
Computationally Defining ‘harbinger’ via Contextual
Vocabulary Acquisition

Albert Goldfain
CSE663: Advanced KRR
ag33@cse.buffalo.edu

December 12, 2003

Abstract

The Contextual Vocabulary Acquisition (CVA) project is an effort to computation-
ally model the task a human reader faces when encountering an unknown word in a
given passage. An attempt is made by the reader to define the word using only the
context of the passage and an appropriate set of background rules. The SNePS se-
mantic network system is used as a knowledge representation language for our reader
(a computational SNePS based agent named CASSIE). After being given the SNePS
representation of the passage and background rules, CASSIE uses a specific CVA defi-
nition algorithm based on the part of speech of the unknown word. In this study, we
apply the CVA noun definition algorithm to define the unknown word “harbinger”.
We provide an annotated demo of CASSIE’s interaction with the SNePS representa-
tion of the passage. We then compare CASSIE’s results to results of tests performed
on human readers who are faced with the same task (we refer to such tests as ver-
bal protocols). We conclude that CASSIE’s definition of “harbinger” from the given
passage is an acceptable one. A speculation is offered as to whether or not the form
of the given passage assists CASSIE’s in producing such results. Additional ideas for
potential research are also discussed.

1

1 The CVA Project and SNePS

As human beings, we must admit that we are not equipped with either the patience or the

diligence to look up every unfamiliar word we read. We encounter similar barriers when

dealing with computational agents. It is impossible to provide a computational agent with

an exhaustive lexicon for any human language. All spoken and written languages used in

the real world are inherently dynamic. From a cognitive science perspective, it is much more

satisfying to have a computational agent discover for itself the meanings of new words rather

than having each new word “hard coded”. Contextual Vocabulary Acquisition (CVA) is an

alternative to such hard coding. Given a passage containing an unknown word, we apply

CVA by defining the unknown word using contextual information and our previous back-

ground knowledge.

The method of computational CVA we use is as follows:

1. We represent a sufficient set of background rules and facts to adequately understand

the concepts in the passage (except, of course, the target unknown word)

2. We then represent the passage itself

3. We allow a computational agent named CASSIE to “read” the passage, forming an

internal representation as she goes

4. Finally we invoke the appropriate definition algorithm and allow CASSIE to make an

attempt at defining the unknown word

2

We must ensure that our representations for steps (1) and (2) are neutral and unbiased with

respect to our definition algorithm. We cannot hand CASSIE the result on a silver platter

by disguising the definition as either background knowledge or part of the passage. We also

should make sure that we are representing the passage as given, not a CVA-friendly version

of the passage. To do otherwise would make our system a “toy system” in which all passages

must be taken from the CVA-friendly subset of English. The end product of this process is

CASSIE’s attempted definition of the unknown word.

The CVA project investigates both the performance and the implementation of context

based definition algorithms. The algorithmic procedure used depends on the part of speech

of the unknown word. In this paper, we invoke the noun definition algorithm. This is the

most developed algorithm in the CVA suite of algorithms.

When an agent can rely on the robustness and accuracy of its CVA algorithms, it can

begin to confidently use the resulting definitions. Ideally, the definitions of unknown words

will become “known” after several encounters (in future passages). According to Rapaport

and Ehrlich, CVA should be powerful enough so that “. . . a meaning for a word can be

determined from any context, can be revised and refined upon further encounters with it,

and ‘converges ’ to a dictionary-like definition given enough context and exposures to it”

(Rapaport and Ehrlich 2000). These “known” words can then be used to help discover the

meaning of a new unknown word. Thus, if our CVA definition algorithms are reasonably

3

strong, we will have a self sustaining tool for building a larger vocabulary.

We use the SNePS semantic network system for representing our passage and background

knowledge (for more information on SNePS, visit http://www.cse.buffalo.edu/sneps).

SNePS is a very natural choice for this type of application. SNePS generates propositional

semantic networks, so it is a good fit for modeling any language-centric problem. We code

networks using SNePSUL, a LISP-like user language which defines a set of nodes and the

relations (arcs) between them. The resulting network is viewed as a snapshot of CASSIEs

mind (or, if the reader finds “mind” to be too strong a term, we may say “knowledge base”).

For our application, the snapshots of interest are the one of CASSIEs network before reading

the passage and the one after reading the passage. She will attempt to define the unknown

word immediately after reading the passage. The power of the resulting “definitions” in

SNePS is that they will be more than just atomic building blocks. A definition will be a

network of interrelated concepts. Quillian’s first application for semantic networks was to

create a model which is “built up within a computer by ‘recoding’ a body of information

from an ordinary dictionary into a complex network of elements and associations intercon-

necting them” (Quillian 1967). The same can be said of what we are attempting in SNePS.

Interrelations between the passage and the unknown word are the direct result of CASSIE

reading the passage. With each new context, new interrelations are formed and old ones are

refined. This is why definitions will tend to strengthen (i.e. converge) as an unknown word

is encountered in different contexts.

4

2 The Passage and a Dictionary Definition

Our source passage is taken from the web site

http://cnet.windsor.ns.ca/Environment/Advocates/Anim/robin.html:

“The American Robin is called the ‘harbinger of Spring’ because of its early

northward migration, which brings its arrival before most other migratory birds,

and because of its size and song, along with its habit of living close to human

development, it is usually the first of the summer birds to be noted by humans”

The unknown target noun we have selected from this passage is “harbinger”.

Stylistically speaking, the passage is a run-on sentence, making it hard for even humans

to read. We therefore have condensed the original into the following passage:

“The American Robin is called the ‘harbinger of Spring’ because of its early

northward migration, which brings its arrival before most other migratory birds

. . . it is usually the first of the summer birds to be noted by humans”

Clearly, we have not mutilated the semantic content of this passage by removing the section

we did. The revised passage contains a subset of the original passage’s contextual informa-

tion. We therefore conclude that with enough time both the human and CASSIE could work

through the longer version.

5

Since we are working towards a “dictionary-like definition”, we give one here (courtesy of

http://www.dictionary.com):

harbinger-n. One that indicates or foreshadows what is to come; a forerunner.

Other usages are given, but this is clearly the one intended for this passage.

6

3 Verbal Protocols

The passage was given to several human subjects who did not know the meaning of the

word harbinger. The reader was asked to read the passage and give a definition for the

word harbinger. The following two results (for a male subject CC and a female subject AL)

represent typical responses:

CC : “. . . harbinger means one who brings something or something which is the first thing

you see because it arrives early. . . ”

AL: “. . . a harbinger is an early indicator of some time period . . . so the American Robin

is the harbinger for the time period Spring”

We immediately notice that both of these definitions are very close to our dictionary defini-

tion. Also, we see that both types of responses use contextual information from the source

passage (the words ‘first’, ‘early’, ‘arrive’ and ‘Spring’ are all mentioned in the responses).

Clearly context is being used as a crutch by the human readers and, in this particular pas-

sage, human CVA yields a workable definition for harbinger. This result is a harbinger of

good news for CASSIE’s CVA prospects!

The use of the word “bringer” in CC ’s response may be an artifact of the lexicographic

similarity between “bringer” and the final part of “harbinger”, but it is hard to tell in ret-

7

rospect. Also, the use of “time period” in AL’s response suggests that she is ready to use

her definition to identify entities such as the “harbinger of Winter” or the “harbinger of

Dawn” (if such entities exist). This is not something we should expect from CASSIE. If our

passage is doing anything contextually, it is providing reasons why the American Robin is

called the harbinger of Spring. AL may be making this leap in reasoning because she sees

the passage contains two temporal concepts (the seasons Spring and Summer). Even though

we will be using the CVA noun algorithm to define the noun “harbinger”, as far as CASSIE

is concerned, we may as well treat the noun phrase “harbinger of Spring” as our “atomic”

target for definition. In other words, harbingers of Spring are all CASSIE will get a handle

on by reading the given passage.

8

4 Our SNePS Representation

4.1 SNePS Case Frames: Syntax and Semantics

The CVA noun definition algorithm recognizes a small set of SNePS case frames. Of these

we will use the following in our representation:

• agent/act/action

• lex

• member/class

• object1/rel/object2

• object/proper-name

• object/property

• object/rel/possessor

• superclass/subclass

The syntax and semantics for these case frames can be found at

http://www.cse.buffalo.edu/ stn2/cva/case-frames. We will strictly adhere to the

syntax and semantics given there.

In addition, we also will need the following case frames from the SNePS case frame dic-

tionary :

• forall/ant/cq

9

• min/max/arg

A PDF version of the SNePS Case Frame Dictionary can be found at

http://www.cse.buffalo.edu/sneps/. This document gives the syntax and semantics for

these case frames. Finally we will use the following “non-standard” case frames in our

representation

• agent/act/time

• before/after

• mod/head

• equiv/equiv

• cause/effect

• action/from/to

The syntax and semantics for these case frames is given in Appendix A.

4.2 Background Knowledge Representation

CASSIE is first given an adequate set of background knowledge about the concepts pre-

sented in the passage. This knowledge is expressed as a set of rules or facts and should be

as general as possible. In fact, we are only representing a slice of information which we feel

is necessary to approach the given passage. The amount of background knowledge can grow

exponentially with the number of unique concepts in the passage. Clearly some knowledge

engineering is involved in selecting the most appropriate subset for our background informa-

tion. Our immediate representation of this background knowledge brings it temporarily to

10

the “foreground” (i.e. activates it for use) so that CASSIE can apply CVA.

A complete SNePSUL representation of CASSIE’s background knowledge is given in Ap-

pendix B and the semantic network diagrams for this representation are given in Appendix

C. What follows is a high level description of the background knowledge. We will use first

order logic (FOL) to describe some of this knowledge and “pretend-it’s-English” semantics

will be more than adequate for our present discussion 1

The first few background rules provide some factual information for CASSIE.

(BGI) The American Robin is a bird. In FOL: Bird(AmericanRobin)

(BGII) Spring is a season. In FOL: Season(Spring)

(BGIII) Summer is a season. In FOL: Season(Summer)

(BGIV) Spring is before Summer. In FOL: Before(Spring, Summer)

(BGV) The American Robin is a migratory bird. In FOL: MigratoryBird(AmericanRobin)

Clearly CASSIE would be missing a great deal if any of these five were missing from her

knowledge base. American Robin is expressed as a single entity, rather than using a mod-

head case frame like we do for other concepts such as “migratory birds” (see below for

details). This can be done because we do not refer to any other kinds of robin in the pas-

sage. We could also add a fact that the American Robin is migratory, but she will have

1Here, we are just using FOL to illustrate the background knowledge we are providing for CASSIE. Our
actual SNePSUL representation will rigorously follow the case frame syntax and semantics

11

enough information to infer this from (BGI) and (BGV).

Next we provide the following important rule:

(BGVI) If x is z’s y (that is, a y of z) then x is a y.

This common sense rule will link the American Robin and the unknown word harbinger.

We will represent the fragment “The American Robin is called the harbinger of Spring . . . ”

as the possessive “The American Robin is Spring’s Harbinger . . . ” (see the passage repre-

sentation section below for a further discussion of this representation). This background rule

must therefore also take the possessive form.

In contrast to the previous rules, (BGVII) may seem unnatural at first:

(BGVII) If x is a y bird and y is not a season, then x is y.

This rule will allow CASSIE to pull apart the “mod-head hierarchies” we use for repre-

senting noun-noun and adjective-noun phrasings in our passage (see below for details). We

want this rule to allow CASSIE to infer that the American Robin is migratory since it is a

migratory bird (BGV). The “y is not a season” part of the antecedent forbids CASSIE from

concluding incorrect concepts such as: “A Summer bird both a bird and summer”. Unfor-

tunately, such a rule will need to be expanded/altered the instant we move on to another

passage. Also, this piece of knowledge is not easily representable in FOL. However, it is not

12

an unreasonable piece of background information.

The next rule makes the association between the adjective “migratory” and the verb “mi-

grate”

(BGVIII) If x is migratory then x migrates. In FOL: ∀x[Migratory(x) ⊃ Migrates(x)]

The next four background rules define some important concepts dealing with the relationship

“first of”.

(BGIX) If x is the first of y then x is an indicator that y has arrived.

(BGX) If x is the first of y then x is a y.

(BGXI) If x is the first of y and z is the first of y then x and z are equivalent.

(BGXII) If x is the first of y and x is not equivalent to z then z is not the first of y.

(BGIX) allows us to tie the concept of being ‘first’ with the concept of arrival in our passage.

The careful reader may notice that (BGIX) is not true in general. For example, a soldier

who is a scout for a large army may be stationed well ahead of the army. If enemy forces

discover his presence, they will not assume that his army has arrived (they may be several

days behind). To get around this, we could add a background fact about migration and say

that birds usually travel together. In groups that travel together, we could then say that the

first member will indicate the arrival of the group. We also could rephrase this rule using

the modal logic notion of possibility (via the mode/object case frame in SNePS). This was

13

attempted, but the result was simply that the noun algorithm ignored this rule.

(BGX) through (BGXII) are much more natural. (BGX) indicates that the first of a set

is a member of that set. (BGXI) and (BGXII) preserve the uniqueness of the first of a set

(i.e. force each set into having only one first).

The final background rule defines the concept “other” for CASSIE:

BG(XIII) If x is y and z is another y then x is not equivalent to z

4.3 Passage Representation

In designing a suitable representation for the passage itself, it is useful to think of the

harbinger passage in terms of the following four segments:

“The American Robin is called the ‘harbinger of Spring′︸ ︷︷ ︸
I

because of its early northward migration,︸ ︷︷ ︸
II

which brings its arrival before most other migratory birds︸ ︷︷ ︸
III

. . . it is usually the first of the summer birds to be noted among humans︸ ︷︷ ︸
IV

”

When viewed in this way, we see that segment II is the cause of both segment I and segment

III. This causal relationship ties the first three segments together. Segment IV is refines

what the first three segments are saying by introducing the all important concept of the

American Robin being the “first” in a set.

Figures 14-16 in Appendix C illustrate the SNePS network diagrams for the passage rep-

14

resentation. Here we will give our SNePSUL representation. We represent segment I as

follows:

;--

; I. THE AMERICAN ROBIN IS CALLED THE "HARBINGER OF SPRING"

;--

(describe (add object *AmericanRobin

rel (build lex harbinger) = HARBINGERS

possessor *Spring) = ARCHOS)

We use the possessive construction here to represent “The American Robin is Spring’s

harbinger”. This is semantically equivalent to “The American Robin is the harbinger of

spring” 2. Even though the passage only says that the American Robin is called the harbinger

of Spring, it is clear to the human reader that the American Robin is the harbinger of Spring.

Thus, to make CASSIE’s life a little easier, we assume she is not reading a text where entities

can be called something that they really are not (a sufficient set of additional background

rules might handle such cases anyway).

We also acknowledge the fact that we are representing a single American Robin rather than

the entire class of American Robins. Every Robin in the set of American Robins is also a

“harbinger of Spring”. It is clear that, even if we were to represent the entire class here, we

could perform a universal instantiation with respect to the “harbinger of Spring” property

2in fact, the case frame semantics for object/rel/possessor are exactly what is called for in “[[x]] is the
[[y]] of [[z]]” constructions

15

to obtain a single American Robin3.

We now turn to our representation of segment II:

;---

; II. BECAUSE OF ITS EARLY NORTHWARD MIGRATION

;---

(describe (add cause (add agent *AmericanRobin

act (build action *MIGRATES) = MIGRATION

) = ENM

effect *ARCHOS

)

)

(describe (add object *MIGRATION property (build lex early)))

(describe (add action *MIGRATES from #STARTLOC to #ENDLOC))

(describe (add object1 *ENDLOC rel (build lex north) object2 *STARTLOC))

The standard agent/act/action construct is used for representing the American Robin’s

migration. The earliness of the migration is represented as a property of the act. We

represent the direction northward by adding the from/to arcs to the action, and indicating

that the end location is “north of” the starting location. A very subtle point should be noted

about the phrase “early northward migration”. Because the human readers of this passage

are all reading this passage in America, and because we are dealing with an American Robin

(which presumably returns to America in the springtime), the “early northward migration”

is a natural thing to read. A reader in Australia, for example, who is used to birds returning

in the Spring by traveling southward, would have to reorient their background knowledge

3Rapaport indicates that such representations will change in the upcoming SNePS3

16

to the specific context of the passage. This “early northward migration” is a cause of the

American Robin being called the harbinger of Spring (abbreviated in the SNePSUL as a

pointer to ARCHOS). This is also a direct cause for the effect which we represent in segment

III:

;--

; III. WHICH BRINGS ITS ARRIVAL BEFORE MOST OTHER MIGRATORY BIRDS

;--

(describe (add before #ARRIVETIME1 after #ARRIVETIME2))

(describe (add cause *ENM

effect (add agent *AmericanRobin

act (build action *ARRIVAL)

time *ARRIVETIME1

)

)

)

(describe (add agent (build mod (build lex other)

head *MIGRATORYBIRDS

)

act (build action *ARRIVAL)

time *ARRIVETIME2

)

)

Here, we first represent two arrival times as base nodes, one before the other. We then

“assign” the American Robin’s arrival to the earlier time by using the temporal time arc

on the agent/act case frame. To the later arrival time we “assign” the arrival of “other

migratory birds”. We notice that the action of arrival is shared by both the American

Robin and the “other migratory birds”, even though the events are separated temporally.

The phrase “other migratory birds” is built up as a “mod/head” hierarchy as shown. The

17

background knowledge will handle the fact that the American Robin is a migratory bird,

and that it is not one of the other migratory birds.

Finally we represent segment IV:

;--

; IV. IT IS USUALLY THE FIRST OF THE SUMMER BIRDS TO BE NOTED BY HUMANS

;--

(describe (add object1 *AmericanRobin

rel *FIRSTOF

object2 #SummerBirdsNotedByHumans

)

)

(describe (add subclass *SummerBirdsNotedByHumans

superclass (build mod *Summer head *BIRDCLASS)

)

)

(describe (add subclass *SummerBirdsNotedByHumans

superclass (build mod (build lex notedBy) head (build lex humans))

)

)

To simplify this representation, we drop the word “usually” (it is not even clear if “usu-

ally” is captured by any modal logic operators). We represent the set of “summer birds

noted by humans” as a base node, and assert that the American Robin is the first of this

set. We then refine the base node by making it a subclass of the class of summer birds as

well as a subclass of the class of all things noted by humans.

18

5 Results

After providing the SNePS representation for both the background information and the

harbinger passage, we invoke the CVA noun definition algorithm and obtain the following

output:

; Ask Cassie what "harbinger" means:

^(

--> defineNoun "harbinger")

Definition of harbinger:

Possible Class Inclusions: AmericanRobin, bird, m14, b8,

Possible Actions: arrive, migrate,

Possible Properties: indicates m52, first b8,

Possessive: season,

We may fill in node names to obtain the following human readable definition:

; Ask Cassie what "harbinger" means:

^(

--> defineNoun "harbinger")

Definition of harbinger:

Possible Class Inclusions: AmericanRobin, bird, migratory bird, Summer birds noted by humans,

Possible Actions: arrive, migrate,

Possible Properties: indicates arrival of Summer birds noted by humans, first Summer bird noted by humans,

Possessive: season,

As we expect, CASSIE’s definition is almost an “instance” of the dictionary definition

in that it really defines what a migratory-bird-Spring-harbinger is. CASSIE does not gener-

alize beyond the current context, but the end result (in particular the possible actions and

properties) are strong.

19

As a “sanity check” (and to further examine how the noun algorithm works) we ran the

noun definition algorithm on “American Robin” and “season” with the following results:

* ^(defineNoun "AmericanRobin")

--> Definition of AmericanRobin:

Possible Class Inclusions: bird, m14, harbinger, b8,

Possible Actions: arrive, migrate,

Possible Properties: indicates m52, first b8,

Possessive: season harbinger,

nil

* ^(defineNoun "season")

--> Definition of season:

Named Individuals: Summer, Spring,

nil

It is clear that some of the harbinger definition “spills over” into the American Robin

definition (and vice versa) because the two entities are tied together by (BGVI) and passage

segment I. If American Robin had been the unknown noun, this passage would have refined

the definition to include “season harbinger” (listed under possessive).

20

6 Further Study and Speculation

The results we obtained could be strengthened significantly by the addition of more back-

ground knowledge. The two human protocol definitions given above both abstract away

from the treatment of the seasons as points (or sets of point intervals) in time. We cannot

expect this from CASSIE since we have only given her the two temporal entities “Spring”

and “Summer” to work with. More background knowledge could allow CASSIE to consider

the harbinger of any temporal concept (like AL did above).

We also have avoided making a conceptual tie between being “first” and being “early”.

To say that being “early” implies being “first” is simply wrong, and to say that being

“first” in a set implies being “early” is only true if the entire set under discussion is not

late. An attempt was made at adding such a concept using modal logic, but CASSIE seem-

ingly ignored the modal logic background rules when applying the noun definition algorithm.

We speculate that another reason for our positive result was the form of the passage it-

self. Passages of the form x is y because of z are inherently “CVA-friendly”. When our goal

is to define y, it is clear that all of the context we will need will come from concepts in z.

Our background information can draw on background facts we know about x. Having the

luxury of such a structure is a definite benefit to the knowledge engineer. It would be an

interesting exercise to catalogue such “CVA-friendly” structures in natural language (this

would also help answer the question “Is the contextual strength of a syntactic form quantifi-

21

able”). Clearly, if CVA is going to work on a large scale, it must work for “CVA-friendly”

passages.

We implemented this project on the passage representation side of CVA. The noun defi-

nition algorithm itself was treated as a black box. Based on the results alone, we speculate

that the algorithm “found its contextual data” by branching out from the unknown word

in the network (and adding relevant properties and class inclusions). It would be beneficial

to now spend some time “under the hood” of the noun definition algorithm to see if any

improvements can be made.

We conclude with the realization that “working” CVA is a very lofty goal on both the

representation and implementation sides. A passage which is easy to read may be very

difficult to represent (and vice versa). The knowledge engineer must make difficult choices

in selecting the background knowledge and representing the source passage. The algorithm

implementer essentially provides a “best effort” attempt to use the contextual data, without

having the ability to alter its representation. Still, we remain optimistic that CVA can be

incrementally improved to a “near human” level of performance.

22

Appendix A: Syntax and Semantics for Non-Standard

Case Frames

Syntax

If x1 . . . x6, y1 . . . y6, z1 and z6 are individual nodes and m1 . . .m6 are identifiers not previ-

ously used, then each of the following are networks and m1 . . .m6 are structured proposition

nodes.

Figure 1: “Case Frame Syntax”

Semantics

• [[m1]] is the proposition that agent [[x1]] performs [[y1]] at time [[z1]]

• [[m2]] is the proposition that time [[x2]] is before time [[y2]]

• [[m3]] is the proposition that [[x3]] is a modifier for [[y3]]

• [[m4]] is the proposition that [[x4]] and [[y4]] are equivalent

• [[m5]] is the proposition that [[x5]] is the cause of effect [[y5]]

• [[m6]] is the proposition that the direction of action [[x6]] is from [[y6]] to [[z6]]

23

Appendix B: Script of Running Demo

Script started on Tue Dec 09 23:02:20 2003
pollux {~/cse663} > acl

International Allegro CL Enterprise Edition
6.2 [Solaris] (Oct 28, 2003 9:00)
Copyright (C) 1985-2002, Franz Inc., Berkeley, CA, USA. All Rights Reserved.

This development copy of Allegro CL is licensed to:
[4549] SUNY/Buffalo, N. Campus

;; Optimization settings: safety 1, space 1, speed 1, debug 2.
;; For a complete description of all compiler switches given the
;; current optimization settings evaluate (explain-compiler-settings).
;;---
;; Current reader case mode: :case-sensitive-lower
cl-user(1): (load "/projects/snwiz/bin/sneps")
; Loading /projects/snwiz/bin/sneps.lisp
Loading system SNePS...10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
SNePS-2.6 [PL:0a 2002/09/30 22:37:46] loaded.
Type ‘(sneps)’ or ‘(snepslog)’ to get started.
t
cl-user(2): (sneps)

Welcome to SNePS-2.6 [PL:0a 2002/09/30 22:37:46]

Copyright (C) 1984--2002 by Research Foundation of
State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!
Type ‘(copyright)’ for detailed copyright information.
Type ‘(demo)’ for a list of example applications.

12/9/2003 23:03:06

* (demo "harbinger.demo")

File /home/csgrad/ag33/cse663/harbinger.demo is now the source of input.

CPU time : 0.00

* ; ===
; FILENAME: harbinger.demo
; DATE: 12/8/03
; PROGRAMMER: Albert Goldfain

; Lines beginning with a semi-colon are comments.
; Lines beginning with "^" are Lisp commands.
; All other lines are SNePS commands.
;
; To use this file: run SNePS; at the SNePS prompt (*), type:
;
; (demo "harbinger.demo" :av)
;
; Make sure all necessary files are in the current working directory
; or else use full path names.
; ===

24

; Turn off inference tracing.
; This is optional; if tracing is desired, then delete this.
^(
--> setq snip:*infertrace* nil)
nil

CPU time : 0.00

*
; Load the noun definition algorithm:
^(
--> load "/projects/rapaport/CVA/STN2/defun_noun.cl")
; Loading /projects/rapaport/CVA/STN2/defun_noun.cl
t

CPU time : 0.18

*
; Clear the SNePS network:
(resetnet)

Net reset - Relations and paths are still defined

CPU time : 0.00

*

; load all pre-defined relations:
;(intext "/projects/rapaport/CVA/STN2/rels")
(intext "myRels")
File myRels is now the source of input.

CPU time : 0.01

* act is already defined.
action is already defined.
effect is already defined.
object1 is already defined.
object2 is already defined.

(a1 a2 a3 a4 act action after agent antonym associated before cause
class direction effect equiv etime from head in indobj instr into lex
location kn_cat manner member members mode mod object objects object1
objects1 object2 on onto part place possessor proper-name property
purpose rel skf stime subclass superclass synonym time to whole)

CPU time : 0.02

*

End of file myRels

CPU time : 0.02

25

* ; load all pre-defined path definitions:
;(intext "/projects/rapaport/CVA/mkb3.CVA/paths/paths")
(intext "myPaths")
File myPaths is now the source of input.

CPU time : 0.00

*
before implied by the path (compose before

(kstar (compose after- ! before)))
before- implied by the path (compose (kstar (compose before- ! after))

before-)

CPU time : 0.00

*
after implied by the path (compose after

(kstar (compose before- ! after)))
after- implied by the path (compose (kstar (compose after- ! before))

after-)

CPU time : 0.00

*
sub1 implied by the path (compose object1- superclass- ! subclass

superclass- ! subclass)
sub1- implied by the path (compose subclass- ! superclass subclass- !

superclass object1)

CPU time : 0.00

*
super1 implied by the path (compose superclass subclass- ! superclass

object1- ! object2)
super1- implied by the path (compose object2- ! object1 superclass- !

subclass superclass-)

CPU time : 0.00

*
superclass implied by the path (or superclass super1)
superclass- implied by the path (or superclass- super1-)

CPU time : 0.00

*

End of file myPaths

CPU time : 0.01

* ; BACKGROUND KNOWLEDGE:
; =====================

26

;--
; BG I. The American Robin is a bird
;--
(describe (add member #AmericanRobin class (build lex AmericanRobin)))

(m2! (class (m1 (lex AmericanRobin))) (member b1))

(m2!)

CPU time : 0.00

* (describe (add member *AmericanRobin class (build lex bird)=BIRDCLASS))

(m4! (class (m3 (lex bird))) (member b1))

(m4!)

CPU time : 0.01

* ;--
; BG II. Spring is a season
;--
(describe (add object #Spring proper-name (build lex Spring)))

(m6! (object b2) (proper-name (m5 (lex Spring))))

(m6!)

CPU time : 0.00

* (describe (add member *Spring class (build lex season)=SEASONS))

(m8! (class (m7 (lex season))) (member b2))

(m8!)

CPU time : 0.00

* ;--
; BG III. Summer is a season
;--
(describe (add object #Summer proper-name (build lex Summer)))

(m10! (object b3) (proper-name (m9 (lex Summer))))

(m10!)

CPU time : 0.00

* (describe (add member *Summer class *SEASONS))

(m11! (class (m7 (lex season))) (member b3))

(m11!)

CPU time : 0.01

* ;--
; BG IV. Spring is before Summer (or Summer is after Spring)
;--
(describe (add before *Spring after *Summer))

27

(m12! (after b3) (before b2))

(m12!)

CPU time : 0.03

* ;--
; BG V. The American Robin is a migratory bird.
;--
(describe (add member *AmericanRobin

class (build mod (build lex migratory)=MIGRATORYTHING
head *BIRDCLASS)=MIGRATORYBIRDS

)
)

(m15! (class (m14 (head (m3 (lex bird))) (mod (m13 (lex migratory)))))
(member b1))

(m15!)

CPU time : 0.00

* ;--
; BG VI. If x is z’s y then x is a y
;--

(describe (add forall ($x $y $z)
ant (build object *x

rel *y
possessor *z)

cq (build member *x class *y)))

(m16! (forall v3 v2 v1) (ant (p1 (object v1) (possessor v3) (rel v2)))
(cq (p2 (class v2) (member v1))))

(m16!)

CPU time : 0.01

*
;--
; BG VII. If x is a y bird and y is not a season then x is y
;--

(describe (add forall ($x $y)
&ant (build member *x

class (build mod *y head *BIRDCLASS))
&ant (build min 0 max 0 arg(build member *y class *SEASONS))
cq (build object *x property *y)
)

)

(m17! (forall v5 v4)
(&ant
(p6 (min 0) (max 0) (arg (p5 (class (m7 (lex season))) (member v5))))
(p4 (class (p3 (head (m3 (lex bird))) (mod v5))) (member v4)))

(cq (p7 (object v4) (property v5))))
(m15! (class (m14 (head (m3)) (mod (m13 (lex migratory))))) (member b1))

(m17! m15!)

28

CPU time : 0.01

*
;--
; BG VIII. If x is migratory then x migrates
;--
(describe (add forall $x
ant (build object *x property *MIGRATORYTHING)
cq (build agent *x

act (build action (build lex migrate)=MIGRATES)
)

)
)

(m20! (forall v6)
(ant (p10 (object v6) (property (m13 (lex migratory)))))
(cq (p11 (act (m19 (action (m18 (lex migrate))))) (agent v6))))
(m15! (class (m14 (head (m3 (lex bird))) (mod (m13)))) (member b1))

(m20! m15!)

CPU time : 0.01

* ;--
; BG IX. If x is the first of y then x is an indicator that
; y has arrived
;--
(describe (build lex arrive)=ARRIVAL)

CPU time : 0.00

* (describe (add forall ($x $y)
ant (build object1 *x

rel (build lex first)=FIRSTOF
object2 *y
)

cq (build object1 *x
rel (build lex indicates)

object2 (build agent *y
act (build action *ARRIVAL)

)

)
)

)

(m27! (forall v8 v7)
(ant (p16 (object1 v7) (object2 v8) (rel (m24 (lex first)))))
(cq
(p18 (object1 v7)
(object2 (p17 (act (m26 (action (m23 (lex arrive))))) (agent v8)))
(rel (m25 (lex indicates))))))

(m27!)

CPU time : 0.00

* ;--
; BG X, XI and XII. Defining the "first" of a class

29

;--
(describe (add forall ($x $y)
ant (build object1 *x rel *FIRSTOF object2 *y)
cq (build member *x class *y)

)
)

(m28! (forall v10 v9)
(ant (p19 (object1 v9) (object2 v10) (rel (m24 (lex first)))))
(cq (p20 (class v10) (member v9))))

(m28!)

CPU time : 0.01

*
(describe (add forall ($x $y $z)
&ant (build object1 *x rel *FIRSTOF object2 *y)
&ant (build object1 *z rel *FIRSTOF object2 *y)
cq (build equiv *x equiv *z)
)

)

(m29! (forall v13 v12 v11)
(&ant (p22 (object1 v13) (object2 v12) (rel (m24 (lex first))))
(p21 (object1 v11) (object2 v12) (rel (m24))))

(cq (p23 (equiv v13 v11))))

(m29!)

CPU time : 0.01

*
(describe (add forall ($x $y $z)
&ant (build object1 *x rel *FIRSTOF object2 *y)
&ant (build min 0 max 0 arg(build equiv *x equiv *z))
cq (build min 0 max 0 arg(build object1 *z rel *FIRSTOF object2 *y))
)

)

(m30! (forall v16 v15 v14)
(&ant (p26 (min 0) (max 0) (arg (p25 (equiv v16 v14))))
(p24 (object1 v14) (object2 v15) (rel (m24 (lex first)))))

(cq
(p28 (min 0) (max 0)
(arg (p27 (object1 v16) (object2 v15) (rel (m24)))))))

(m30!)

CPU time : 0.05

*
;--
; BG XIII. Defining "other"
;--
(describe (add forall ($x $y $z)
&ant (build member *x class *y)
&ant (build member *z class (build mod (build lex other) head *y))
cq (build min 0 max 0 arg(build equiv *x equiv *z))

)
)

30

(m32! (forall v19 v18 v17)
(&ant
(p31 (class (p30 (head v18) (mod (m31 (lex other))))) (member v19))
(p29 (class v18) (member v17)))

(cq (p33 (min 0) (max 0) (arg (p32 (equiv v19 v17))))))
(m15! (class (m14 (head (m3 (lex bird))) (mod (m13 (lex migratory)))))
(member b1))
(m11! (class (m7 (lex season))) (member b3))
(m8! (class (m7)) (member b2))
(m4! (class (m3)) (member b1))
(m2! (class (m1 (lex AmericanRobin))) (member b1))

(m32! m15! m11! m8! m4! m2!)

CPU time : 0.07

*

; CASSIE READS THE PASSAGE:
; =========================
;--
; I. THE AMERICAN ROBIN IS CALLED THE "HARBINGER OF SPRING"
;--

(describe (add object *AmericanRobin
rel (build lex harbinger) = HARBINGERS
possessor *Spring) = ARCHOS)

(m36! (class (m34 (lex harbinger))) (member b1))
(m35! (object b1) (possessor b2) (rel (m34)))

(m36! m35!)

CPU time : 0.01

*

;---
; II. BECAUSE OF ITS EARLY NORTHWARD MIGRATION
;---
(describe (add cause (add agent *AmericanRobin

act (build action *MIGRATES) = MIGRATION
) = ENM

effect *ARCHOS
)

)

(m38!
(cause (m37! (act (m19 (action (m18 (lex migrate))))) (agent b1)))
(effect (m36! (class (m34 (lex harbinger))) (member b1))
(m35! (object b1) (possessor b2) (rel (m34)))))

(m38!)

CPU time : 0.01

*
(describe (add object *MIGRATION property (build lex early)))

(m40! (object (m19 (action (m18 (lex migrate)))))
(property (m39 (lex early))))

31

(m40!)

CPU time : 0.01

* (describe (add action *MIGRATES from #STARTLOC to #ENDLOC))

(m41! (action (m18 (lex migrate))) (from b4) (to b5))

(m41!)

CPU time : 0.00

* (describe (add object1 *ENDLOC rel (build lex north) object2 *STARTLOC))

(m43! (object1 b5) (object2 b4) (rel (m42 (lex north))))

(m43!)

CPU time : 0.01

*
;--
; III. WHICH BRINGS ITS ARRIVAL BEFORE MOST OTHER MIGRATORY BIRDS
;--
(describe (add before #ARRIVETIME1 after #ARRIVETIME2))

(m44! (after b7) (before b6))

(m44!)

CPU time : 0.01

* (describe (add cause *ENM
effect (add agent *AmericanRobin

act (build action *ARRIVAL)
time *ARRIVETIME1

)
)

)

(m47!
(cause (m37! (act (m19 (action (m18 (lex migrate))))) (agent b1)))
(effect (m46! (act (m26 (action (m23 (lex arrive))))) (agent b1))
(m45! (act (m26)) (agent b1) (time b6))))

(m47!)

CPU time : 0.01

*
(describe (add agent (build mod (build lex other)

head *MIGRATORYBIRDS
)

act (build action *ARRIVAL)
time *ARRIVETIME2

)
)

(m50! (act (m26 (action (m23 (lex arrive)))))

32

(agent
(m48 (head (m14 (head (m3 (lex bird))) (mod (m13 (lex migratory)))))
(mod (m31 (lex other))))))

(m49! (act (m26)) (agent (m48)) (time b7))

(m50! m49!)

CPU time : 0.01

*

;--
; IV. IT IS USUALLY THE FIRST OF THE SUMMER BIRDS TO BE NOTED BY HUMANS
;--
(describe (add object1 *AmericanRobin

rel *FIRSTOF
object2 #SummerBirdsNotedByHumans

)
)

(m54! (class b8) (member b1))
(m53! (object1 b1)
(object2 (m52 (act (m26 (action (m23 (lex arrive))))) (agent b8)))
(rel (m25 (lex indicates))))
(m51! (object1 b1) (object2 b8) (rel (m24 (lex first))))

(m54! m53! m51!)

CPU time : 0.01

* (describe (add subclass *SummerBirdsNotedByHumans
superclass (build mod *Summer head *BIRDCLASS)

)
)

(m56! (subclass b8) (superclass (m55 (head (m3 (lex bird))) (mod b3))))

(m56!)

CPU time : 0.00

* (describe (add subclass *SummerBirdsNotedByHumans
superclass (build mod (build lex notedBy) head (build lex

humans)))
)
(m60! (subclass b8)
(superclass (m59 (head (m58 (lex humans))) (mod (m57 (lex notedBy))))))

(m60!)

CPU time : 0.01

*

; Ask Cassie what "harbinger" means:
^(
--> defineNoun "harbinger")
Definition of harbinger:
Possible Class Inclusions: AmericanRobin, bird, m14, b8,
Possible Actions: arrive, migrate,

33

Possible Properties: indicates m52, first b8,
Possessive: season,
nil

CPU time : 0.61

*

End of /home/csgrad/ag33/cse663/harbinger.demo demonstration.

CPU time : 1.20

* (lisp)
"End of SNePS"
cl-user(3): (exit)
; Exiting Lisp
pollux {~/cse663} > exit

exit

script done on Tue Dec 09 23:03:35 2003

34

Appendix C: SNePS Network Diagrams

Note that the following diagrams represent only the background rules and the passage. Items

which CASSIE infers from the passage are not included

Figure 2: “The American Robin is a bird”

Figure 3: “Spring is a season”

here.

35

Figure 4: “Summer is a season”

Figure 5: “Spring is before Summer (or Summer is after Spring)”

Figure 6: “The American Robin is a migratory bird”

36

Figure 7: “If x is z’s y then x is a y”

Figure 8: “If x is a y bird and y is not a season then x is a y”

37

Figure 9: “If x is migratory then x migrates”

Figure 10: “If x is the first of y then x is an indicator that y has arrived”

38

Figure 11: “If x is the first of y then x is a y”

Figure 12: “If x is the first of y and z is the first of y then x and z are equivalent”

Figure 13: “If x is the first of y and x is not equivalent to z then z is not the first of y”

39

Figure 14: “If x is a y and z is another y then x is not equivalent to z”

Figure 15: “(I) The American Robin is called the harbinger of Spring (II) because of its
early northward migration. . . ”

40

Figure 16: “(III). . . which brings its arrival before most other migratory birds. . . ”

Figure 17: “(IV). . . it is usually the first of the summer birds to be noted by humans.”

41

References

1. Napieralski, Scott (2003), “Noun Algorithm Case Frames”,
[http://www.cse.buffalo.edu/ stn2/cva/case-frames/’]

2. Quillian, M. Ross (1967), “Word Concepts: A Theory and Simulation of Some Basic
Semantic Capabilities”, in Ronald J. Brachman & Hector J. Levesque (eds.), Readings
in Knowledge Representation (Los Altos, CA: Morgan Kaufmann, 1985): p.98

3. Rapaport, William J., & Ehrlich, Karen (2000), “A Computational Theory of Vocab-
ulary Acquisition”, in Lucja M. Iwanska & Stuart C. Shapiro (eds.), Natural Language
Processing and Knowledge Representation: Language for Knowledge and Knowledge
for Language (Menlo Park, CA/Cambridge, MA: AAAI Press/MIT Press): 5.

4. Shapiro, Stuart C., & Rapaport, William J. (1996), “A Dictionary of SNePS Case
Frames”, retrieved from [http://www.cse.buffalo.edu/sneps/Manuals/dictionary.pdf].

42

