time (sec.): 0.617

2: The cat is a manx.
I understand that the yellow cat is a manx.
Time (sec.): 0.25

3: What did John pet?
John petted a yellow cat.
Time (sec.): 0.7

4: The dog is a mammal.
I understand that dogs are mammals.
Time (sec.): 0.283

5: Every dog is owned by a boy.
I understand that every dog is owned by a boy.
Time (sec.): 0.35

6: Young Lucy petted a yellow dog.
I understand that young Lucy petted a yellow dog.
Time (sec.): 1.017

7: The boy saw her.
I understand that the boy saw young Lucy.
Time (sec.): 0.6

FIG. 4.12. A conversation with Cassie.

Before she began reading, Cassie’s mind contained one explicit belief (node
M1! in Fig. 4.13), some implicit beliefs for path-based reasoning, and some
other, deictic, information. The implicit beliefs allow certain kinds of inheritance,
for instance, that a path consisting of a SUPERCLASS arc followed by zero or
more pairs of converse-SUBCLASS/SUPERCLASS arcs can itself be considered
as a (“virtual”) SUPERCLASS arc; no more will be said of them here. The deictic
information consists of a “now”-pointer pointing to node B1, representing the
current time, and an “I”’-pointer pointing to node B2, representing Cassie’s “self-
concept.” The now-pointer-mechanism is a fairly primitive way of representing
time and tense; it was superseded by the more sophisticated facility described in
Almeida (1987). The I-pointer-mechanism was described more fully in Rapaport,
Shapiro, and Wiebe (1986).

Node M1! represents Cassie’s belief that:

(Vvl,v2,v3)[if viisav2 & v2 is av3, then vl is a v3].

But note that this is represented, not as the transitivity of “is a”, but using three
different propositions. Node P1 represents the proposition that V1 is a V2 in the
sense of class membership; node P2 represents the proposition that V2 is a V3
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superclass

object-2

rel

FIG. 4.13. Cassie’s mind before the conversation begins.

in the sense of the SUBCLASS/SUPERCLASS relation; and node P3 represents
the proposition that V1 is a V3 using the ISA relation of taxonomic semantic
networks. Why the variety? The choices for P1 and P2 should be apparent. Class
membership is not used for P3 for the following reason: We use class membership
to represent the relation obtaining between an individual and the basic-level
category to which it belongs (in the sense of Rosch, 1978). We use the SUB-
CLASS/SUPERCLASS relation to represent the relation obtaining between a
basic-level category and its superordinate-level category. And we use the ISA
relation to represent the relation obtaining between an individual and any non-
basic-level categories (subordinate or superordinate). One advantage of this for
the purposes of natural-language competence is the ability to get Cassie to con-
verse more normally. (For a more complete explanation of this representation,
see Peters & Shapiro, 1987a, 1987b; Peters, Shapiro, & Rapaport, 1988.)
When Cassie reads that John petted a yellow cat, nodes M3 !, M7 !, M8!, M3!,
M101!, and M11! are asserted, changing her mind to look like Fig. 4.14. Node
M3! “says” that [[B3]] is named “John”; node M7 ! says that [B4] is a cat (cat
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FIG. 4.14. [M9!] = John petted a yellow cat.
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is a basic-level category); node M8 ! says that [[B4]) (the cat) is yellow; and node
M9! says that [B3] petted [[B4]l. The past tense “petted” is represented by
indicating that the ACT of petting had a StartTIME represented by B5 and an
EndTIME represented by B6, that [[B5] is before [[B6] (this is asserted by
M10!), and that [B6]) is before “now” (asserted by M11!).

Cassie then reads that the cat is a manx. Which cat? Since she only has beliefs
about one cat (the one petted by John), she decides that it is the cat that is a
manx. Her mind grows to include node M13!, which represents that the cat
(IB41) ISA manx (manx is a subordinate-level category). Note, too, that Cassie’s
way of expressing [M13 !]] in English shows us that she understands that the
cat that is a manx is the yellow cat that John petted. When we ask Cassie (in
order to test her understanding of the narrative that she is reading) what John
petted, she responds that he petted a yellow cat rather than that he petted a yellow
manx. This might not seem remarkable, but had we not distinguished between
the propositions—being a cat is represented by class membership, being a manx
is represented by ISA—Cassie might have replied (and, in an earlier implemen-
tation, did reply) that John petted a yellow manx, a decidedly unidiomatic way
of putting things in this context. Cassie’s mind now looks like Fig. 4.15.

Next, Cassie reads that the dog is a mammal. Which dog? Since there have
been none in the narrative thus far, Cassie assumes that this is to be interpreted
as a generic sentence, that is, as “dogs are mammals,” and node M16 ! is built.
Note that at this point, there are two disconnected subnetworks: That dogs are
mammals is entirely irrelevant to Cassie’s beliefs about John, the cat, manxes,
petting, and being yellow. Well, almost entirely: Cassie does believe that if an
individual is a member of a basic-level category that is a subclass of a superor-
dinate-level category, then the individual stands in the ISA relation to the su-
perordinate-level category; because dog is a basic-level category that is a subclass
. of the superordinate-level category mammal, there is an implicit connection be-
tween the two subnetworks. Cassie’s mind now looks like Fig. 4.16.

Cassie then reads that every dog is owned by a boy, and her mental model
of the conversation changes to reflect this new piece of information. Node M19!,
which represents this rule, has a structure similar to the rule:

Vv8[dog(v8) — 3y[boy(y) & owns(y, v8)]].

However, the current implementation of SNePS does not have an existential
quantifier, so, instead, we use the Skolemized version:

Vv8[dog(v8) — [boy(b7(v8)) A owns(b7(v8), v8)]l

where b7 is the Skolem function. Specifically, the structure of M19! is: There
is a universally quantified variable-node, V8. The ANTecedent of M19! is node
P10, which says that [[V8]] is a dog (thus linking up to the previously constructed,
isolated subnetwork dominated by node M16 !). The ConseQuents of M19! are
nodes P12 and P13, both of which refer to P11, which is the result of applying
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the Skolem function B7 to V8. Node P12 says that [P11] is a boy; node P13
says that he owns [[V8]]. The present tense of “owns” is represented by having
the StatTIME, B8, be before “now”, and the EndTIME, B9, be after “now.”
Cassie’s mind now looks like Fig. 4.17.

Next, Cassie reads that young Lucy petted a yellow dog. The first thing that
Cassie understands is that someone ([B10]]) is named “Lucy” and that Lucy is
young (nodes M24 ! and M25 !). Then she understands that there is a dog, [[B11]].
So, [B10] is young Lucy, and [[B11]] is a dog. Cassie’s mind now looks like
Fig. 4.18.

However, Cassie already believes that every dog is owned by a boy. So she
conceives of an individual, [M27], which results from instantiating P11 by
substituting B11 for V8, and infers the proposition that this individual is a boy
(IM28 ! ]]). (Cassie’s mind now looks like Fig. 4.19.) Then, Cassie infers that
this boy owns the dog ([[M29!]]). Cassie’s mind now looks like Fig. 4.20.

There are other rules that Cassie believes, namely, that dogs are mammals
and that if something is a dog, then it is a mammal (rule [[M1!])); so she infers
that [B11]] ISA mammal ([[M31!]]). Cassie’s mind now looks like Fig. 4.21.

All of this occurs while she is in the process of understanding that young
Lucy petted a yellow dog. What she understands of this sentence so far is that
someone is named “Lucy,” that that someone is young, and that something else
is a dog. She has then inferred that the dog is a mammal and that it is owned
by a boy. Now she comes to understand that the dog is yellow ([M32 ! J}). Cassie’s
mind now looks like Fig. 4.22. Subsequently, she comes to understand that young
Lucy petted the yellow dog ([M33!]]), and that this event occurred after “now”
(M35 ! JI). Now all previously disconnected subnetworks are linked, and Cassie’s
mind has grown to look like Fig. 4.23. _

Finally, Cassie reads that the boy saw her. Which boy? Well, no boys were
explicitly talked about, but she has inferred the existence of a boy, so he must
be the boy who saw her. Her? Who? An anaphoric-pronoun-resolution system
determines that it was young Lucy whom the boy saw (Li, 1986). The result is
the set of nodes M37!, M38!, and M39!. Cassie’s mind now looks like Fig.
424,

The narrative is now complete (actually, this is a fragment of a much longer
narrative, but by now you should see how things work). Cassie’s mind at the
end of the narrative is shown in Fig. 4.24; this is what she came to believe while
reading. It is also her mental model of the story of John and Lucy.

SUMMARY

We provided an introduction to the SNePS knowledge-representation and rea-
soning system, and to Cassie, a computational agent that can read natural language
texts and form an understanding of those texts in terms of beliefs represented in
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= The boy owns the dog.
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The dog is yellow.

FIG. 422, [M32!])
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Young Lucy petted a yellow dog.

FIG. 4.23. - [M33!]
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SNePS networks. Cassie (and SNePS, itself) is still under development, and so
can presently read texts only in certain fragments of English. Other uses of Cassie
to model readers of narrative texts are discussed in chapters 7 and 8 of this
volume.
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